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Resumen 

En este documento se presenta un procedimiento para determinar las 

constantes empíricas de von Kármán  y de adición  de la ley de 

distribución de velocidad logarítmica, y se fundamenta en una 

estimación global de los valores mínimos de error entre el modelo de la 
ley logarítmica y los datos de una medición. Para verificar la bondad del 

método propuesto, se realizó una comparación con otros métodos 
presentados en la literatura, utilizando los datos de un perfil de 

velocidad obtenidos en un canal de pendiente variable de sección 

rectangular, con un velocímetro acústico de efecto Doppler (ADV, 
Acoustic Doppler Velocimeter). La prueba experimental fue en flujo 

uniforme con fondo de rugosidad 𝑘s = 0.000535 m y un número de 

Reynolds 𝑅𝑒 > 36 000. El método propuesto permite estimar de forma 

simultánea las constantes  y , localizando un valor óptimo 

denominado 𝐸min en un plano bidimensional de estimación de error de 
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las constantes. Los resultados del método propuesto en comparación 

con otros reportados en la literatura indican una mejora o al menos una 
estimación similar. Además, se comprobó el ajuste de la ley logarítmica 

con los valores obtenidos de la prueba experimental en el rango 
establecido 30 < 𝑦+ < 0.3𝛿+, utilizando los valores calculados de  y  con 

el método propuesto. 

Palabras clave: ley logarítmica, constante de von Kármán, constante 

de adición, velocimetría acústica Doppler. 

 

Abstract 

This paper presents a procedure to determine the empirical constants of 

von Kármán  and additive  of the law of logarithmic velocity 

distribution, is based on a global estimation of the minimum values of 
error between the logarithmic law model and the data of a 

measurement. To verify the goodness of the proposed method, a 
comparison was made with other methods presented in the literature, 

using the data of a velocity profile obtained in a variable slope channel 
of rectangular section, with an Acoustic Doppler Velocimeter (ADV). The 

experimental test was in uniform flow with bed roughness 𝑘s = 0.000535 

m and Reynolds number 𝑅𝑒 > 36 000. The proposed method allows to 

simultaneously estimate the empirical constants  and , locating an 

optimal value called 𝐸min in a two-dimensional plane of error estimation 

of the constants. The results of the proposed method compared to 
others reported in the literature indicate an improvement or at least a 

similar estimate. In addition, the adjustment of the logarithmic law with 
the values obtained from the experimental test in the established range 

30 < 𝑦+ < 0.3𝛿+ was verified, using the calculated values of  and  with 

the proposed method. 

Keywords: Logarithmic law, von Kármán constant, additive constant, 
acoustic Doppler velocimetry. 
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Introducción 

 

 

La distribución de velocidades medias en un cauce natural o artificial se 

considera por simplicidad como un proceso bidimensional que tiene 
regiones con diferentes características de velocidad en función del 

tirante (Nezu & Nakagawa, 1993). Estas regiones se evalúan por la 

relación 𝑦  ⁄ , donde 𝑦 es la coordenada vertical y   es la profundidad o 

tirante del flujo. En la región cercana al fondo   𝑦      , la velocidad 

principal es descrita por la clásica “ley de pared” (Coles, 1956), que se 

compone de tres zonas: subcapa viscosa, amortiguamiento y logarítmica 
(Petrie & Diplas, 2016; Spalding, 1961). La existencia de la subcapa 

viscosa y la zona de amortiguamiento está en función de la rugosidad 
del fondo, por ejemplo, si el valor de escala de rugosidad adimensional 

𝑘 
    (𝑘 

  𝑘     , donde 𝑘  es la rugosidad absoluta,    es la velocidad 

de corte y   es la viscosidad cinemática), el flujo se considera con fondo 

hidráulicamente liso y están presentes las tres zonas. Si   𝑘 
    , el 

flujo penetra la zona de amortiguamiento y la subcapa viscosa 

desaparece, considerándose como flujo con fondo incompletamente 
rugoso. Finalmente, si 𝑘 

