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Abstract

The Stefan-Maxwell equations represent a special form of the species momentum equations that are used to
determine species velocities. These species velocities appear in the species continuity equations that are used to
predict species concentrations. These concentrations are required, in conjunction with concepts from
thermodynamics and chemical kinetics, to calculate rates of adsorption/desorption, rates of interfacial mass
transfer, and rates of chemical reaction. These processes are central issues in the discipline of chemical engineering.

In this paper we first outline a derivation of the species momentum equations and indicate how they simplify
to the Stefan-Maxwell equations. We then examine three important forms of the species continuity equation in
terms of three different diffusive fluxes that are obtained from the Stefan-Maxwell equations. Next we examine the
structure of the species continuity equations for binary systems and then we examine some special forms associated
with N-component systems. Finally the general N-component system is analyzed using the mixed-mode diffusive
flux and matrix methods.

Keywords: continuum mechanics, kinetic theory, multicomponent diffusion.

Resumen

Las ecuaciones de Stefan-Maxwell representan una forma especial de las ecuaciones de cantidad de movimiento de
especies que son usadas para determinar las velocidades de especies. Estas velocidades de especies aparecen en las
ecuaciones de continuidad de especies que son usadas para predecir las concentraciones de especies. Estas
concentraciones son requeridas, en conjuncién con los conceptos de termodindmica y cinética quimica, para calcular las
velocidades de adsorcidn/desorcion, las velocidades de transferencia de masa interfacial, y las velocidades de reaccion
quimica. Estos procesos son elementos centrales en la disciplina de la ingenieria quimica.

En este articulo presentamos primeramente un desarrollo de las ecuaciones de cantidad de movimiento de
especies e indicamos como se simplifican a las ecuaciones de Stefan-Maxwell. Posteriormente examinamos tres formas
importantes de la ecuacion de continuidad de especies en términos de tres diferentes fluxes difusivos que se obtienen de
las ecuaciones de Stefan-Maxwell. Méas adelante examinamos la estructura de las ecuaciones de continuidad de especies
para sistema binarios y examinamos algunas formas especiales asociados con sistemas de N-componentes. Finalmente se
analiza el sistema general de N-componentes usando métodos matriciales y de flux difusivo de modo mixto.

Palabras clave: mecénica del continuo, teoria cinética, difusion multicomponente.
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1. Introduction

Our derivation of multi-component transport
equations is based on the concept of a species body.
In Part | of Fig. 1 we have illustrated a system
containing both species A and species B and these
are illustrated as discrete particles. We have also
illustrated a region from which we have cut out both
a species A body and a species B body. In Part Il of
Fig. 1 we have indicated that the species A body will
be treated as a continuum while the discrete
character of species B is retained for contrast. As
time evolves the two species bodies separate because
their velocities are different. This separation is
illustrated in Part 11l of Fig. 1 where we have also
indicated that the species B body will be treated as a
continuum. The continuum velocities of species A
and species B are designated as va and vg. In
general, the continuum hypothesis should be
satisfactory when the distance between molecules is
very small compared to a characteristic length for
the system.

1.1 Conservation of mass
In terms of the species A body illustrated in Fig. 1,

we state the two axioms for the mass of multi-
component systems as

Axiom I
d
~ [ padv=[rdv, A=12..N 1)
) U]
. A=N
Axiom II: r,=0 2)

>

=1

Here p, represents the mass density of species A

and r, represents the net mass rate of production per
unit volume of species A owing to chemical reaction.
In Egs. (1) and (2) we have used a mixed-mode
nomenclature making use of both letters and
numbers to identify individual species. For example,
Axiom Il could be expressed in terms of alphabetic
subscripts as

Axiomllir, + 1y + . + Iy + ... +r,=0 (3

or we could use numerical subscripts to represent
this axiom as

Axiomll:r, + 1, + 1, + 1, + . +r,=0 (4)

This latter result can obviously be compacted to
produce Eg. 2; however, the use of alphabetic
subscripts to represent molecular species is prevalent
in the chemical engineering literature. Because of
this we will use alphabetic subscripts to identify
distinct molecular species, and we will use the
nomenclature contained in Eq. 2 to represent the
various sums that appear in this paper.

0® 0000 o

1
o Species A
e Species B
111
.:° .:.' :.. Motion
. -
:.o 2 ¥ JZ/; (l‘)

AN P (1)
. %i(t=0)

Fig.1. Motion of species A and species B bodies

In order to extract a governing differential equation
from Eqg. 1, we make use of the general transport
equation (Whitaker, 1981, Sec. 3.4, with w=v,)

dt zo O
A A (5)
+ [ pavimdA, A=12..N

eip (1)

and the divergence theorem (Stein and Barcellos,
1992, Sec. 17.2)

I PpV,-ndA= I V-(pav,a)dv,
A 70 (6)

A=12..N

in order to express Eq. 1 in the form

0Pa }
—L 4+ V- (pavy)— I |dV =0,
j()[ at Vo ™

A=12..,N

Since 7,(t) illustrated in Fig. 1 is arbitrary, and

since it is plausible to assume that the integrand in
Eq. (7) is continuous, the integrand in Eq. (7) must
be zero and the governing differential equation
associated with Eq. 1 is given by

0pPx

A=12..,N 8
ot ®)

+ V'(pAVA) =l
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If we sum Eq. (8) over all species and impose the
Axiom Il we obtain

%—/t’ 4 V-(pv)=0 o)

in which the total density and the total mass flux are
determined by

A=N
py= z Pa Va (10)

A=1 A=1

The mass average velocity, v, can be expressed in
terms of the mass fraction, w, and the species
velocity, va, according to

A=N
V=) @, Vs, 0y=py/p, A=12.,N (11
A=1

The typical treatment of Eqg. (8) involves the solution
of N —1 species continuity equations along with a
solution of Eq. (9). This suggests a decomposition of
the species velocity into the mass average velocity,
v, and the mass diffusion velocity, ua

vo=v+u,, A=12_.,N (12)

so that the species continuity equations take the form

0P
+V-(paV)==V-(pu)+ 1, ,
ot — 0
— convective diffusive chemical (13)
accumulation transport transport reaction

A=12..,N-1

Here we note that only N -1 of the diffusive
transport terms are independent since Egs. (10) and
(12) require the constraint

A=N
z pau, =0 (14)
AcL

In order to solve Egs. (9) and (13) we need
governing differential equations for the mass
diffusion velocity, u,, and the mass average velocity,
v. These are determined by the axioms for the
mechanics of multi-component systems.

