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Abstract: The Turing Machine (TM) presents itself as the very landmark and initial
design of digital automata present in all modern general-purpose digital computers
and whose design on computable numbers implies deeply ontological as well as epis-
temological foundations for todays computers. These lines of work attempt to briefly
analyze the fundamental epistemological problem that rose in the late 19th and early
20th century whereby “machine cognition” emerges. The epistemological roots addres-
sed in the TM and notably in its “Halting Problem” uncovers the tension between
determinism and uncertainty, regarded here as the primal and inberent features of
machine cognition.
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Resumen: La Maquina de Turing (T™m) se presenta como el hito y el disefo
inicial de un autémata digital presente en todas las computadoras digitales
modernas de proposito general y cuyo disefio en numeros computables esta-
blece bases profundamente ontoldgicas y epistemoldgicas para las computa-
doras de hoy. Estas lineas de trabajo intentan analizar brevemente el problema
epistemolédgico fundamental que surgi6 a finales del siglo x1x y principios del
xx mediante el cual emerge la “cognicion de la maquina”. Las raices epis-
temologicas que se abordan en la T™™ y, en particular, en su “Problema de
detencion” ponen al descubierto la tension entre el determinismo y la incerti-
dumbre, consideradas aqui, como las caracteristicas primordiales e inherentes
de la cognicion de la maquina.
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BELEN PRADO

“In answering the «Entscheidungsroblem», Turing
proved that there is no systematic way to tell, by
looking at a code, what that code will do.

That’s what makes the digital universe so interesting,
and that’s what brings us here.

It is impossible to predict where the digital universe
is going”.
(GEORGE DYSON, 2012A)

INTRODUCTION

inding an universalis algorithm that could mechanically compress the uni-

verse' using logical formalization was meant to be the final achievement

pursued by philosophers and mathematicians in the late 19th and begin-
ning of the 20th century. As a response to these attempts, the prototype of a
synthetic mind emerged in 1936 and it is known today as the Turing Machine
(t™) which constitutes the original and still-present design of basic cognition and
computation processes in our day-to-day computers.

This article argues that the main epistemological breakthrough regarding
mental activity and computation was triggered by Alan Turing’s paper called:
“On computable numbers, with an application to the Entscheidungsproblem”
(1936),* which upholds that the prevailing tension between determinism and un-
certainty constitutes the epistemological pinnacle of machine cognition. Turing’s
1936 work integrates two fundamental aspects of machine cognition: on the one
hand, the ™ solves the Entscheidungsproblem (translated as the “decision prob-
lem”) through what is known as “the halting problem”. Turing unveiled the part

1 The mathematical understanding of the universe originally takes up Galileo’s references by com-
paring it to a book “written in the language of mathematics” (Galileo, 1623, in Haugeland,
1985: 19) which is fundamentally based on a geometric and arithmetic view of the field. Also
see Galileo’s work “The Assayer” (1960: 151-336).

2 Despite the fact that Turing’s article was published in 1937, it is mostly recognized from 1936.

I will continue to use Martin Davis’ references to this article as from 1936.
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of mathematics that cannot be computed and demonstrated the non-existence of
the algorithm that Hilbert and Ackermann (1928) asked for. On the other hand,
it also establishes the ontological foundations of computers: the Universal Turing
Machine (utwm), which ascribes to machines the possibility to recognize any other
machine’s encoded data and reproduce its behavior (given enough time, memory
and embedding it into a specific language frame).

The first section of this article outlines the core epistemological crisis be-
tween mathematics and logic at the beginning of the 20th century while clarify-
ing how the route through this crisis finally led to the T™’s formulation. The sec-
ond section is divided in two sub-sections; the first subsection describes in general
terms the functioning of the T™ for a broad understanding and contemplates the
problem posed by countable and uncountable infinities. The second subsection
underlines the notion of universality via the ontological state of the T™. The third
section focuses on the ambivalence between determinism and uncertainty which
the halting problem should help to clarify. This article will conclude that the latter
concepts (that is to say, determinism and uncertainty) constitute the inherent
features of the epistemological and ontological genesis of any digital computer.