    , se considera como flujo con fondo 

completamente rugoso y las dos primeras zonas desaparecen, 
permaneciendo sólo la zona logarítmica. En el rango     𝑦       el 

perfil de velocidad no sigue una tendencia logarítmica, ya que se tienen 

dos comportamientos: el denominado fenómeno de inmersión 
(Bonakdari, Larrarte, Lassabatere, & Joannis, 2008; Yang, 2005) o de 

estela (Yang, 2009), donde los valores de una medición difieren 
respecto a los estimados con la “ley logarítmica”, ecuación (1). 

 

   
 

 
  𝑦       (1) 

 

Donde     ̅    es la escala de velocidad adimensional; 𝑦  𝑦    , la 

escala de longitud adimensional;  ̅, la velocidad media en dirección 

principal del flujo;  , la constante de von Kármán, y   es la constante de 

adición. Este modelo logarítmico se ha utilizado para caracterizar el 

campo de velocidad de flujos turbulentos en ríos (Ferro & Baiamonte, 

1994; Petrie & Diplas, 2016), canales (Auel, Albayrak, & Boes, 2014; 
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Tominaga & Nezu, 1992) y tuberías (Bailey, Vallikivi, Hultmark, & Smits, 

2014; Perry, Hafez, & Chong, 2001). 

De acuerdo con Segalini, Örlü y Alfredsson (2013), en los trabajos 

experimentales que se exponen en la literatura, el rango donde la ley 
logarítmica reproduce de modo correcto el perfil de velocidad no está 

completamente definido. Según Segalini et al. (2013), el límite inferior 
oscila entre    𝑦      e incluso hay publicaciones que indican un 

límite hasta 600 (McKeon, Li, Jiang, Morrison, & Smits, 2004; Zagarola 
& Smits, 1998); para el límite superior se encuentra alrededor de 

    𝑦  𝛿      (𝛿  𝛿    , donde 𝛿 denota el espesor de la capa 

límite); también hay publicaciones que muestran valores hasta 0.75 
(Zanoun, Durst, & Nagib, 2003). 

Para el uso de la ley logarítmica es necesario estimar los valores de las 

constantes empíricas   y  , y existen diferentes métodos para 

determinarlas en diversas condiciones de flujo, a partir de datos de una 
medición (Monkewitz, 2017; Segalini et al., 2013; Zanoun et al., 2003). 

Los parámetros básicos que deben tomarse en cuenta para estimar las 
constantes son número de Reynolds y Froude (Bailey et al., 2014; 

Monkewitz, 2017); rugosidad del fondo (Auel et al., 2014), y la relación 
de aspecto del cauce     (en el caso de una sección rectangular, donde 

  es el ancho del fondo del canal) (Bonakdari et al., 2008). 

En este documento se presenta un procedimiento para determinar las 
constantes empíricas   y   de la ley logarítmica, y se fundamenta en 

una estimación global de los valores mínimos de error entre el modelo 
de la ley logarítmica y los datos de una medición. Además, con el fin de 

conocer los alcances de este método, se realizó una comparación con 
otros métodos descritos por Segalini et al. (2013), que son mínimos 

cuadrados, función de indicador y dispersión    . En el apartado 

siguiente se describen tales métodos, junto con el propuesto en este 
trabajo, denominado topología. 

La determinación de las constantes empíricas ante diferentes valores de 

número de Reynolds y Froude, rugosidad del fondo y relación de aspecto 

permite conocer sus variaciones y, por tanto, es posible utilizar con 
mayor precisión metodologías para determinar la velocidad de corte 

mediante el uso de la ley logarítmica, como la expuesta por Mendoza-
González y Aguilar-Chávez (2018), donde se asumen valores fijos para   
y  . 
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Métodos de estimación de las constantes   y   

 

 

Mínimos cuadrados 

 

 

En el método de mínimos cuadrados se estima la constante de von 

Kármán con la ecuación (2) (Segalini et al., 2013). 