1.2 Laws of mechanics

Our approach to the laws of mechanics for multi-
component systems follows the work of Euler and
Cauchy (Truesdell, 1968), the seminal works of
Chapman & Cowling (1939) and Hirschfelder,
Curtiss & Bird (1954), along with the recent work of
Curtiss & Bird (1996, 1999). In terms of the species
body illustrated in Fig. 1 the linear momentum
principle for species A is given by

%J. PV dV = _[ P b, dV

7a(t) Ta(t)

+ [ tywdA+ jprAB v (15)

() 7x(t) B=L

Axiom I:

+ [ rvidv, A=12,.N

Ta(t)

With an appropriate interpretation of the
nomenclature, one finds that this result is identical to
the second of Egs. 5.10 of Truesdell (1969, page 85)
provided that one interprets Truesdell’s growth of
linear momentum as the last two terms in Eq. (15). In
terms of the forces acting on species A, we note that
pab, represents the body force, t,,, represents the

surface force, and P,; represents the diffusive force

exerted by species B on species A. This diffusive
force is constrained by
P, =0, A=123.,N (16)

The last term in Eq. (15) represents the increase or
decrease of species A momentum resulting from the
increase or decrease of species A caused by chemical
reaction, and this term is discussed in Appendix A.

The angular momentum principle for the
species A body is given by

4 J. rxp,v,dv = _[ rxp,b,dVv
dt

Ta(t)

B=N
Axiom 11+ [ rxty, dA+ [ Y rxPgdv  (17)

= (1) 7a(t) B=L

+ [ rxnvidv, A=1,2,.,N

Ta(t)

in which r represents the position vector relative to a
fixed point in an inertial frame. Truesdell (1969,
page 84) presents a more general version of Axiom |1
in which a growth of rotational momentum is
included, and Aris (1962, Sec. 5.13) considers an
analogous effect for polar fluids. The analysis of Eq.
(17) is rather long; however, the final result is simply
the symmetry of the species stress tensor as indicated

by
T,=T,, A=12..,N (18)

The constraint on Pag is given by Truesdell (1962,
Eq. 22) as

>

=N B=N
Axiom II1: P, =0 (19)

A=

2]

-
[+
iN

and a little thought will indicate that this is satisfied
by

Py =—Pg, (20)
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One can think of this as the continuum version of
Newton’s third law of action and reaction
(Whitaker, 2009a).

Hirschfelder et al. (1954, page 497) point out
that “even in a collision which produces a chemical
reaction, mass, momentum and energy are
conserved” and the continuum version of this idea
for linear momentum gives rise to the constraint:

A=N
Axiom IV: D vy=0 (21)
A=1

This result, along with Eq. (19), is contained in the
second of Egs. 5.12 of Truesdell (1969).

Returning to the linear momentum principle,
we note that the analysis associated with Cauchy’s
fundamental theorem (Truesdell, 1968) can be
applied to Eqg. (15) in order to express the species
stress vector in terms of the species stress tensor
according to

tam =0T, (22)

This representation can be used in Eqg. (15), along
with the divergence theorem and the general
transport theorem, to extract the governing
differential equation for the linear momentum of
species A given by

0
E(pAVA) + V'(pAVAVA):pAbA + V'TA
N A AT AL/ A ) N
convective body surface

local acceleration force force
acceleration

. (23)
+ Y Pg+  nvi o, A=12..N
B=1 ¥
source of momentum

diffusive owing to reaction
force

Equation (23) is identical to Eq. A2 of Curtiss and
Bird (1996) for the case in which r, =0 provided

that one takes into account the different
nomenclature indicated by

Pby=G,, V- T, ==V-0,,
B=N
ZPAB = F,
B-1

One can make use of the identity

Curtiss & Bird: (24)

PaVaVa=Pa(VaAV+VV, = VW) + pu,u, (25)

in order to express Eq. (23) in the from

0
E(pAVA) + Ve[ pa(vay + vv,— vv)]
=pPpby + V'(TA_IDA“A“A) (26)

B=N
+ ZPAB + I‘Av; , A=1,2,.,N

B=1

This result is identical to Eq. 4.20 of Bearman and
Kirkwood (1958) for the case in which r, =0
provided that one takes into account the different
nomenclature indicated by (with the subscript
a=A)

Bearman and Kirkwood:

Paba=CX,, V’(TA_pA“AuA):_v’(’A )

B=N _ 27)
ZPAB = CAFA(\D*

B=1

Bearman and Kirkwood refer to ¢, as the partial

stress tensor and note that it consists of a “molecular

force contribution” represented by -T, and a

“Kinetic contribution” represented by p,u,u, .

Equation (23) can be represented in more
compact form using the species continuity equation.
We begin by multiplying Eq. (8) by the species
velocity to obtain

VA{%_FV.(IDAVA)}: My Va, A=12... . N (28)

Subtraction of this equation from Eqg. (23) leads to

ov
pA[ 6tA + VA'VVA] = pby + VT,

BN (29)
+ZPAB+rA(V’;—VA), A=12, ... N
B=1

Bird (1995) has pointed out that Chapman and
Cowling (1939) first obtained this result* for dilute
gases by means of kinetic theory provided that
r, =0. From the continuum point of view, Eq. (29)

is given by Truesdell and Toupin (1960, Eq. 215.2),
Truesdell (1962, Eq. 22), and Curtiss and Bird (1996,
Eqgs. 7b and A7) all with r, =0. The correspondence

with Truesdell (1962) is based on the nomenclature

Paby=puf,, VT, =divt,,

Truesdell: B=N .
Z Py =pp,
B=1

(30)

In its present form, Eq. (29) represents a governing
equation for the species velocity, va, and we want to
use this result to derive a governing equation for the
mass diffusion velocity, us. To carry out this
derivation, we need the total momentum equation
that is developed in the following paragraphs.

! see species momentum equation following Eq. 6 on page
135.
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1.2.1 Total momentum equation

The traditional analysis of momentum transport in
multi-component systems makes use of the sum of
Egs. (23) over all N species to obtain the total
momentum equation that is used to determine the
mass average velocity, v. The remaining N -1
independent species momentum equations can then
used to determine the individual species velocities,
Va, Vg, ... Vy,. We begin by taking into account
Axioms |1l and IV so that the sum of Eq. (23) leads
to

A=N A=N

0
— 2. PaVatV: z PaVaVa
ot = =

A=N A=N
=Y pby+V- DT,
A=1 A=1

The first and third terms in this result can be
simplified by the definitions

@31

A=N A=N
ZIDAVA =pV, szbA =pb (32)

A=1 A=1

and Egs. (10) and (12) can be used to obtain

A=N A=N
Z PaVaVa =pPVV+ z PaVallp (33)
A=l A=1

Application of Eq. (14) allows us to simplify the
convective momentum transport to the form

AN AN
z PaVaVa =pPVV+ Z Pl U, (34)
A=l Al

and substitution of Egs. (32) and (34) in Eq. (31)
provides

A=N

g(pv)+v-(pvv):pb+v-{

A=l

Concerning the last term in this result, we note that
Truesdell and Toupin (1960, Sec. 215) refer to
p uu, as the “apparent stresses arising from
diffusion” and we note that this term also appears in
the analysis of Curtiss and Bird (1996, Eq. A7). In
that case one needs to make use of the second of Egs.
(24) along with

A=N A=N
=Y m,=- (T,-puu,)  (36)
A=1 A=1

to complete the correspondence. At this point we can
use Eq. (9) to obtain

v B_/t) + V~(pv)}=0 37)

and this allows us to express Eq. (35) in the form

(TA —PAU U, )} (35)

8v A=N
p{a + v-ijzpb+V~[ (TA—pAuAuA)} (38)
A=1

In order to use this result to predict the mass average
velocity, we need a constitutive equation for the sum
of the species stress tensors. This problem is
considered in the following paragraphs.