THE EARLY HISTORICAL AND EPISTEMOLOGICAL CRISIS

At the end of the 19th and beginning of the 20th century, many mathematicians
and philosophers strove to explain the foundations of mathematics by peeling
away its layers using formal logic instruments. This philosophical approach, best
known as logicism, was fueled by the publication of Principia Mathematica by
Whitehead and Russell in 1910. Its main representatives —Gottlob Frege, David
Hilbert, Bertrand Russell, Alfred North Whitehead, Richard Dedekind— en-
deavored, though in different ways, to see mathematics as an extension of logic.
The underlying question to prove whether logic could provide a consistent basis
for mathematics led to one of the most significant epistemological crises in math-
ematical logic® (1850-1950) and it served as the embryonic stage of “machine

3 The foundations of mathematical logic begin with Aristotle’s syllogistic logic and culminate in

Boolean algebra whose extensional or set theoretical semantics does not imply the interpretation
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intelligence” or “machine cognition”, 7. ¢., what came to be called as the Zuring
Machine.*

At the bottom of mathematics, some /logicist had mostly focused on the so-
called Hilberts program whereby all mathematical structures could be proved to
be consistent (i. e., the form A and not-A cannot be proven within the same
formal system) through complete logical rules: “For Hilbert, noncontradiction
was the essential condition of existence as such” (Horl, 2018: 67). The search for
a finite representation, a general method (i. e., an algorithm)’ in the language of
a logical system was triggering the possibility that the whole universe of math-
ematics could be derived from Frege’s system of logic,® namely first-order logic
(engerer Funktionenkalkiil).

Nonetheless, the intrinsic relation between symbols and logical rules under-
went a systemic déphasage. It collapsed with Godel in 1931, the Austro-Hungarian
mathematician demonstrated that pure formal deduction could not encompass all

of symbols but how their fixed laws are combined. See, Boole, 2017 [c. 1854]. For a wider his-
torical view of this passage from ancient logic to the modern one: see, Walicki, 2012.

4 Turing (1969 [c. 1948]: 410-432) uses the expression “logical computing machines” (Lcm)
instead of Turing machines.

5 In a German mathematical dictionary from 1747: Vbllstindiges Mathematisches Lexicon, the
word “algorithm” was still referring to merely basic arithmetic operations. According to Petzold
the modern use of the word algorithm (a finite set of steps able to perform a computation) only
started to be used in the 1960’s along with the “literature about computers” (2008: 41-42).

6 Frege (1993) is acknowledged as being the father of modern logic and of the basic rules of
logical deduction that had been proposed in his work Begriffsschrift (1879), which are the first
logical models of mathematical reasoning and also of natural language. These early formaliza-
tions were intended to be the steps towards a complete system as the one fostered by Leibniz, the
characteristica universalis of which strove for universality fixed by logical calculus. Here, one can
detect an “encyclopedia of human knowledge” operated by the indexicality of the calculation of
symbols and with it the demonstration of true postulates. Finally overthrown by “Russell’s An-
tinomy”, Frege’s system was nevertheless incorporated later by Whitehead and Russell in their

Principia Mathematica. For more information see Davis, 2018.
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mathematics, which he revealed through a sort of self-referential proof known as
“Godel’s Incompleteness Theorem™.

After the setback produced by Godel’s Incompleteness Theorem, the British
mathematician and philosopher Bertrand Russell (1872-1970) and the Hungar-
ian mathematician John von Neumann (1903-1957) abandoned mathematical
logic, yet the decision problem remained: was a given formula provable or not?

Finding a logical formal system able to encompass the roots of mathematics
and thus to mechanically achieve a procedure of symbolically tracing “the full
scope of human thought” (Davis, 2018: 11) had been the aim ever since the
pioneer of the idea of universal automation, the calculus ratiocinator, Gottfried
Leibniz (1646-1716) formulated the problem. But it was only two hundred years
later when David Hilbert, along with his student Wilhelm Ackermann, made
every possible effort to formalize it by means of the “decision problem” ® A prosaic
reformulation of the decision problem (1928) asks if it is possible to have a set of
rules (an effective method) where you can input a mathematical formula and
it consequently outputs whether it is true or not? That is to say, if there is any
mechanical procedure that “decides whether any given number belongs to the set
at issue or not” (Raatikainen, 2020). In short: is it possible to obtain a theorem
from a given formula?