 

  
  ∑      

 
  (∑     

 
 )

 

  ∑   
 

     
  ∑   

 
 ∑     

 
 

                *     +                     (2) 

 

Donde   es el número de valores de una medición que se consideran 

dentro del rango de la ley logarítmica e   denota el contador de cada 

valor. Una vez calculado  , se procede con la estimación de   mediante 

la ecuación (3). 

 

  
 

 
 ∑ .  

  
 

 
  𝑦 

 /                                           (3) 

 

 

Función de indicador 

 

 

Este método tiene su origen en aplicar la derivada a la escala de 
velocidad    respecto a la escala de longitud 𝑦  de la ley logarítmica. 

Entonces, se tiene la siguiente relación, ecuación (4). 
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 .
 

 
  𝑦   /                                         (4) 

 

Desarrollando la derivada se tiene la ecuación (5). 

 

   

   
  

 

 

 

  
                                                 (5) 

 

Finalmente, despejando la inversa de  , se obtiene la función de 

indicador, ecuación (6). 

 

 

 
 𝑦 

   

   
                                                   (6) 

 

Para aplicar la ecuación anterior a valores discretos de una medición se 
utiliza la ecuación (7). 

 

 

 
 

 

 
∑ 𝑦 

   
 

   
| 
 
                                               (7) 

 

Mediante la ecuación (7) se calcula  , mientras que   se determina con 

la ecuación (3). Este método también ha sido utilizado para discernir el 

rango de la región logarítmica. Este procedimiento es expuesto por 
Zanoun et al. (2003). La dificultad de tal método es determinar la 

derivada del perfil de velocidad      𝑦 , que tiene una gran dispersión 

debido a la incertidumbre inherente de los datos de una medición, 
siendo mayor en la cercanía de la pared (Segalini et al., 2013). Por lo 

tanto, para aplicarlo método se recomienda tomar las muestras de 
velocidad a una distancia constante (Österlund, 1999) y emplear un 

esquema de diferenciación central de orden superior (Buschmann & 
Gad-El-Hak, 2003). 

 

 

Dispersión     
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Este método fue propuesto por Alfredsson, Imayama, Lingwood, Örlü y 

Segalini (2013), y consiste en un reordenamiento de la ley logarítmica, 
tal como lo indica la ecuación (8). 

 

         𝑦                                               (8) 

 

Para emplear la ecuación (8) se propone un rango de   valores de  , y 

este rango se divide en   *     +  valores de evaluación, para los   

valores de la región logarítmica. Con ello se obtiene una distancia de 
error (    )  para cada valor de   propuesto, tal distancia se define por 

la diferencia entre el    (   ) y el    (   ). El valor óptimo de ajuste 

para  , es aquel donde se tiene el    (    ) . Por último,   se calcula 

con la ecuación (3), o bien, a partir de los valores    , con la ecuación 

(9). 

 

  
 

  
∑                                                      (9) 

 

 

Topología (propuesta) 

 

 

El método propuesto consiste en un reordenamiento de la ley 

logarítmica, como se muestra en la ecuación (10). 

 

   
 

 
  𝑦                                               (10) 

 

En la expresión anterior, los valores de una medición    y 𝑦  deben 

guiar el resultado a cero; en un caso ideal se podría tener un solo valor 
de   y  , para indicar el valor exacto del perfil de velocidades de una 
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medición. En este caso, se propone que existe una pequeña diferencia 

entre los valores de una medición y el valor de estimación de la 
ecuación (10), y se define como error de estimación 𝐸 . La forma 

funcional del error se aplica sobre un espacio paramétrico de los valores 

de   y  , por lo que 𝐸   (   )  ,         -  ,         -, donde  (   ) es 

un espacio métrico para determinar los valores de las constantes del 

modelo logarítmico. Entonces, por cada valor de una medición se 
obtiene un valor de error sobre el espacio  , tal como se indica en la 

ecuación (11). 

