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Los componentes simpático y parasimpático del sistema
nervioso autónomo raramente operan de forma aislada; la
respuesta autónoma representa la interconexión de ambas
partes. La interacción entre el sistema nervioso autónomo
y la respuesta inmunológica fue sugerida desde hace más
de 20 años, cuando se detectó que la estimulación
colinérgica muscarínica generaba un incremento en la po-
blación de los linfocitos T citotóxicos (Strom y cols., 1972).
A pesar de esta observación la acción inmunomodulatoria
de la función de las eferencias vagales y parasimpáticas
aún no se comprende del todo (Antonica y cols., 1994; Hori
y cols., 1995; Niijima y cols., 1995).

Recientemente se ha demostrado la existencia de una
ruta parasimpática de modulación de la respuesta
inflamatoria local y sistémica que se enfoca en la acción
neuroinmunomodulatoria del nervio vago (Borovikova y
cols., 2000b; Borovikova y cols., 2000a).
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La acetilcolina es un importante neurotransmisor y neuro-
inmunomodulador en el cerebro. Ademas de mediar la
transmisión neural en la sinapsis ganglionar de ambos sis-
temas –simpático y parasimpático–, es el principal
neurotransmisor en las neuronas eferentes posganglionares
parasimpáticas y vagales. La acetilcolina actúa a través de
dos tipos de receptores: muscarínicos (metabotrópicos)
(Caulfield y Birdsall, 1998) y nicotínico (ionotrópicos)
(Lindstrom, 1997).

Ademas del tejido cerebral y otras estructuras amplia-
mente inervadas, hay otras células periféricas que expre-
san el mensaje genético de los receptores muscarínicos y
nicotínicos, como los linfocitos y las células productoras
de citocinas, muchas de las cuales también producen
acetilcolina (Hiemke y cols., 1996; Mita y cols., 1996; Sato y

cols., 1999; Tayebati y cols., 2002; Toyabe y cols., 1997;
Walach y cols., 2001). Reportes recientes sugieren que la
subunidad α7 del receptor nicotínico de la acetilcolina se
expresa en macrófagos (Borovikova y cols., 2000b).

La acetilcolina disminuye significativamente en forma
dosis dependiente la producción de TNF-α en cultivos de
macrófagos estimulados por endotoxinas por medio de
mecanismos postranscripcionales. Usando agonista y an-
tagonistas muscarínicos y nicotínicos específicos, se ha
demostrado la importancia del receptor nicotínico sensi-
ble a la α-bungarotoxina en la inhibición de la síntesis del
TNF-α in vitro por la acetilcolina.

La acetilcolina también es efectiva en la supresión de
la síntesis de otras citocinas proinflamatorias, como la IL-
1β e IL-6, a través de mecanismos postranscripcionales,
aunque las citocinas antiinflamatorias como la IL-10,
secretada por macrófagos estimulados con endotoxinas, no
se ven afectadas (Borovikova y cols., 2000b).

En cuanto a los efectos in vivo de la acetilcolina, se ha
reportado que roedores con vagotomía sin estimulación
eléctrica muestran un incremento de los niveles circulato-
rios y hepáticos de la TNF-α en repuesta a la administra-
ción intravenosa de endotoxina (Pavlov y cols., 2003), lo
que sugiere una función directa de las neuronas eferentes
vagales en la regulación de esta citocina in vivo, ya que la
estimulación eléctrica de las eferencias vagales en este
modelo disminuye la secreción de TNF-α. El TNF-α am-
plifica el fenómeno inflamatorio al inducir la secreción de
mediadores proinflamatorios como la IL-1β, HMGB1 y es-
pecies reactivas del oxígeno (Koj, 1996; Wang y cols., 1999b).

En los casos de choque inducido por endotoxinas, el
TNF-α inhibe la frecuencia cardiaca, activa la trombosis a
nivel microvascular y modula el síndrome de extravasación
vascular (Tracey y cols., 1986; Tracey y cols., 1987). Estas
actividades del TNF-α son consistentes con los hallazgos
de la atenuación de los niveles séricos del TNF-α a través
de la estimulación vía cervical del nervio vago, que previe-
ne la hipotensión y el choque séptico en animales expues-
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tos a dosis letales de endotoxinas (Borovikova y cols.,
2000b).

Los animales a los que se ha practicado una vagotomía
y que no reciben estimulación del nervio vago desarrollan
choques sépticos más profundos y rápidos comparados con
animales «de maniobra simulada» (sham) para la
vagotomía, lo que sugiere la función del nervio vago en la
señalización eferente para mantener la homeostasis.