After Godel’s proof (1931) that logic, . e., formal axiomatic theories could
neither provide a foundation nor produce all mathematics, the excitement about
the decision problem dwindled. Although a solution for the decision problem could
still exist, it would no longer demonstrate the truth of any theory because it ei-
ther fails to prove its consistency or fails to prove its completeness, which are the
necessary conditions for correct reasoning in a logical system.

1 The greatest epistemological crash proceeds from this aporetic state of axiom systems which
either imply contradictions or can't even be proven within the system, this is what is known
as “Goidel’s Incompleteness Theorem”: roughly, “the impossibility to determinate the truth of any
given formula” (Petzold, 2008: 52).

8 This problem was outlined in the early 20® century at different Mathematical Congresses and
later, concretized in a 1928’s logic book: Grundziige der theoretischen Logik (Principles of Mathe-

matical Logic).
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It is philosophically relevant not to skip over the epistemological problem
posed at this point, which consists in the fact that Godel showed that logical
proofs cannot produce the full set of mathematical truth, but this does not entail
that every true statement must necessarily have a proof to be true. To argue that
something is “true” one must previously clarify the reference of the notion (i. e.,
the distinction between a (syntactic) proof and (semantic) truth):

A great deal of confusion can be caused by this, because people generally unders-
tand the notion of “proof” rather vaguely. In fact, Gédel’s work was just part of a
long attempt by mathematicians to explicate for themselves what proofs are. The
important thing to keep in mind is that proofs are demonstrations within fixed
systems of propositions. (Hofstadter, 1994: 26)

On the one side, the syntactic nature of truth requires proof: “You begin
with axioms and derive theorems. Such theorems are said to be provable, mean-
ing that they are a consequence of the axioms. With the syntactic approach to
logic, it’s not necessary to get involved with messy — possibly metaphysical — con-
cepts of truth” (Petzold, 2008: 217). On the other side, the metamathematical
and semantic nature of truth entails understanding the meaning’ from the sen-
tences at stake. “To Searle, this means that a digital computer — no matter how
sophisticated it becomes — will never understand what it’s doing in the same way
that a human can” (Petzold, 2008: 347).1°

The decision problem became the type of dilemma in the mathematical world
that was ripe for a revolutionary leap: from the sunset of the logicist program'!

9 In Die Grundlagen der Arithmetik (1884), Frege distinguishes between meaning (Bedeutung)
and sense (Sinn), terms like “the morning Star” and “Venus” have the same meaning because
they indicate the same object but nevertheless use different senses.

10 Some well-known arguments against the mind as algorithmic processes can be founded in:
Nagel and Newman, 1958. Also, in Roger Penrose, 1989 and 1994. On the critical line about
the efforts of mind-computer simulation, see; Searle, 1980. Finally, another argument against
the view of minds as machines, Lucas, 1961.

11 Even though the logicist program has never been able to prove the impossibility of contradic-

tion within its axiomatic systems, a logicist progress free of “Russell’s paradox” (though not of
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rose the dawn of the most universal machine of all, the Turing Machine,'* which
marks the beginning of an epistemology for digital machines. As already stated, it
was Turing who masterminded the “world crisis” in mathematical logic by find-
ing that part of mathematics that can be run by a sequential and deterministic
process we call “computers”.

THE TURING MACHINE

The serial machine

It wasn’t until the spring of 1935 at Cambridge University in one of Max New-
man’s courses on the Foundations of Mathematics that Turing came to terms with
the most prominent problems in mathematical logic, the proof of Godel’s Incom-
pleteness Theorem and the still unresolved decision problem.

The proof for the non-existence of the algorithm incessantly sought by Hil-
bert was finally shown in Turing’s paper (1936). This proof was not only a mat-
ter of abstract mathematics but also a bridge between “abstract symbols and the
physical world” (Hodges, 2012: 93) because it opened the gates to the digital
kosmos."?