 

𝐸 (   )    
  

 

 
  𝑦 

                                         (11) 

 

Con los valores de 𝐸 (   ) se obtiene el plano métrico del error, que en 

teoría se considera continuo; sin embargo, la forma funcional de   y   

no son conocidas, por lo que se considera una evaluación discreta por 
valores conocidos de éstas. Para obtener una medida escalar de la 

magnitud del vector de error de estimación 𝐸  se aplica alguna norma de 

Hölder, ecuación (12). La selección de una norma se discute después. 

 

𝐸  ‖𝐸 (   )‖  {
(∑ |𝐸 (   )|

 
 )

 

                 

    |𝐸 (   )|               
                  (12) 

 

Donde ‖ ‖ es el operador norma y   ,   - indica el número de norma. 

De acuerdo con la definición formal de norma vectorial, la ecuación (12) 
puede ser cero, si y sólo si 𝐸 (   )    (Bernstein, 2009); esto indicaría 

un ajuste exacto de la ley logarítmica con los valores   
  de una 

medición. En la práctica no es posible tal condición y, por tanto, ninguna 

combinación de valores   y   permite igualar con cero la ecuación (12), 

sin embargo, existe una combinación que minimiza el error de 
estimación 𝐸 y genera un ajuste adecuado de la ley logarítmica con un 

perfil de velocidad medido; entonces se dice que 𝐸 (   )    para una 

combinación de valores de   y  , en el dominio  (   ). 

En forma práctica, para estimar los valores de   y   que minimizan 𝐸, se 

propone una discretización del espacio del dominio, de modo que se 

tienen los siguientes vectores:    *       + y    {       }, de 
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dimensión   y  , respectivamente, además       y      . El 

espaciamiento    (         )  ⁄  y    (         )  ⁄  pueden ser 

establecidos en función de la precisión que se requiera en la estimación 
de   y  . Para establecer el rango de ,         - y ,         - se utilizan 

los valores reportados para estas constantes por otros autores, como los 

mostrados en la Figura 1. 

 

 

Figura 1. Valores de las constantes de la ley logarítmica obtenidas de 

varias investigaciones. 
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Una vez conocido el rango de combinación de los valores    y   , se 

obtiene una matriz de error 𝐸(     ), donde el valor óptimo de    y    es 

aquel que    ‖𝐸 (     )‖ . 

 

 

Prueba experimental 

 

 

A fin de comparar los métodos de estimación de   y  , se llevó a cabo 

una prueba experimental en el canal de agua de pendiente variable del 
Instituto Mexicano de Tecnología del Agua (IMTA), que tiene geometría 

rectangular de ancho         m y una longitud     m (ver Figura 2). 

La estación experimental cuenta con una bomba de 10 hp que abastece 
el caudal; un vertedor de aforo calibrado con la norma ISO 1438:2008, 

y una válvula para la regulación del caudal, entre otras componentes 
particulares, que permiten condiciones estables para los experimentos. 

 

 

Figura 2. Estación experimental. 

 

Se implementó la técnica de velocimetría acústica de efecto doppler 

(ADV, Acoustic Doppler Velocimetry) para la medición de la velocidad 
del flujo, utilizando un equipo Vectrino Profiler™ de Nortek® (ver Figura 
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3). El equipo se posicionó a 3.5 m de distancia de la entrada del flujo 

para evitar defectos en el perfil de velocidad causados por la entrada del 
flujo o por la salida de éste en caída libre al tanque de recirculación. La 

frecuencia de muestreo fue de 100 Hz, con un tiempo de 
almacenamiento      s. Como parte del experimento se instaló un 

tapete de lija en el fondo del canal, con rugosidad absoluta 𝑘           
m (ver Figura 3). Las características del flujo y el valor de 𝑘  dieron 

como resultado la condición de flujo con fondo incompletamente rugoso 
(ver Tabla 1). 

 

 

Figura 3. Fondo de lija y equipo ADV Vectrino Profiler™. 

 

Tabla 1. Condiciones experimentales. 