En cuanto a los efectos inmunomodulatorios de las
eferencias del nervio vago, la estimulación eléctrica del
nervio vago distal inhibe la respuesta inflamatoria local,
como en el caso de la inflamación del cojinete plantar de
roedores inducido por la administración de carragenina
(Borovikova y cols., 2000a). El pretratamiento con
acetilcolina, nicotina o agentes muscarínicos en el sitio de
la inflamación también previene el desarrollo de inflama-
ción en el cojinete plantar (Borovikova y cols., 2000a).

Las eferencias vagales se distribuyen a través del siste-
ma retículo endotelial y otros órganos periféricos, por lo
que la respuesta motora del cerebro, derivada de las
eferencias vagales, es rápida. De lo anterior se desprende
que la ruta colinérgica antiinflamatoria puede ser el sitio
donde se modula la inflamación en tiempo real.
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antiinflamatoriaantiinflamatoriaantiinflamatoriaantiinflamatoriaantiinflamatoria

Es posible activar la ruta colinérgica antiinflamatoria con
agentes farmacológicos de acción central, ya que la
gunilhidrazona tetravalente o CNI-1493 induce estimulación
al nervio vago (Borovikova y cols., 2000a) e induce efectos
antiinflamatorios a través de la activación de la ruta
colinérgica antiinflamatoria en modelos de inflamación lo-
cal y sistémica (Bernik y cols., 20002; Borovikova y cols.,
2000a).

El efecto antiinflamatorio del CNI-1493 se ha investiga-
do en modelos experimentales de cáncer, pancreatitis, artri-
tis reumatoide, choque por endotoxinas y sepsis (Martiney
y cols., 1998). El CNI-1493 se desarrolló originalmente como
un inhibidor de la activación de macrófagos, porque previe-
ne la fosforilación del mitógeno p38, que es un activador de
las proteínas cinasas (Bianchi y cols., 1996; Tracey y cols.,
1998; Wang y cols., 1998) . En modelos de isquemia cere-
bral, el CNI-1493 administrado por vía intracerebro-
ventricular (ICV) disminuye la síntesis del TNF-α cerebral y
reduce el volumen de infarto (Meistrell ME y cols., 1997). Es
necesario señalar que la administración del CNI-1493 por
vía ICV también disminuye la producción sistémica del TNF-
α en un reto periférico con endotoxina. Otros reportes han
descrito que el CNI-1493 estimula las eferencias del nervio
vago (Borovikova y cols., 2000a), lo que sugiere que la vía
colinérgica antiinflamatoria puede mediar la actividad
antiinflamatoria de este compuesto.

Los efectos antiinflamatorios del CNI-1493 requieren

la participación del nervio vago, sin importar la vía de ad-
ministración del fármaco (ICV o IV), ya que la vagotomía
cervical bilateral elimina el efecto. Esto sugiere que el CNI-
1493 Participa en la protección contra la inflamación local
y sistémica y el choque séptico a través de la vía colinérgica
antiinflamatoria.

La activación de la ruta colinérgica antiinflamatoria por
compuestos de acción central, como el CNI-1493, puede
tener efectos clínicos para el tratamiento de la sepsis y otras
enfermedades mediadas por citocinas.

Es posible que existan dos vías potenciales por medio
de las cuales el CNI-1493 active la señalización del nervio
vago eferente. Por cualquiera de ellas puede acceder al
DMN y activar directamente las señales de las eferencias
vagales o bien activar otras neuronas dentro del DVC u
otras estructuras cerebrales más altas que indirectamente
activen las eferencias del nervio vago. En el DVC se ha iden-
tificado una serie de receptores que actúan como el sitio de
las terminaciones primarias de las fibras nerviosas del vago.
Dentro del DMN, por ejemplo, existen receptores
muscarínicos, pero éstos no se asocian con neuronas
eferentes vagales (Hoover y cols., 1985; Hyde y cols., 1998).
Los sitios de unión para los receptores muscarínicos (espe-
cialmente los del subtipo M2) y nicotínicos se han detecta-
do en la parte caudal y media del NTS (Lawrence y Jarrot,
1996).