1.2.2 Governing equation for the mass diffusion
velocity

Our objective here is to develop the governing
differential equation for the mass diffusion velocity,
up. We begin by multiplying Eq. (38) by the mass
fraction wa

pA(%+ v-VszpAb
(39)

A=

N
+a)AVo{ (TA—pAuAuA)}

A=1

and subtracting this result from Eq. (29) to obtain the
desired governing differential equation given by

ou
pA( 6tA TVa 'VuA+uA'VvJ:pA(bA_b)

+V~TA—a)AV~{/§:q(TA—pAuAuA)} (40)

A=1

+Bi’i‘PAB+|'A(VZ—VA)’A=1:21"'*N_1

B=1

Here it is important to note that this result is based
only on the two axioms for mass given by Egs. 1 and
2, and the four axioms for the mechanics of multi-
component systems given by Egs. (15), (17), (19)
and (21). In addition, we have made use of classical
continuum mechanics to obtain the result given by
Eqg. (22).

At this point we need to be specific about the
species stress tensor, T,, and to guide our thinking

and constrain the subsequent development, we
propose that:

The analysis is restricted to mixtures
that behave as Newtonian fluids
(Serrin, 1959, Sec. 59; Aris, 1962,
Sec. 5.21).

Given this restriction for the mixture, we
follow Slattery (1999, Sec. 5.3) and write

A=N

T=)>T,=-pl+t (41a)

in which p is the thermodynamic pressure and t is
the extra stress tensor given by (Serrin, 1959, Eq.
61.1; Slattery, 1999, Eq. 5.3.4-3; Bird et al., 2002,
page 843)
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t=u(V+ VT )+ A(V-)l (41b)

Given these results, Eq. (38) provides the Navier-
Stokes equations containing an additional term
associated with the sum of the diffusive stresses.

Here we need to point out that Egs. (41) can
be obtained by following a classic continuum
mechanics analysis; or this result can be obtained
from kinetic theory (Hirschfelder, Curtiss & Bird,
1954, Eqgs. 7.2-45 and 7.6-29). The advantage of this
latter approach is that a method of calculating the
coefficients x and A is created within the framework
of the theory. The disadvantage is that the
calculations associated with the determination of u
for a dense gas or a liquid may be much more
difficult than the associated experiment.

Given that the behavior of the mixtures under
consideration is described by Eqgs. (41), we propose
that the species stress tensor can be represented by

Proposal: T, =-p,l+7,, A=12..N (42)
in which p, is the partial pressure defined by
(Truesdell, 1969, page 97)

P =Pa OV /0P )T pyo e (43)

Here y, is the Helmholtz free energy of species A
per unit mass of species A. In general it is more
convenient to work with the internal energy and
define the partial pressure by (Whitaker, 1989,
Chapter 10)

Pa :pi (aeA/apA) (44)

S, PG e
in which e, is the internal energy of species A per
unit mass of species A. A detailed discussion of the
partial pressure and the total pressure is given in
Appendix B. At this point we define the total
pressure and the total viscous stress tensor by

A=N A=N
P=D Pas T=D.Ts (45)
A=1 A=1

and we use these definitions along with Eq. (42) in
order to express Eq. (40) as

0
pA[ c’l;tA +v,-Vu, +u, -VV]

A=N
—a)AV-LZ;pAuAuA}:— (0,V-T-V-1,) (46)

-Vp,+@,Vp+ p,(b,—Db)

B=N
+ D P+ rA(v’;—vA)
B=1

In Appendix A we show that difference between v/,
and v, should be on the order of the diffusion
velocity

(Va=va)=0O(u,) @7

Arguments are given elsewhere (Whitaker, 1986,
2009b) indicating that several of the terms in Eq.
(46) are generally negligible. This leads to the
simplifications given by

ou,
Pa ot

<< Vp, (48a)

Pa(Va-Vu, +u, -Vv)<<Vp, (48b)

A=N
OV Y pauu, << Vp, (48c)

A=1
(0,V-T—V-1,)<<Vp, (48d)
I"A(VZ—VA)<< Vp, (48e)

The first of these indicates that the governing
equation for u, is quasi-steady; the second indicates
that diffusive inertial effects are negligible, the third
indicates that the diffusive stresses are negligible, the
fourth indicates that viscous effects are negligible,
and the final inequality indicates that the effects of
homogeneous chemical reactions are negligible.

When the restrictions given by Egs. (48) are
imposed, the governing equation for the mass
diffusion velocity takes the form

Vp, -, Vp- p,(b, —b)

B (49)
=> Py, A=12.,N-1
B=1

Truesdell (1962, Eq. 7) represents the left hand side
of this result by pd, and cites Hirschfelder, Curtiss

& Bird (1954) as the source. Curtiss & Bird (1999,
Eq. 7.6) represent the left hand side of Eq. (49) by
cRTd, and refer to it as the generalized driving

force for diffusion. At this point we make use of the
identity

1
V(pA/p)TVpA—%Vp (50)

in order to express Eq. (49) in the form
V(Pa/P)+ P [(Pa/P) - @s VP

B=N
_pilpA(bA _b) = p—lz PAB , A=12,...N-1

B=1

(51)
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In order to see how this result is related to the work
of Hirschfelder, Curtiss & Bird (1954), we make use
of their Egs. 7.4-48 and 7.3-27 (in terms of the
nomenclature used in this work) to obtain

Hirschfelder et al.

VX, + P [X, — @, ] VP

. BN X, Xg
-p pA(bA—b)=Z_ﬁ, (VB_VA) (52)
CERR
B=N DI DT
+ZX/AXB[ B __AJV"']Tl A:LZ,,..,N—l
02 Y \ P Pa

The right hand side of this result is approximate in
that (1) it is based on dilute gas kinetic theory, and
(2) the binary diffusivities, ,;, have been used in
place of the coefficient of diffusion, D,; (see
Hirschfelder, Curtiss & Bird, 1954, page 485). The
left hand side of Eq. (52) is identical to the left hand
side of Eqg. (51) provided that p, is replaced by

X,, P, and this is consistent with the idea that Eq.

(52) was developed for ideal gases. In terms of the
work of Chapman and Cowling (1970), we note that
their Egs. 18.2,6 and 18.3,13 lead to Eq. (52) with
the last term in Eq. (52) expressed as

B=N T T
k,VInT = Z%(&—&}VIHT (53)
51 Y \ P Pa

When dealing with ideal gases, one can proceed with
Eq. (52); however, for more general cases that are
consistent with Eq. (42), one should make use of Eq.
(51) and this means dealing with the force, P, .