At the foundation of the T™, phase-transitions of finite states in time (if-then
transitions) are characterized as deterministic and serial procedures coded on a

all its axioms) had been possible with the “Zermelo—Fraenkel set theory” (ZFC) launched in the
early 20 century. However, even when ZFC can prove the consistency of, for example, Peano
arithmetic, the system is incapable for itself to prove consistency. See, Simpson, 1999. Also see
Solovay, 1970.

12 Another formally equivalent algorithmic representation that can encode any sequential pro-
gramming language can be found in “p-recursive functions”, or in the “A-calculus” (lambda cal-
culus), the latter was created by Alonso Church which shortly proceeds Turing’s founding. This
is the reason why Alan Turing had to briefly integrate the A-calculus as a footnote in his 1937’
paper, and so Church became Turing’s Ph. D. supervisor. It was also Church who suggested to
the logician Emil Post the unsolvable problem and whose results can be found in: Post, 1947.

13 1 use the term “digital kosmos” for a general reference to the digital environment.
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transition table where data is placed on a potentially infinite tape.'* This mech-
anistic procedure is recognized as the fundamental iterative statement for the
manipulation of formal and meaningless'® tokens. The modern algebraist Charles
Petzold states that the T™ performs at a level so simple that “if the machine did
anything less than what it does, it wouldn’t do anything at all” (2008: vii).

This “essentially complex machine” (Blanco, 2013) is made up of three basic
elements (tape, head, and program) which constitute what we recognize today
in any electronic device under the names of memory and microprocessor, which
reads and executes the programs. The scanning head reads the basic set of pre-
viously set-up instructions in order to adapt and modify its “internal state”. For
instance, #f'the internal state is 1, zhen move to the left and replace it with 0 and
then move forward to the right and continue or break the process. Thereby, the
machine adjusts its internal state by moving forward along the instructions chain
until it produces the desired output and terminates.

The performance that corresponds to a value of a symbol (scanned symbol)

is what Turing coined as; “m configuration”, “internal states”,' ¢

‘mental states”
which pictures the “mental image” that the machine scans according to a prede-
fined set of rules, with the aim of keeping, generating or erasing a symbol: “The
behavior of the computer at any moment is determined by the symbols which he
is observing, and his <state of mind> at that moment” (Turing, 1936: 5). This

serial" procedure (one instruction is executed after the other) from one “state of
p

14 The number of symbols contained on the tape (thus, the length of the tape) will depend on the
computer’s storage capacity. This extensional dimension constitutes the physical spatial aspect
of the machine (i. e. the hardware), whose software, i. e., the set of existing computable states or
“states of mind”, will be determined by the totality of all its possible combinations.

15 Symbols as such are meaningless, yet they become a meaningful symbol token through a fixed
interpretation, it is not prescribed @ priori what expressions it can designate. This arbitrariness
pertains only to symbols (Newell and Simon, 1976).

16 Unlike ™, the “A-calculus” does not have any internal state, the function that processes the
mathematical operations works as a black box that does not afford to see the internal mechanics
within it.

17 Daniel Dennett also offers a description of non-serial computers: “computers are serial [...].

There are exceptions; some special-purpose parallel-architecture computers have been created,
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mind” to the next one, limits the machine to observe only one box at a time while
decoding the information and re-encoding it again on the tape.'®

Each symbol represents a precise and finite value or set of values, as, from
a computational point of view, a T™ can only process one finite value at a time;
a finite automaton. Consequently, a finite number of steps will allow obtaining
a result, a process called “effective procedure”. Hence, when the semantics of
classical mathematics raised the problem of “infinite functions”, it collided with
what a T™ can compute. The German artificial intelligence scientist Joscha Bach
exemplifies: “Pi (1) in classical mathematics is a value and is also a function, but
it’s the same thing. And in computation, a function is only a value when you can
compute it. And if you can’t compute the last digit of 7, you only have a function”
(2020: 16:00-16:15). In his 1936’s paper, Turing uses the principle of parsimony
to remove any mathematical excess: “We shall avoid confusion by speaking more
often of computable sequences than of computable numbers” (1936: 233). The
problem of non-computable numbers became clear for Turing by taking up Can-
tor’s idea (1874) of the existence of real numbers as uncountable:

In that same 1874 paper where Cantor demonstrated that the algebraic numbers
are enumerable, he also demonstrated that the real numbers are not enumerable.
[...] What Cantor eventually realized is that there are at least two kinds of infinity:
There’s an enumerable infinity and a non-enumerable infinity — an infinity of the
natural numbers and an infinity of the continuum. (Petzold, 2008: 24-26)

but the computers that are now embedded in everything from alarm clocks and toaster ovens to
automobiles are all serial architecture «von Neumann machines»” (Dennett, 2017: 155).