El sistema colinérgico en el NTS ha sido identificado
con base en la presencia de acetilcolina transferasa,
acetilcolina esterasa y acetilcolina (Hoover y cols., 1985;
Shihara y cols., 1999). Este sistema colinérgico participa en
la regulación del gasto cardiovascular y la modulación del
reflejo baroreceptor, el cual está mediado de forma central
por el glutamato. La presencia del receptor del glutamato
está bien documentada dentro del DVC (Hornby, 2001;
Mascarucci y cols., 1998; Sykes y cols., 1997).

Las aferencias vagales (cardiovascular y de las vísce-
ras abdominales) que terminan en el NTS son predomi-
nantemente glutamatérgicas, las que hacen sinapsis sobre
las neuronas del NTS a través de los receptores del NMDA
y no-NMDA (Hornby, 2001; Macarucci y cols., 1998).

La exposición a la IL-1 o a la endotoxina puede activar
el sistema vagal glutamatérgico en el NTS. Ambos tipos de
receptores del glutamato transmiten impulsos del AP ha-
cia el NTS (Mira y cols., 2000). Los receptores del glutamato
del NMDA también están presentes sobre el AP y las
neuronas del DMN.

Las neuronas motoras pregangliónicas vagales locali-
zadas en el DMN extienden sus dendritas hasta el NTS.
Los receptores nicotínicos (especialmente el subtipo α7),
neuropéptido Y, GABA (A y B), neurocina-1 y neurocina-3
han sido localizados en las neuronas eferentes del vago en
el DMN (Blondeau y cols., 2002; Browning y Travagli, 2001;
Ferreira y cols., 2001; Lewis y Travagli, 2001. Los
purinorreceptores ionotrópicos P2X dependientes de ATP
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(que actúan como receptores) están presentes en las
neuronas del DMN y AP (Visconti y cols., 2000).

Es posible que algunos de estos receptores represen-
ten componentes esenciales de los mecanismos de las ru-
tas de activación farmacológica de la ruta colinérgica
antiinflamatoria.
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La inhibición de la síntesis del TNF-α periférico, por meca-
nismos que involucran la participación de las eferencias del
nervio vago, implica la comunicación de estas eferencias con
células como los macrófagos, que expresan la subunidad α7
del receptor nicotínico de la acetilcolina, y media la actividad
antiinflamatoria del nervio vago.

El receptor nicotínico de la acetilcolina pertenece a una
familia de ligandos que controla canales iónicos pentaméri-
cos. La principal función de esta familia de receptores es
trasmitir la señal de la acetilcolina hacia las uniones
neuromusculares desde el sistema nervioso central y peri-
férico (Leonard y Bertrand, 2001; Lindstrom, 1997; Marubio
y Changeux, 2000; Steinlein, 1998).

En los humanos se han identificado 16 subtipos de re-
ceptores nicotínicos de acetilcolina: α1-7, α9-10, β1-4, δ, ε y γ
(Leonard y Bertrand, 2001; Lindstrom, 1997). Estas subunida-
des tienen el potencial para formar un gran número de re-
ceptores homo y heteropentamérico que poseen distintas
propiedades y funciones. Entre las 16 subunidades, sólo las
subunidades α1, α7 y α9 enlazan un antagonista derivado
del veneno de serpiente, la α-bungarotoxina. Los macrófagos
pueden unir específicamente a la α-bungarotoxina, y su
unión puede competir con la nicotina, lo que sugiere que los
macrófagos expresan funcionalmente las subunidades α1,
α7 y/o α9 de los receptores nicotínicos de acetilcolina.

Análisis del material genético de macrófagos por RT-
PCR mostraron la expresión del mensaje genético de las
subunidades α1, α7 y α10 pero no de α9, aunque análisis
posteriores efectuados por Western-Blot mostraron que los
macrófagos humanos diferenciados expresan de forma es-
pecífica la subunidad α7 (Wang y cols., 2003).

La relevancia funcional de la subunidad α7 del recep-
tor nicotínico de macrófagos en la ruta colinérgica
antiinflamatoria se evaluó usando oligonucleótidos
antisentido para la subunidad α7. La inhibición de la ex-
presión de la subunidad α7 restaura la respuesta del TNF-
α inducido por endotoxina en presencia de nicotina, en tan-
to que, en condiciones similares, los oligonucleótidos de
las subunidades α1 y α10 no logran disminuir la secreción
de TNF-α en presencia de nicotina (Wang y cols., 2003).