1.2.3 Non-ideal mixtures

The simplest approach for non-ideal mixtures is to
use the form associated with dilute gas kinetic theory
in order to represent the right hand side of Eq. (51)
as

Proposal:
X, X X, X, ( D DI

PP, =2 B(VB—VA)+—;*T B[—B ——AJVIHT (54)
a8 D6 \Ps  Pa

Here the diffusion coefficients are to be determined
experimentally with the idea that this form for P,; is

an acceptable approximation, and that Eq. (20)
would be utilized as a solution to Axiom III.
Truesdell (1962, Sec. 6) refers to this approximation
as the special case of binary drags. However,
multicomponent diffusion in liquids is more complex
than suggested by Eq. (54), and Rutten (1992),
among many others, has documented these
complexities for ternary systems. Putting aside the
seminal problem associated with P,;, we make use

of Eq. (54) in Eq. (51) to obtain

V(pa/p) + P [(Pa/P) — @,]VP

pressure diffusion

B=N
XA XB

- pilp (b _b)= : V,—V (55)
T 270, e
B=N T T

+ZX/A,XB [& _ &JVInTvA:Lz,---,N—l
B=1 f/AB Ps Pa

thermal diffusion

Here we have explicitly identified the terms
associated with pressure diffusion, forced diffusion,
and thermal diffusion. This form of the species
momentum equation is restricted by the following:

I. The basic assumptions associated with
continuum mechanics.

I1. The constitutive equation given by Eq. (42)
111. The simplifications indicated by Eqs. (48).

IV. The form of the terms that appear on the
right hand side of Eq. (55).

One should remember that Eq. (55) is the governing
equation for the diffusion velocity, and this becomes
more apparent if we replace v, —v, with u, —u,.

In general, thermal diffusion creates very
small fluxes that are difficult to measure (Whitaker
and Pigford, 1958) and in this study we will neglect
this term to obtain

V(pa/P) + P[(Pa/P) = @, ]VP

pressure diffusion

B=N
g, -b) =3 2 ey v (56
p~pa(b,—Db) BZ:; 7, (VB VA) (56)

forced diffusion

A=12,.,N-1

Chapman & Cowling (1970, page 257) discuss the
impact of pressure diffusion on the distribution of
chemical species in the atmosphere, and both Deen
(1998, page 452) and Bird et al. (2002, page 772)
provide an example of this effect in terms of a
separation process using an ultracentrifuge. The
process of forced diffusion of electrically charged
particles is analyzed by Chapman & Cowling (1970,
Chap. 19) among others.

Estimates (Whitaker, 2009b, Sec. 5.6) of the
terms on the left hand side of Eq. (56) indicate that
these terms are generally quite small leading to the
relatively simple relation given by

Oz_v(pA/p)+E§Vﬁ(VB_VA)I

55 Y (57)

A=12..,N-1

Here one should remember that the first term in this
result is based on the use of Eq. (42) and that the
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second term represents a less than robust model for
non-ideal mixtures in which the binary diffusivities,
s , must be determined experimentally.
1.2.4 Ideal mixtures

At this point we are ready to make the final
simplification given by
Py=Xs P, ideal mixture (58)

in order to obtain the classic Stefan-Maxwell
equations that will be examined in the remainder of
this paper

Species Momentum:

BN X, X (Vg — V,)
Oz—VxA+Z%,A:L2,...,N—l(59)

B-1 “ng

To complete our formulation of the mechanical
problem, we recall Eg. (38) in the form of the
Navier-Stokes equations

Total Momentum:
ov 2
P §+V-Vv =pb—-Vp+ uVv (60)

in which the diffusive stresses have obviously been
neglected. The determination of v,, vy, ...,vy
using Egs. (59) and (60) is a very complex problem
and the chemical engineering literature contains
many simplified treatments of this problem.
However, the domain of validity of these simplified
treatments is not always clear, and in the following
sections we attempt to clarify the basis for some of
the special forms of the Stefan-Maxwell equations.

2. Mass continuity equation

We begin this study with the total mass continuity
equation [see Eq. (9)]

9P v (pv)=0 (61)

Total Mass: —
ot

along with N —1 species mass continuity equations
[see Egs. (13)]

Species Mass:

0
%""V'(pAV):_v'(pA“A)"'rA ) (62)

A=12.,N-1

These equations can (in principle) be used to
determine all the species mass densities, p,, pg ...,
py in the same way that the momentum equations

represented by Egs. (59) and (60) can be used to
determine all the species velocities, v,, vy, ..., vy .

The mass diffusive flux, p,u,, is often represented
as (Bird et al, 2002, page 537)

Ja = pPau, (63)
so that Eq. (62) takes the form
Species Mass:

0P
ot

+V (o) ==V ju+1, A=12.,N-1(64)

Here we note that the mass diffusive fluxes are
constrained by

A=N

2. Jn=0 (65)

A=1

and we need to determine N -1 of these diffusive
fluxes in order to develop a solution for Eq. (64).

In many liquid-phase diffusion processes, the
governing equation for the total density given by Eq.
(61) is replaced by the assumption

Assumption: p = constant (66)
and we need only solve the N —1 species continuity
equations given by Egs. (64).

3. Molar continuity equation

Chemical engineers are primarily interested in
chemical reactions, interfacial mass transfer, and
adsorption/desorption  phenomena, thus molar
concentrations and mole fractions are more useful
than mass densities and mass fractions. Because of
this, the molar form of the species continuity
equation is often preferred. This form is obtained
from Eqgs. (8) by the use of the relations

Pi=C,M,, . =R,M,, A=12., N(67)

This leads to the species molar continuity equation
given by

while the constraint on the mass rate of reaction
given by Eq. 2 provides

A=N
> R,M, =0 (69)
A=1

The total molar continuity equation is analogous to
Eqg. (61) and it is developed by constructing the sum
of Egs. (68) over all species to obtain

oc e
Total Molar: Fa Vi(ev)=D Ry (70)
B=1
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Here the total molar concentration and the molar
average velocity are defined by

A=N A=N
C=DCy, CV =) Cv, (71)
A=l A=1

The development in Sec. 2 indicates that Eq. (70)
should be solved along with the N -1 species
continuity equations given by

Species Molar:

%+V-(CAVA)=RA, A=12.,N-1 (72

This allows for the determination of all the species
molar concentrations, ¢,, Cg,...,Cy .