Descripción  Unidades Valor 

Pendiente   m/m   6.380 (10-4) 

Ancho de base del canal   m   0.245 

Tirante   m   0.156 

Relación de aspecto       m/m   1.571 

Velocidad de corte    m/s   2.062 (10-2) 

Temperatura   °C 30.000 

Viscosidad cinemática   m2/s   8.007 (10-7) 
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Caudal   m3/s   1.631 (10-2) 

Velocidad media  ̅      m/s   0.427 

Número de Froude     ̅ √   (-)   0.345 

Número de Reynolds 𝑅   ̅𝑅    

𝑅     (    ), radio hidráulico 
(-) 36.593 (103) 

Rugosidad adimensional 𝑘 
  (-) 13.777 

 

En el experimento se estableció la condición de flujo uniforme con una 

pendiente del canal            (ver Figura 4).  

 

 

Figura 4. Condición de flujo uniforme en prueba experimental. 

 

La velocidad de corte se calculó con el modelo de Guo y Julien (2005), 
ecuación (13). 

 

   0.
 

 
        . 

  

 
/  

 

 

 

 
   . 

 

 
//    1

   

                       (13) 

 

Donde   es la aceleración de la gravedad;  , la pendiente del fondo 

(considerando flujo uniforme), y   es el ancho de base del canal. Este 

modelo contiene un factor de corrección que disminuye el error de 
estimar directamente la velocidad de corte con el modelo clásico 

   √   , sobre todo en bajas relaciones de aspecto       . 

La posición 𝑦 de los puntos de medición se obtuvo de forma directa con 

el equipo ADV, que permite medir la distancia al fondo y ubicar la 
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posición de las celdas de medición. Además, el ADV cuenta con un 

termistor para medir la temperatura del agua, a partir de la cual se 
asignó un valor de viscosidad cinemática, considerando las tablas de 

Wagner y Kretzschmar (2008), que están basadas en la formulación 
industrial IAPWS-IF97. A manera de resumen, se presenta la Tabla 1 

con las condiciones experimentales de la prueba. 

 

 

Resultados 

 

 

Los métodos de estimación se aplicaron en el rango    𝑦     𝛿  de 

los valores experimentales, donde 𝛿       (considerando un valor de 

espesor de capa límite 𝛿       cm, que se estimó en función del máximo 

valor de velocidad del perfil de velocidad). Este rango se plantea de 
acuerdo con los límites descritos por Segalini et al. (2013), mismos que 

se mencionan en la introducción de este documento. 

En la metodología de análisis topológico se requieren establecer 
inicialmente los vectores    y   ; en este caso se propone que   

,         - y   ,         -, de acuerdo con los rangos de la Figura 1. El 
espaciamiento    y    de los valores de cada vector    y    está en 

función de la precisión que se quiera obtener, como ya se indicó. 

En la Figura 5 se muestra la topología de errores obtenida al evaluar la 

ecuación (12) con los valores de la prueba experimental, utilizando la 
norma     y un espaciamiento            ; los valores de   y   que 

mejor ajustan el modelo teórico con los datos experimentales fueron 

0.418 y 5.067, respectivamente. 
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Figura 5. Topología de errores 𝐸, para     y            . 

 

En la Figura 6 se presentan los valores de    ‖𝐸 (     )‖  para diferentes 

valores de norma   y de aproximación      . 
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Figura 6. Valores de 𝐸       ‖𝐸 (     )‖  en función de    y    para 

diferentes valores de  . 

 

De acuerdo con el resultado presentado en la Figura 6, a partir de un 

espaciamiento            , el 𝐸    se mantiene aproximadamente 

constante para cualquier valor de norma; esto indica que el aumento en 

la resolución de los vectores (           ) no produce una disminución 

del error. 

Para la prueba experimental se determinaron los valores de   y   por los 

métodos de mínimos cuadrados, función de indicador, dispersión     y 

topología. Los resultados se muestran en la Tabla 2. Para el método de 

topología se utilizó un espaciamiento            ; en el caso del 

método de dispersión    , se utilizó la misma resolución para el vector 
de   . 