Los ratones deficientes para la unidad α7, utilizados para
definir las funciones in vivo de esta molécula, no presentan
problemas de desarrollo ni defectos anatómicos (Orr-

Urtreger y cols., 1997). Cabe señalar que lo anterior ocurre
no obstante que estos animales son más sensibles a los estí-
mulos inflamatorios, ya que liberan significativamente más
TNF-α, IL-1 e IL-6 ante endotoxemias comparados con ce-
pas silvestres (Wang y cols., 2003).

La estimulación eléctrica del nervio vago disminuye
los niveles de citocinas proinflamatorias en suero y tejidos
en las cepas silvestres; sin embargo, en ratones deficientes
para la subunidad α7 este fenómenono se presenta (Wang
y cols., 2003).

Los macrófagos peritoneales aislados de ratones defi-
cientes para la subunidad α7 no responden a la acetilcolina
ni a la nicotina y continúan produciendo TNF-α en presen-
cia de agonistas colinérgicos. El receptor nicotínico para la
subunidad α7 se ha detectado en la cervical superior y el
ganglio pancreático, aunque su papel funcional en la trans-
misión ganglionar aún no ha sido demostrado in vivo.

El receptor nicotínico para la subunidad α3 media la
transmisión sináptica rápida del ganglio autónomo. Esta
observación sugiere que la alta sensibilidad a los procesos
inflamatorios mostrada por los ratones deficientes para la
subunidad α7 no se puede atribuir a un daño en la trans-
misión ganglionar simpática o parasimpática.

La integración de estos datos indica que la subunidad
α7 del receptor nicotínico de la acetilcolina es un compo-
nente indispensable de la ruta colinérgica antiinflamatoria,
por lo que ésta representa una función altamente específi-
ca del nervio vago eferente, ya que éste puede actuar sobre
los macrófagos a través de la subunidad α7 del receptor
nicotínico en lugar de los «clásicos» receptores muscarínicos
de la acetilcolina.

Integración de la vía colinérgica antiinflamatoriaIntegración de la vía colinérgica antiinflamatoriaIntegración de la vía colinérgica antiinflamatoriaIntegración de la vía colinérgica antiinflamatoriaIntegración de la vía colinérgica antiinflamatoria
con la inmunomodulacion derivada del cerebrocon la inmunomodulacion derivada del cerebrocon la inmunomodulacion derivada del cerebrocon la inmunomodulacion derivada del cerebrocon la inmunomodulacion derivada del cerebro

La participación de las neuronas eferentes del vago en la
neuroinmunomodulación está apoyada por la función pro-
tectora de la ruta colinérgica antiinflamatoria en la infla-
mación local y sistémica.

La respuesta colinérgica antiinflamatoria se activa al
parecer por las señales provenientes del eje HHA y el SNC
(Pavón y cols., 2004). Las citocinas proinflamatorias libe-
radas ante un estímulo antigénico pueden activar la señali-
zación de aferencias vagales y, de manera subsiguiente, ya
sea directa o indirectamente (a través de neuronas NTS),
activar eferencias vagales en el DMN. Así, las aferencias
vagales sensoriales, junto con las eferencias regulatorias del
vago, forman un «reflejo inflamatorio» que continuamente
monitorea los niveles de los mediadores de la inflamación
en la periferia (Tracey, 2002). La vía colinérgica
antiinflamatoria también puede ser activada por la señali-
zación mediada por citocinas vía el AP. De este modo, en
conjunto con las fibras eferentes colinérgicas, la ruta
colinérgica antiinflamatoria puede estar constituida por al
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menos dos estructuras del tallo cerebral: el NTS y el DMN.
Estos pueden ser estimulados por las citocinas proinflama-
torias a través de los mecanismos neuronales (aferencias
del vago) o humorales (AP).

La administración intravenosa de la IL-1β induce la ac-
tivación de las fibras eferentes del vago que inervan el timo
(Niijima y cols., 1995). Un hecho es que la administración
de endotoxinas induce la activación neuronal en el DMN,
así como del NTS y el AP (Hermann y cols., 2001). La ausen-
cia de esta vigilancia neuronal provoca un aumento de la
inflamación, como sucede en los ratones vagotomizados con
endotoxemia (Borovikova y cols., 2000b). Este reflejo anti-
inflamatorio integrado centralmente es similar a los meca-
nismos del reflejo vago-vagal que controla el tracto
gastrointestinal. Estas observaciones sugieren que la ruta
colinérgica antiinflamatoria se activa durante la respuesta
inflamatoria.