The form of Egs. (70) through (72) suggests
(but does not require) a decomposition of the species
velocity given by

v,=v +u,, A=12.,N (73)

in which w), is the molar diffusion velocity. A little

thought will indicate that the molar diffusion
velocities are constrained by

A=N .
D cu, =0 (74)
A=1

When Eq. (73) is used in Eq. (72) the transport of
species A can be represented in terms of a convective

part, c,v", and a diffusive part, c,u;,, leading to

oc, . .
—£+V-(c =-V-(c +R,,
ot (cav’) (Cauy) A (75)

A=12..,N-1

The molar diffusive flux, c,uj, is often identified as
(Bird et al, 2002, page 537)

J, =cu (76)
so that Eq. (75) takes the form

oc, . .
—+V-(c,v)=-V-J, +R,,
ot (V) ACTA (77)

A=12..,N-1

This result is similar in form to Eq. (64) for the
species mass density; however, there is no governing
equation for the molar average velocity, v, whereas
the mass average velocity in Eqg. (64) can be
determined by the application of Eq. (60). In order to
eliminate the molar average velocity from Eq. (77)
we return to Eq. (73), multiply by @, , and sum over

all species to obtain

B=N B=N B=N
D Ve =) 0V + Y wgug (78)
B-1 B=1 B-1

On the basis of the second of Egs. (10) this takes the
form

B=N
v=v'+) w,u, (79)
B=1
and we are now confronted with the mixed-mode
term w, ug that involves a mass fraction and a molar
diffusion velocity. We would like to express wgug in

terms of molar diffusive fluxes, and to do so we
manipulate this term as follows

Pslls
Pat Pt pPctet Py
Mg Cgug

* —
Wglg =

If we define the mean molecular mass as

M =X,M, +X;Mg +...+ X M (81)

we can express Eq. (80) in compact form according
to

. M JL
Wg Ug = CBMB (82)

At this point we return to Eq. (79) to develop the
following relation between the molar average
velocity and the mass average velocity:

v =v—1 —=J5 (83)

Substitution of this expression for the molar average
velocity into Eq. (77) allows us to express that form
of the species continuity equation as

Species Molar:

oc, =N

—A4V-(c,v)=-V|J, —X —L£J: |+R,,

ot (cav) ( A ABz:l Y BJ A (84)
A=12..,N-1

in which the molar diffusive fluxes are constrained
by

>

=N
J, =0 (85)

A=

N

Here we can see that this convection-diffusion
problem is inherently nonlinear in terms of the
diffusive flux; however, if the mole fraction of
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species A is sufficiently small it is possible that the
term involving the sum of the diffusive fluxes in Eq.
(84) can be neglected. By “sufficiently small” we
mean that the following inequality

X EEV%J << J; (86)
A M B A
B=1

is satisfied and Eq. (84) becomes linear in the molar
diffusive flux, J7, .

To complete our formulation of the molar
forms of the species continuity equation, we make
use of Eq. (83) in Eq. (70) to obtain

Total Molar:
B=N M B=N
L ovien=v.S Moy SR (87)
ot & M B-1

This total molar transport equation should be
compared with Eq. (61) in order to appreciate the
complexity associated with the molar form of the
species transport equations. In many gas phase mass
transfer processes, Eq. (87) can be replaced by the
assumption

Assumption: c = constant (88)

and we need only solve the N —1 species
continuity equations given by Egs. (84).

4. Mixed-mode continuity equation

The motivation for a mixed-mode or hybrid species
continuity equation is based on the applications that
are dominant in the area of chemical engineering,
and on the mechanical problem under consideration.
To be explicit, we note two facts:

(1) Chemical reactions and interfacial
mass transfer are usually represented
in terms of the molar concentration,
Ca, Or the mole fraction, Xxa, thus we
are motivated to use the molar form of
the continuity equation given by Eq.
(68) as opposed to the mass form
given by Eq. (62).

(2) The species continuity equation
involves velocities that must be
determined by the laws of mechanics,
thus we are motivated to use the mass
decomposition of the species velocity
given by Eq. (12) as opposed to the
molar decomposition given by Eq.
(73).

In order to obtain a mixed-mode or hybrid continuity
equation, we begin with the species mass continuity
equation given by Eg. (62) and divide by the
molecular mass of species A to obtain

oc
a—tA+V-(CAV):—V~(CAuA)+RA, (89)

A=12..,N-1

Here the diffusive flux is represented in terms of a
molar concentration and a mass diffusion velocity.
This mixed-mode diffusive flux is often referred to
as a hybrid flux and identified as (Bird et al, 2002,
page 537)

Jy=cChuy (90)
Use of this representation in Eq. (89) leads to

Species Molar:

oc,
—+V-(c,v)=-V-J, +R,,
ot (€av) AOA (91)

A=12.,N-1

The constraint on this diffusive flux is more complex
than that for either the mass diffusive flux or the
molar diffusive flux and is given by

A=N
> M, J,=0 (92)
A=l

This hybrid diffusive flux, Ja, lacks popularity;
however, the transport equation given by Eq. (91)
has the advantage that it is linear in the diffusive
flux. In terms of the mixed-mode diffusive flux, the
total molar continuity equation takes the form

Total Molar:
ac B=N B=N
—+V-(ev)=-V- > T+ D Ry (93)
ot B-1 B-1

and we are still confronted with a complex form of
the total molar transport equation. This complexity
often serves to generate the assumption that the total
molar concentration is constant as indicated by

Assumption: ¢ = constant (94)

Often gas phase diffusion problems lead to the use of
a molar form of the species continuity equation
because Eg. (94) provides a reasonable
simplification. On the other hand, liquid phase
diffusion problems suggest the use of the mass form
of the species continuity equation because Eq. (66)
provides a reasonable simplification. The author is
unaware of any solution to a diffusion problem that
does not make use of either Eq. (66) or Eq. (94), and
removing these assumptions remains as a significant
challenge.

5. Binary systems

Binary systems are often used to introduce the
phenomena of diffusion, and we will follow that
approach in order to explore the nature of the mass,
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molar, and mixed-mode forms of the species
continuity equation.

5.1 Mass diffusive flux

For a binary system, Eq. (59) reduces to

0=-vx, + X%l =Va) (95)
Dhe

and we think of this as the governing differential
equation for va. The value of vg is available from a
solution for v and v, which can be used in the second
of Egs. (10) to obtain

1
Vg =a)—(v—a)AvA) (96)
B

For a binary system, the two mass continuity
equations are given by

0
% +V-(paV) =-V-(pau) 41, (97)
Z—I’O+V-(pv):0 (98)

and we need to determine u, and v in order to solve
these equations. Given the form of Eq. (97) it will be
convenient to express Eq. (95) in terms of mass
diffusion velocities, and the use of Eq. (12) leads to

0=-Vx, + M (99)
The

For a binary system, Eq. (14) provides
o, + ogug =0 (100)
and this can be used in Eg. (99) to obtain

0=-Vx, - — % (pu) (10

Zap OpWp

Multiplying and dividing the second term by the total
density allows us to express this result as

1 XX

0 = —VXA - _
P g p0

(pau,)  (102)

Here we have a mixed-mode representation in which
the mass diffusive flux, p,u,, is expressed in terms

of the gradient of the mole fraction, Vx,, along with
the mixed-mode term, X,Xg /@, @5 .