18 This decoding-encoding procedure is reminiscent of what the French philosopher Simondon
(1924-1989) coined as allagmatic when he generally referred to cybernetics; “the general theory
of exchanges and of state modifications” (Simondon, 1958, in Bardin, 2015: 15).

19 Charles Petzold describes how the construction of geometrical shapes is equivalent to solving
certain forms of algebraic equations and traces it back to the ancient Greeks who thought it
impossible to square the circle, they named this “obsessive activity” (tetpaywvilew) tetragonize.
Just like the ancient Greeks, we can’t construct a geometrical representation for the number 7,

since this irrational number “is not a solution to any algebraic equation” (2008: 13-35).
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Therefore, on the one side, there is computable infinity, which can be defined
as “real numbers that can be computed to within any desired precision by a finite,
terminating algorithm” (Veisdal, 2019). For instance, real numbers like © might
be considered “Turing complete or computable”, that is, they can be executed
through finite commands in a program through a process of approximation that
will last indefinitely. As clarified by the Argentinian computer scientist Javier
Blanco: “The original T™s were ‘good’ when they did not finish and in the in-
finite process, they computed all the decimal places of some real number” (2020,
personal correspondence). On the other side, there is an uncomputable infinity
(which includes most of the real numbers); which are numbers not able to be
computed at all and for which there is no algorithm that can compress and define
them, so the only thing left to do is to write them digit by digit.** Hence, the
functions computed by a T™ are by definition computable functions: “Machines
are definite: anything which was indefinite or infinite we should not count as a
machine” (Lucas, 1961: 114). Even the functions that perform the simulated par-
allel processing done by artificial neural networks, that loosely mimics the human
brain, are also replicated on these serial machines (Dennett, 2017: 155-156).

The universal machine

The universality of the T™ is a consequence of the logical-mathematical inter-
play between the outside (symbols) and the inside (code number) for which the
machine represents the outside that can be transferred to the inside: “a machine
could be encoded as a number, and a number could be decoded as a machine”

(Dyson, 2012a: 250).

20 One attempt has been made by the Argentine-American mathematician Gregor Chaitin in
what is known as the “Chaitin’s constant” (Omega) which is supposed to work as a solution
to the halting problem. This questionable “halting probability” assumes that the sequences of
random real numbers might be computable by a probabilistic solution. Here is an example of
“Chaitin’s Thought Experiment (Barmpalias, 2018): Suppose we run a universal Turing machine
on a random binary program. Specifically, whenever the next bit of the program is required, we
flip a coin and feed the binary output to the machine. What is the probability that the Turing
machine will halt?” (Veisdal, 2019).
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What is at stake in this type of universality is that any digital data is onto-
logically the same. Therefore, modifications of its internal states entail the adapt-
ability of the machine’s cognition. In fact, the chain of UTM essentially represents
running a computer within another computer, . ¢., a computer that takes a pro-
gram as data and runs itself. To put it simply, the idea of a machine copying
another machine’s behavior means that we give an input string (w) to the ™,
and this one behaves by accepting, rejecting it, or looping through infinitely. To
determine which is the machine’s behavior < T™M, w> we create another machine
called ut™m, which will receive as an input the T™ with its string (w) and simulate
the behavior of the host T™.