El NTS puede integrar la ruta colinérgica con otra res-
puesta inmunomodulatoria central, ya que el NTS puede
trasmitir la señal al nervio vago aferente y a dos áreas del
cerebro involucradas en la neuroinmunomodulación. Un
ejemplo de esto es el circuito neuronal bidireccional que se
establece entre el NTS y el PVN hipotalámico que puede
activar al eje HHA, lo que genera una inmunoregulación
negativa a través de los glucocorticoides.

Las neuronas del NTS también se proyectan hacia es-
tructuras como el RVM y el LC, las cuales pueden activar
al SNS y modular la respuesta inmunológica. Las estructu-
ras clave en la modulación neuroinmunológica son, en pri-
mer lugar, el NTS, el cual se asocia a la recepción y poste-
rior transmisión de la señal de citocinas a la ruta colinérgica
antiinflamatoria, el SNS y el eje HHA; en segundo térmi-
no, el PVN hipotalámico, el cual es responsable de la con-
versión de la señal neuronal a hormonal y por último, las
glándulas adrenales, que liberan adrenalina de las células
cromafines por la activación del SNS y completan la prin-
cipal ruta de liberación de glucocorticoides.

Ambas divisiones del sistema nervioso autónomo son
activadas por estímulos inmunológicos, como las citocinas,
y contribuyen a la modulación de la inflamación. El SNS
regula negativamente la respuesta inflamatoria por medio
de los β-adrenoceptores. En algunos casos, sin embargo, la
noradrenalina puede incrementar la liberación del TNF-α,
probablemente a través de los α-adrenoceptores (Zhou y
cols., 2001).

La activación de la ruta colinérgica antiinflamatoria
puede contrarrestar la excesiva liberación de TNF-α. Esta
ruta y el SNS también actúan de forma sinérgica para con-
trolar la respuesta inflamatoria. El SNS puede inducir
inmunoregulación negativa a través de los β-adrenoceptores,
por la regulación negativa de la producción de citocinas
mediada por el nervio vago, a través de receptores nicotínicos
de acetilcolina que contienen la subunidad α7. En contraste
con los mecanismos de mediación hormonal, la regulación

neural de la respuesta inmunológica es rápida y precisa, por
lo que puede ser una importante respuesta temprana para
la inflamación periférica.

Las inervaciones simpáticas y vagales del timo, híga-
do, corazón, pulmones, tracto gastrointestinal, páncreas y
riñones pueden proporcionar la base anatómica para la
coregulación de los macrófagos tisulares, células
dendríticas, células cebadas, células de Kupffer y otras cé-
lulas productoras de citocinas en los tejidos involucrados
o no en la respuesta inmunológica.

El hígado es un importante órgano en la fase aguda de
la respuesta inflamatoria, ya que proporciona los compo-
nentes necesarios para la defensa del huésped en el sitio de
la inflamación y coordina la activación de las proteínas
plasmáticas de la fase aguda (Baumann y Gauldie, 1994).
Se ha propuesto que las células de Kupffer son la principal
fuente de citocinas en la endotoxemia (Chensue y cols.,
1991). En consecuencia, la estimulación de las neuronas
eferentes vagales pueden modular la respuesta inflamatoria
generada en el hígado.

El corazón es inervado por las dos divisiones del siste-
ma nervioso autónomo; la disfunción del sistema nervioso
autónomo (tono simpático alto, tono parasimpático bajo)
que ocurre después de un infarto al miocardio, es un buen
predictor de mortalidad (Honzikova y cols.). En el cora-
zón, los macrófagos residentes y miocitos cardiacos son la
principal fuente del TNF-α; se han detectado receptores
para el TNF-α en los miocitos del corazón (Meldrum, 1998;
Torre-Amione y cols., 1995). La secreción de TNF-α de
ambas poblaciones, macrófagos y miocitos del miocardio,
contribuye a la disfunción del miocardio y a la muerte de
los cardiomiocitos en la sepsis, deficiencia cardiaca cróni-
ca, daño isquémico por reperfusión, miocarditis viral y re-
chazo al transplante cardiaco (Meldrum, 1998). La efectivi-
dad de la estimulación del nervio vago en la inhibición del
TNF-α cardiaco (Bernik y cols., 2002) garantiza futuras in-
vestigaciones de la función inmunomodulatoria de la ruta
colinérgica antiinflamatoria en el corazón y otros órganos.