Before attacking the binary result given by
Eq. (102) it is convenient to list some results for N-
component systems. We begin with the definitions
for the mass fraction, w, , the mole fraction, x,, and

the mean molecular mass, M . These are given by

w, = , X, = C,/C,
O PA/,O A A/ (103)

in which M, represents the molecular mass of
species A. In addition to these results, we make use
of

Ca=py/M,, C=p/M, A=12..N(104)

to obtain the following relations between the mole
fractions and the mass fractions

G M _(p/MIM M

@,
A C p p MA A (105)
A=12.N

At this point we direct our attention to binary
systems and make use of the following relations

VX, ==VXg, @y =1- o,,
Lo, % (106)

M M, M,

along with several algebraic steps (see Appendix C)
to arrive at

M 2
VX, = Vo, (107)
M AM B

Substitution of this expression for the gradient of the
mole fraction of species A into Eq. (102) leads to

\ 1 2
M., ——L 2% () u,) (108)

0=- -
M AM B p‘(/»‘QB a)Aa)B

From Egs. (105) we see that

X Xg  M?
a)Aa)B MAMB

(109)

and Eq. (108) simplifies to the classic form of Fick’s
Law given by

Fick’s Law:  j, = pyu, =—p %V, (110)
Returning to Eq. (97), we make use of this form of
Fick’s Law to obtain the following governing
equation for the species density, p,

a .
TV (o) =V [ pZeV (pa/p)] + 1 (111)

For liquid systems this result can often be simplified

on the basis of the assumption
Assumption: p = constant (112)

which leads to
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113
{p = constant (113)

binary system

Here we have an attractive, linear transport equation
for the species density, p, .

When confronted with chemical reactions and
interfacial transport, we generally prefer to work
with the molar form of the species continuity
equation. This form can be extracted from Eq. (113)
by the use of

Pa=CM,, ,=R,M, (114)

which leads to

a%+v~(CAv)

(115)

=V (9.,Vc, )+ R, ,{ .
(AB A) *" binary system

{p = constant
This is an attractive form to use with liquids where
the assumption of a constant density is likely to be a
valid approximation. When the total density is not
constant, one must solve Eq. (111) simultaneously
with Eq. (98).

5.2 Molar diffusive flux

Because of the prevalence of molar concentrations
and mole fractions in chemical engineering analysis,
the species molar continuity equation is generally
preferred. This form can be extracted from Eq. (84)
according to

Species Molar:

BZM

oc o J+ R, (116)

a—t“+V~((:Av):—V-(J’;\—xA

B=1

while the total molar continuity equation given
earlier by Eq. (87) takes the form

Total Molar:

ac =M
5+V(CV) vz BJ +(R,+Ry) (117)

Ignoring for the moment the difficulties associated
with the total molar continuity equation, we direct
our attention to the molar diffusive flux represented

by J,. We begin by using Eq. (73) to express the
single Stefan-Maxwell equation as

0= _VX + M (118)
Dys

and employ the form of Eq. (76) for both species to
obtain

* *

XAJB — XBJA

0=-Vx, + 119
R (119)

Application of the binary version of Eq. (85)
J, +J,=0 (120)

allows us to express Eq. (119) in the classic form of
Fick’s Law given by

Fick’s Law:  J, =c,u, =—CZ,, VX, (121)

This is the molar analogy of Eg. (110), and
substitution of this result into Eq. (116) leads to the
molar analogy of Eq. (111).

P —\
% +V-(c,v) :v.[(MB/M )CQ‘ABV(CA/C)] + R, (122)

If we ignore variations in the total molar
concentration on the basis of the assumption

Assumption: ¢ = constant (123)
we see that Eq. (122) takes the form

% Ly (c,v) =V-[(My/M) 7, Ve, |

ot
c = constant
+ R, .
binary system

(124)

in which the presence of M leads to the non-
linearity associated with

Mg /M =[x, (M, /M, — 1)+1] " (125)

In order to obtain the so-called dilute solution form
of Eqg. (124), we impose

Restriction: Xy (My/Mg = 1)<<1 (126)
and Eq. (124) simplifies to the classic convective-
diffusion equation given by

aait+v €V)=V-(ZeVe,)

c = constant (127)
+Ry, 1% (MM —1) << 1
binary system

Here it is very important to note that this result is
identical to Eqg. (115). However, Eq. (127) is not
based on the constraint that the density is constant.
Instead, Eq. (127) is based on the assumption of
“constant total molar concentration” indicated by Eq.
(123), and the assumption of a “dilute solution”
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indicated by Eq. (126). For binary systems we have
(see Egs. (103) and (104))

p=c(x,M, + x;My) (128)
which can be arranged in the form
p=c{[(M,/Mg)-1]+1}M,  (129)

When the two restrictions associated with Eq. (127)
are imposed, the total density is essentially constant
and Eq. (127) is consistent with Eq. (115).

Returning to Eqg. (127), we note that the
maximum value of the mole fraction for species A
will usually be known a priori, and this allows us to
express the constraint associated with Eq. (127) as

Constraint: (X, )pe (Ma/M;y — 1)<<1 (130)

One should remember that there is a restriction
associated with every assumption and when one
imposes the restriction one always assumes that
small causes give rise to small effects (Birkhoff,
1960). In addition, one should remember that behind
every restriction there is a constraint (see Appendix
D); however, constraints can often be very difficult
to develop.

5.3 Mixed-mode diffusive flux

In this case we return to the mixed-mode species
continuity equation [see Eq. (89)]

oc,

E-FV'(CA v)=-V-(c,u,)+R, (131)

and direct our attention to the single Stefan-Maxwell
equation given by Eq. (101) and repeated here as

1 XX

0=-Vx, - p
Dy 0p05

(wqu,) (132)

It is convenient to rearrange this result in the form

1 x
7 —2-(Cau,) (133)

“ne Wg

0=-Vx, —

in order to obtain the mixed-mode diffusive flux
given by

cou, =2 e, VX, (134)
XB

At this point we can use Eqg. (105) to obtain the
mixed-mode form of Fick’s Law given by

Fick’s Law:

Jy=cyu, =—(My/M)c 7, Vx,  (135)

Substitution of this result into Eq. (131) provides the
following governing equation for the species A molar
concentration

S04V (0 =V [(Mo/M)0 7,0V (/) |+ R, (136)

This result is identical to Eq. (122) indicating that
both the molar representation given by Eq. (116) and
the mixed-mode representation given by Eq. (131)
lead to the same result for a binary system.

It is of some interest to note that the mixed-
mode diffusive flux can be expressed as

1
Cally :M_pA u, (137)
A

and on the basis of Eq. (110) this takes the form
Colu, =———pZ Vo, (138)

Use of this result in Eq. (131) yields what appears to
be an unattractive form given by

L V(e V)=V |~ pT Ve, |+R,  (139)
ot M,

However, if we impose the condition

Assumption: p = constant (140)

and make use of the first of Egs. (114) we find

%Jrv'(c“ V)=V (Z,Ve,)

(141)
{ p = constant
A

binary system

which was given earlier by Eq. (115).
6. Special forms for N-component systems

Given the complexity of the binary forms described
in the previous sections, we should expect additional
complexities for N-component systems. This
naturally leads to the search for simplifications, and
we will examine some of these simplifications in this
section.