Before Turing the general supposition was that in dealing with such machines the
three categories — machine, program, and data — were entirely separate entities. [...]
Turing’s universal machine showed that the distinctness of these three categories is
an illusion. (Davis, 2018: 143)

The digital kosmos is shrouded in universality. Just like the underlying foun-
dations of analytic connections and their inferences of thoughts are to be found
in the universality of the algebraic laws set-up by Boole, so is the foundation of
the computer set-up by Turing profoundly rooted in the universal state of data:

With the development of the second generation of electronic machines in the
mid-forties (after the Eniac) came the stored program concept. This was rightfully
hailed as a milestone, both conceptually and practically. Programs now can be data,
and can be operated on as dara. This capability is, of course, already implicit in the
model of Turing: the descriptions are on the very same tape as the data. Yet the idea
was realized only when machines acquired enough memory to make it practicable
to locate actual programs in some internal place. (Newell and Simon, 1976: 117)

The ontology of machine cognition is generally based on pure simulacra, a
fact that spurred Turing to develop in 1950 the simulation of the, later called, the
Turing Test. The genesis of digital machines emerges with a machine able to be-
have as any other machine (utm) and it follows the artificial intelligence idea of a
machine that can behave as any given human being by capturing “the functional
relations of the brain for so long as these relations between input and output are
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functionally well-behaved enough to be describable by [...] mathematical rela-
tionships [...] we know that some specific version of a Turing machine will be able
to mimic them” (Sam Guttenplan, 1994: 595 in Copeland, 2020).

THE AMBIVALENCE OF MACHINE INTELLIGENCE

The ontological and epistemological commitments in philosophical and mathe-
matical thought in the early 20th century was nothing like pilogogi@, the love
for wisdom, but rather an unending and uncertain path to the truth. Rephrasing
Borges’s poem: they “weave their incalculable labyrinth [...] not joined by love
but by threat” (1974: 946).

The fundamental structural and operational ambivalence of the ™ starts with
the epistemological tension that took place when the operation of the learning
process (the program’s behaviors) run by the structure (set of predefined rules)
produced inconsistencies in the process. “As Mathieu Triclot correctly points out,
the fundamental problem is the statute of the rules, if they are fixed « priori or
if they emerge as regularities from a learning process” (Blanco, Parente, Rodri-
guez, and Vaccari, 2015: 105). The aspect of the uncertainty (Unbestimmtheit) ex-
plicit in the halting problem emerges from a deterministic system (serial structure
of predefined rules) operating at a high uncertainty level (program’s behavior),
which consequently does not allow to predict the machine’s behavior.

The halting problem is “a proof by contradiction” that addresses the self-
referential nature of the programs. It raises the question of whether there is a
general-purpose program (Gpp) that can always decide whether another program
and its input will ever halt or not? Turing stripped the problem to its bare essen-
tials: to prove the impossibility of the Gpp, another program would have to be
produced in order to use it. This second program will be the one that leads to a
contradiction because there is at least one case (one counterexample) in which
it cannot predict the behavior of the program being tested (Gpp) since it might
keep looping through ad aeternum or terminate its execution. Thus, the problem
remains undecidable and the halting problem remains unsettled.”!

e semantics of a logical system is based on what the terms of a theory refer to and the inter-
21 Th f a logical sy based hat th f a theory refc d th
pretation of its connectives, for a precise understanding of the undecidability of the semantics

property (behavior) of programs see, Rice, 1953.
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The nature of this problem is mainly self-referential: the Gpp should be able
to predict the behavior of any other program, and since the Gpp is itself a pro-
gram, it can be taken as an input for another program. The attempt to determine
if it terminates or not and, at the same time, being a program itself leads into a
contradiction. “Interestingly, the proof of this theorem shows that in any for-
mal theory satisfying its conditions, one can write an analog of the liar paradox,
namely, the sentence ‘I am not provable in this theory”” (Walicki, 2012: 29). If
true and provable, it leads to a false affirmation, and if false, there is something
true that cannot be proven. The epistemological ambivalence in the domain of
programs combines a perfectly determined machine (by knowing all of its ins-
tructions and inputs) with its unpredictable behavior because it lacks the formal
methods to predict “what the behavior of a universal machine will be” (Blanco,
2014: 8).