Implicaciones terapéuticas de la vía colinérgicaImplicaciones terapéuticas de la vía colinérgicaImplicaciones terapéuticas de la vía colinérgicaImplicaciones terapéuticas de la vía colinérgicaImplicaciones terapéuticas de la vía colinérgica
antiinflamatoriaantiinflamatoriaantiinflamatoriaantiinflamatoriaantiinflamatoria

Hay múltiples aproximaciones terapéuticas para el mane-
jo de la respuesta inflamatoria, enfocadas principalmente
a la supresión de las citocinas proinflamatorias o de las
acciones mediadas por citocinas.

La identificación de la ruta colinérgica antiinflamatoria
sugiere nuevas aproximaciones terapéuticas para modular
la acción de las citocinas y la respuesta inflamatoria. Ejem-
plo de ello es que la estimulación del nervio vago repre-
senta una aproximación novedosa para inhibir la produc-
ción del TNF-α y proteger contra complicacioness patoló-
gicas inducidas por la respuesta inflamatoria.

Se han aprobado implantes permanentes que estimu-
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lan el nervio vago como herramientas terapéuticas para
tratar de la depresión y la epilepsia (George y cols., 2000a;
George y cols., 2000b; Valencia y cols., 2001).

La estimulación del nervio vago previene ataques por
la estimulación sensorial aferente asociada con la función
límbica y cortical. Aunque las eferencias vagales también
se pueden activar como resultado de la estimulación del
nervio vago, no se han detectado complicaciones cardiacas,
gástricas o pulmonares (Hanforth y cols., 1998).

La estimulación del nervio vago en animales causa acti-
vación neuronal en el NTS, LC, DMN y núcleos
hipotalámicos entre los que se encuentra el PVN (Krahl y
cols., 1998; Naritoku y cols., 1995). La estimulación del ner-
vio vago incrementa la actividad de los componentes clave
de la respuesta antiinflamatoria derivada del cerebro. Ade-
más de las eferencias vagales, el eje HHA y el SNS se pueden
activar como efecto colateral de la estimulación del nervio
vago. La ocurrencia de esta activación aún se debe evaluar
por medio de las fluctuaciones en los niveles de glucorticoides
en circulación en pacientes con estimuladores del nervio vago.

El descubrimiento de la ruta colinérgica antiinflamatoria
identifica al menos un receptor tipo que puede ser un blan-
co farmacológico para modular la actividad de las citocinas.
La subunidad α7 del receptor nicotínico de acetilcolina es
esencial para regular la respuesta inflamatoria periférica. La
activación de este receptor vía la estimulación del nervio vago
(Wang y cols., 2003) o agonistas colinérgicos (Wang y cols.,
2007) suprime la secreción de citocinas y protege contra la
endotoxemia letal murina y la sepsis.

El CNI-1493 fue el instrumento farmacológico necesa-
rio para el descubrimiento y la caracterización de la ruta
colinérgica antiinflamatoria, que ejerce su efecto
antiinflamatorio in vivo por medio de un mecanismo cen-
tral involucrado en la activación del nervio vago (Bernik y
cols., 2002; Borovikova y cols., 2000a). Es posible que otros
fármacos experimentales o ya aceptados clínicamente fun-
cionen por medio de un mecanismo no anticipado de acti-
vación de rutas neuronales. Por ejemplo, dosis bajas de α-
MSH administradas centralmente o salicilatos inducen
específicamente una respuesta antiinflamatoria periférica.
Igualmente, la amiodarona –un fármaco antiarrítmico
cardiaco–, la aspirina, la indometaciona y el ibuprofeno
incrementan sustancialmente la actividad del nervio vago.
La identificación precisa de los receptores cerebrales que
median estos efectos facilitará el desarrollo de fármacos
agonistas que puedan activar la ruta colinérgica
antiinflamatoria.

A la luz de la ruta colinérgica antiinflamatoria, es im-
portante reconsiderar que las aproximaciones terapéuticas
alternativas, como la hipnosis, la meditación, la oración, el
bio-feedback, la acupuntura e incluso el condicionamiento
pavloviano de la respuesta inmunológica, pueden involu-
crar mecanismos centrales que modulen las respuestas
inflamatorias sistémicas o periféricas experimentales. Asi-

mismo, se debe considerar que la disfunción autonómica se
presenta no sólo en presencia de enfermedades letales o
sepsis, ya que se presenta en complicaciones de la diabetes,
la artritis reumatoide y otros padecimientos autoinmunes.

Si el aumento fisiológico de la actividad del nervio vago
a través de cualquiera de estos métodos puede modular el
curso de la enfermedad, será dilucidado por medio de la
investigación clínica en los años por venir.
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