6.1 Dilute solution diffusion

There are mass transfer processes in which all the
molar fluxes are the same order of magnitude and the
dominant diffusing species is dilute. In this special
case, it is convenient to represent the Stefan-
Maxwell equations in terms of the molar flux defined

by
N,=¢v,, A=12.,N (142)
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which allows us to express Eqgs. (59) as

B=N
XANB — XBNA

B-1 CQAB
B=A

0=-VX, + , A=12,.., N-1(143)

At this point we separate the second term to obtain

0=—CVX,+X —-—N —,
" AB:lgAB AlegAs (144)
B=A B=A
A=12..,N-1

and we define the mixture diffusivity by

B=N
1.y % ac12.
Dpn 51Dy
B=A

(145)

so that the Stefan-Maxwell
expressed as

equations can be

0=-CcY, VX, +X —N;-N,,
Am Y Ap AB:1 ‘g‘AB B A (146)
B=A
A=12.,N-1

For some processes, such as diffusion in porous
media (Whitaker, 1999) in which the flux of all the
species is driven by heterogeneous reaction or by

adsorption/desorption, we can impose the
simplification
B=N @?k
Xy > —=Ng <<N,,
8-1 Djg (147)

B=A

A=12,.,G, G<N
when the following two conditions are satisfied:

Constraint: (X,) . <<1,
Restriction: N; =O(N,),

A=12,.,G<N (148a)
B=12..,N (148b)

The first of Eqgs. (148) is identified as a constraint
since the maximum values of the mole fractions are
generally known a priori, while the second
inequality is identified as a restriction since it is not
expressed in terms of quantities that are known a
priori. Equation 148b should be interpreted to mean
that N, is not significantly larger than N, and if

species B is stagnant, N, would be zero.

In Egs. (147) and (148a) we have indicated
that our N-component system contains G
components that are dilute. For example, if we may
have a five-component mixture in which three
components have mole fractions that are small
compared to one, we have G =3 and Egs. (147) and
(148a) applies to these three components. Use of Eq.
(147) allows us to express the dilute forms of Egs.
(146) as

N,=-%,,VX,, A=12,.,G<N (149)
At this point we recognize that Eqgs. (72) can be
expressed in terms of N, to obtain

% L y.N, =R,

A=12,.. N-1(150)
ot

and that Eqg. (149) can be used to obtain a dilute
solution diffusion equation given by

%:v-(c@,waA)Jr R,, A=12..G<N(51)
We are still confronted with the complexity of the
transport equation for the total molar concentration
given by Eq. (87), and this difficulty is classically

avoided by assuming that the total molar
concentration is a constant in order to obtain
ac .
a—tA:V~(£7AmVCA)+ R, -
G<N (152)
A=12..G, .
other conditions

in which the other conditions associated with this
result are given by

Assumption: ¢ = constant (153a)

Restriction: N, =O(N,), B=12,..,N (153b)

Constraint: (X, )y <<1, A=12,..,G<N (153c)
The constraint identified by Eq. (153c) is generally
available in terms of the problem statement, and
when this constraint is satisfied it is probable that the
assumption given by Eq. (153a) and the restriction
given by Eq. (153b) are also valid.

6.2 Dilute solution convective-diffusion equation
using J,

In order to develop the convective-diffusion version
of Egs. (152), we begin with the generally valid form
given by Egs. (84) and repeated here as

B=N
%+V~(0Av):—V~(J’;\—xAZ%J;j
B-1

at (154)

+R,, A=12,..,N
The Stefan-Maxwell equations can be expressed as

B=N o *
0=-vx,+ > s~ Xela - a_g 5 N-1(155)
B=1 CY)s

B=A

and the summation can be separated leading to
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=N J
0=-CVX, +X By ) B
! ABZ:; D ABZ;‘% (156)
B=A B=A
A=12..,N-1

The definition of the mixture diffusivity given by Eq.
(145) can be used to express this result in the form

BN T/,
Veor “ZAm g N
O:_CQAmVXA-’_xAZTJB_JA'
B=1 —'43
BzA

A=12.,N-1

(157)

In making judgments about this result, we need to
remember that the diffusive fluxes are constrained by

B=N

> =0 (158)

B=1

indicating that the diffusive fluxes tend to be the
same order of magnitude. This means that the
following inequality

Restriction:
D
XAZ7JB <<J,, A=12..,G<N (159)

B=1 -“AB

has considerable appeal when the mole fraction of
species A is small compared to one as indicated by

Restriction: x, <<1, A=12,.,G<N (160)

Use of the inequality given by Eqg. (159) in the
Stefan-Maxwell equations given by
Egs. (157) leads to the multi-component form of
Fick’s Law

“Fick’s Law”

G<N

J,=-¢c9,Vx,, A=12..,G { y 1 (161)

A

which is analogous to the result for binary systems
given by Eq. (121).

We now turn our attention to the species
continuity equation given by Eq. (154). Use of the
dilute solution condition indicated by Eq. (160) and
the constraint on the diffusive fluxes given by Eq.
(158) leads to the restriction

B=N
Restriction: Xp D M—_BJ; < J (162)
e M
Use of this inequality along with the multi-
component form of Fick’s Law given by
Eq. (161) in Eq. (154) leads to the following form of
the convective-diffusion equation

oc @
EAJF V- (€v) =V (% VX, ) + Ry (163)

A=12,.,G<N

In addition to the inequalities given by Egs. (160)
and (162), we assume that the total molar
concentration is constant in order to obtain the
classic linear convective-diffusion equation for
species A.

%+V-(CAV):V-(‘@WVCA)
G<N (164)
+R,,A=12..G, ¢ = constant
X, << 1

This special form of the species continuity equation
is ubiquitous in the chemical engineering literature;
however, the simplifications associated with this
result are generally not made clear. In addition to the
dominant restrictions listed in Eq. (164), one should
keep in mind the restriction given by Eq. (162) that
would appear to be automatically satisfied by Egs.
(158) and (160) unless there is a serious disparity in
the molecular masses.

6.3 Dilute solution convective-diffusion equation
using J,

In this case we begin with Eq. (91)

%+V-(CAV):—V-JA+RA, A=12.., N-1(165)

and note that the Stefan-Maxwell equations can be
expressed as

B=N

Xadg — Xgd
0=-Vx,+ » 2B B4 A_12  N-1 (166
o e (166)

B=A

Separating the terms in the sum leads to

B=N B=N y
O=—CVX,+X, 2, 2 =J, 3 —=,
B=1 -/AB B=1 -/AB (167)
B=A B=A
A=12..,N-1

and use of the definition of the mixture diffusivity
given by Eqg. (145) provides

B=N )

0=—CT, VX, +X, 3 —2J.-J,,
. Aszzl% . (168)
B#A
A=12..,N-1

In making judgments about this result we need to
remember that the diffusive fluxes are constrained by
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> M,J,=0 (169)

thus if the mole fraction of species A is small
compared to one, we can make use of the restriction
given by

Restriction:
B=N _C/
“Am
X J, <<J,,
A BZ 7 B A

=1 B
B=A

A=12.,G<N (170

Under these circumstances, the Stefan-Maxwell
equation for species A takes the form

“Fick’s Law™:

J,=-9,.Vx,, A=12.,G<N 171)
Use of this result in Eq. (165) leads to the following
form of the convective-diffusion equation

%+V.(CAv) :V(Cf//_\mva)‘}‘ RA (172)

This result, based on the single restriction given by
Eg. (170), is identical to that given earlier by Eq.
(163). To complete the analysis of the mixed-mode
diffusive flux, we assume that the total molar
concentration is constant so that Eq. (172) takes the
form

%+V-(CAV):V-(%mVCA)+RA,
G<N (173)
A=12..G, ¢ = constant
X, <<1

Certainly the route to Eq. (173) is simpler than that
followed in the development of Eq. (164); however,
the preferred approach might still be considered to be
a matter of choice.