The impossibility of solving the halting problem mechanically means that its be-
havior cannot be predicted despite being deterministic; that the best that can be
done is to carry out the execution of the machine for that particular case and see
what happens, having to assume that sometimes nothing visible will happen, the
machine will remain processing indefinitely. We can mechanically explain each
step of the behavior of this machine without being able to know how it will behave
globally. (Blanco, 2014: 8)

This fundamental tension affects machine cognition where it originates: the
machine’s Umuwelt is neither to be found in its deterministic process nor entirely
in the uncertainty that stems from the process but in their mutual mediation.
The layout of the digital kosmos by means of machine cognition emerges from
the epistemological ambivalence of its “mental acts”: on the one side, the sequen-
tial-determinist state for which the T™ uncovers the possibility to mechanically or
effectively act according to predefined rules, and on the one side, the uncertainty
state produced during the process itself. Ultimately, the reversed solution of the
decision problem shown by Turing uncovers the fact that determinism does not
entail predictability.

The structural level of logic-based rules generates efficient operations and
self-regulations of computers through the rearrangement and combination of its
datasets, obtaining results within a specific time frame. At the operational level,

67

Spnnas Aiesotias VOl XU, nim. 45, enero-junio, 2021, 54-73, ISSN: 1665-1324



BELEN PRADO

even when the machine’s behavior is part of a predetermined system, it is not
entirely governed by it. The halting problem formulates the uncertainty in the
learning process of any computer, while the behavior of subsequent programma-
ble systems is the result of this epistemological ambivalence.

This inherent indecision shapes the primal nature of every programmable
system, and consequently pervades forthcoming uncertainty and leads to unex-
pected results in the learning process of the machines” behavior: “Turing’s deter-
ministic universal machine receives the most attention, but his non-deterministic
oracle machines are closer to the way in which intelligence really works: intuition
bridging the gaps between logical sequences” (Dyson, 2012b: 459-460).

Epistemological inconsistencies on the structural and operational levels (a
completely deterministic machine does not allow formalizing the prediction of
its output) constitute the grounds upon which all other synthetic cognitive ar-
chitectures are based and whose far-reaching consequences entail more complex
black box dilemmas.*

The joy in the evolution of machine cognition is driven by first principles
“indifferent to their own truth” (Ortega y Gasset, 1958: 6) and whose axiomati-
zation, far from securing a path to provable universality, opens up the ambiguity

of programmable machines and their uncertain behavior.”

CoNcLUSION

When Turing wrote his 1936’s paper, he had in mind the idea of a “human being,
equipped with pencil, paper, and time” (Dyson, 2012a: 247) and he proceeded by
covering every state through the complete capacity of machine intelligence to com-
pute until nothing human was left. The dawn of machine cognition accomplished

22 For the challenges regarding uncertainty in algorithmic trading or black-box trading and con-
structive alternatives, see, Stiegler, 2017.

23 Axiomatization is the self-consistent conceptual architecture that serves as the ultimate crite-
rion of infallibility. Dyson sums the concept and its surrounding dilemmas up in the following
terms: “Axiomatization is the reduction of a subject to a minimal set of initial assumptions,
sufficient to develop the subject fully without new assumptions having to be introduced along
the way” (Dyson, 2012a: 49).
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the most important epistemological shift in history: a shift to the symbolic, and
in doing so, laying the foundations for all subsequent learning processes.

The epistemological architecture of machine cognition was built on the
aporetic ruins of Gédel’s incompleteness theorem where the field of mathematics
was left as fundamentally inconsistent or incomplete (the nature of self-referential
systems is unable to prove to be formally true by finite means).

It becomes clear that this original tension between mathematical and sym-
bolic reasoning plays a pivotal role in cognition. Even nowadays, the rate of un-
certainty in programs is a fact that the probabilistic approach? of artificial intel-
ligence corroborates. The main idea of intelligent behavior in machine cognition
is expressed by the data compression achieved by “artificial intelligence systems”
which roughly consist in the measured performances of combined “thought pro-
cesses”, “reasoning’, and “behavior” techniques (Russell and Norvig, 2010).

The origin of the T™M meant a return to the root of the problem of the nature
of mathematical reasoning, and although it remains unsolved, the T™ pointed the
way to digital automatization and served as the basis of more developed archi-
tectures of machine’s cognition (e. g., symbolical, connectionist, hybrid architec-
tures). All of them, even the most sophisticated ones, structurally operate within
this original model of computable numbers which remains as the very foundation
of any current machine’s general learning process.
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nent of rationality, see especially the introduction of Russell and Norvig, 2010.
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