 

Tabla 2. Valores de   y   obtenidos de cada método. 

Método     

Mínimos cuadrados 0.425 5.308 

Función de indicador  0.385 4.114 

Dispersión     0.431 5.469 
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Topología 

    0.418 5.067 

    0.425 5.308 

    0.434 5.557 

     0.434 5.565 

     0.431 5.503 

      0.431 5.503 

    0.431 5.504 

 

Con el fin de hacer una comparación entre los diferentes métodos se 

proponen los siguientes criterios de estimación del error: a) error 
absoluto acumulado (𝐸  ) ecuación (14), y b) error cuadrático 

acumulado (𝐸  ), ecuación (15), (Wackerly, Mendenhall, & Scheaffer, 

2007). 

 

𝐸   ∑ |  
 
            

   
 
       

|                                 (14) 

 

𝐸   ∑ |  
 
            

   
 
       

| 

 

                               (15) 

 

En la Figura 7 se presenta la comparación del 𝐸   y 𝐸   en la estimación 

de las constantes   y   por los diferentes métodos expuestos en este 

documento. 
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Figura 7. Valores de 𝐸   y 𝐸   para cada método de estimación. 

 

De acuerdo con la Figura 7, el método con menor valor de 𝐸   es el de 

topología con    , mientras que el menor valor de 𝐸   se obtuvo con el 

método de mínimos cuadrados y con el de topología con    . El 

método de función de indicador contiene los más altos valores de error, 

esto es generado por el término diferencial de la ecuación (7), a pesar 
de que se aplicó una discretización centrada de segundo orden. En el 

caso del método de dispersión    , sus valores de error no difieren de 

forma significativa de los valores obtenidos con el método de mínimos 
cuadrados, sin embargo, en ningún caso de forma de evaluación del 

error optimiza el ajuste. En el método de topología, si se consideran 
valores de     no se optimiza el ajuste en ninguno de los dos casos de 

evaluación del error. 
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El perfil adimensional de velocidades medias con los valores de las 

constantes   y   obtenidas por el método de topología con la norma 

    se presenta en la Figura 8. En este perfil se observa el fenómeno 

de estela e inmersión para 𝑦     , donde los valores experimentales 

están por encima y debajo de la ley logarítmica estimada; en esta zona 

no se aplicaron los criterios de estimación de error. 

 

 

Figura 8. Perfil adimensional de velocidades medias. 

 

En este trabajo no se analiza la incertidumbre que se puede generar en 
la estimación de   y   a causa de la medición de las variables que 

contiene el modelo logarítmico, como la velocidad media  ̅, la 

coordenada vertical 𝑦, la viscosidad cinemática   y la velocidad de corte 

  . Parte de este análisis fue desarrollado por Segalini et al. (2013). 

 

 

Conclusión 
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El objetivo de este documento fue estimar los valores   y   del modelo 

logarítmico a partir de datos experimentales medidos en un canal por 

los métodos de mínimos cuadrados, función de indicador, dispersión 
    y topología. 

El método propuesto de topología permite estimar de forma simultánea 
  y  , ubicando el valor óptimo de 𝐸    en un plano de estimación de 

error. De acuerdo con los valores obtenidos de   y  , y con la evaluación 

de los errores 𝐸   y 𝐸  , con el método de topología se logran mejores 

resultados, en comparación con los métodos de función de indicador y 

dispersión    , y con tendencia similar comparando con el método de 

mínimos cuadrados utilizando un valor de norma    . Para el caso de 

norma     se tiene una mejor estimación en el método de topología en 

comparación con mínimos cuadrados, utilizando como criterio 𝐸  . 

Además, se comprobó el ajuste de la ley logarítmica con los valores 
obtenidos de la prueba experimental en el rango    𝑦     𝛿 , 
utilizando los valores calculados de   y   con el método de topología. 
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