6.4 Diffusion through stagnant species

The case of binary transport of species A through a
stagnant species B has been treated in terms of the
classic Stefan diffusion tube (Whitaker, 2009b, Sec.
2.7). Moving beyond the binary system, we consider
the case in which species A is diffusing and all other
species are stagnant. Under these circumstances, the
Stefan-Maxwell equation for species A reduces to

B=N

X XgV
0=-vx, - 3 “Ae¥a (174)
) Dre

B=A

and this can be arranged in the form

0=-cVx, — _B
=

AB
B=A

N, (175)

Use of the definition of the mixture diffusivity given
by Eq. (145) immediately leads to

N, =-C T, VX, (176)

Note that this result is not restricted to a dilute
solution; however, we have imposed the condition on
the velocities given by

Assumption: vy =v,=..=v, =0 177)
This assumption could be replaced with the
restriction

Restriction: vy << v,, Vo << Vv, , ...,V <<v, (178)

in which the use of the absolute values of the
velocities is understood. Here one should remember
that we are repeatedly relying on Birkhoff’s (1960)
plausible intuitive hypothesis that small causes give
rise to small effects. Use of Eq. (176) in Eq. (150)
leads to

aa% =V (T, VX, )+R, (179)

and we can assume that the total molar concentration
is constant to obtain

Cc = constant

V(9. Vc,)+R,, i 180
inVa)+ Ry {othercondltlons (180)

where the other conditions are those indicated by
Egs. (178). This result is identical to Eq. (152)
except for the fact that there is only a single
component that could satisfy this equation. As a
reminder of the difference between Eq. (180) and Eq.
(152) we summarize the conditions upon which it is
based

Restriction: v, << v, , Ve << V..,V << Vv, (181)

Restriction: X, Ve << Ve, (182)
Comparing these two restrictions with Eqgs. (153)
indicates that Egs. (152) and (180) describe rather
different physical phenomena even though the two
equations are identical. In reality, it seems unlikely
that a process restricted by Eq. (181) could involve
significant homogeneous reaction, thus a more
realistic version of Eq. (180) would require that we
set R equal to zero. Nevertheless, the fact that Eq.
(152) and Eq. (180) are identical in form suggests
that we must be very careful to understand the
precise meaning of the special forms of Eq. (68).

7. General solution for N-component systems:
Constant total molar concentration

From the analysis in previous sections, it seems clear
that the most efficient route to the determination of
the molar concentration is via the mixed-mode
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continuity equation described in Sec. 4. This is
especially true for the case in which we develop an
exact solution of the Stefan-Maxwell equations. In
this section we consider the case of constant total
molar concentration and in the next section we
examine the case of constant total mass density. The
completely general case for which neither o nor c is

constant remains as a challenge.

In this treatment we make use of Eq. (91) repeated
here as

oc,
—=+V-(c,v)=-V-J,+R,,
t (V) AT (183)

A=12.,N-1

along with the constraint on the mixed-mode
diffusive flux given by

A=N
> M, J,=0 (184)
A=1

For N-component systems, it is convenient to work
in terms of matrices, thus we define the following
column matrices that will be used in subsequent
paragraphs.

[ Ca i [ VCA i
cg veg
Cc Vee
-] | o= | e,
[ CN-1 | | VeN-1 |
i VXa 1 [ Ja 1
VXB JB
Vxc Jc
[Vx] = [J] ,
LVXN-1] [IN-1]
_ R _
R
Rc
Rl =] ~
R (185)

Use of the first, fourth and fifth of these matrices
allows us to express Eq. (183) as

8[0]

" V-([c]v)=-V-[J]+[R]  (186)

and our single objective at this point is to develop a
useful representation for [J]. A similar approach

using v* and J, with A=12,...,N-1 is given by
Bird et al. (2002, Sec. 22.9). In addition, Quintard et
al. (2006) have studied the formulation and the
numerical solution for this problem using both the
molar forms, v* and J, , and the mass forms, v and

Ja-
We begin our analysis of the diffusive flux
with the Stefan-Maxwell equations given by Eq.

(166), and we make use of the mixture diffusivity
defined by Eq. (145) to obtain

e °' (187)
A=12..N-1

We want to use Eq. (184) to eliminate J, and it will
be convenient to express that constraint on the
mixed-mode diffusive fluxes in the alternate form
given by

>

=N
I, (M, /M (188)
A=1
At this point we extract J,, from the sum in Eq.
(187) in order to obtain

B=N-1 ¢y v
I =—CD VX + X, Y T Xy
61 T Dn (189)
A=12..,N-1

and from Eqg. (188) we have the following
representation for J

JN:_=_JB(MB/MN) (190)

In order to use this result with Eq. (189), we need to
condition the sum with the constraint indicated by
B = A and this leads to

B=

=z

-1

I, =-

g

JB(MB/MN)_JA(MA/MN) (191)

>

#

W w

Use of this result in Eq. (189) provides the following
form of the Stefan-Maxell equations

M % B My % %
Jo| Tx, At xS | =i =g,
My D M % % (192)

=—C%.,VX,,A=12,..,N-1

This can be expressed in compact form according to
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JA I DAmVXA
Js Dg, VXg
J D, Vx
[H]| °¢ |==¢c| ™ ° (193)
_JN—l_ _DN—lmVXN—l_

inwhich [H] isan (N —1)x(N —1) square matrix

[ HAA HAB HAN—il
H BA H BB HBN—l
H
[H]=| e (194)
_HN—lA " ot HN—lN—l a
having the elements defined by
(7
HAA =1+ Xa M ,
My T (1952)
A=12.,N-1
Hue = Xa P '
M N(/AN g//;s (195b)

AB=12.,N-1, A=B

We assume that the inverse of [H] exists in order to

express the column matrix of the mixed-mode
diffusive flux vectors in the form

3, DoV

JB zQ‘BmVXB

J 4| D, VX

¢ |l==¢c[H]'] T F (196)
_JN—l_ _Q;V—lmVXN—l_

The column matrix on the right hand side of this
result can be expressed as

Q&mVXA
:@émVXB
ngVXC
D 1 VX
pm (197)
Ym0 0 .... 0 VX,
0 %, 0 ... © VXg
= 0 o0 %, .... O VX¢
0 0 0 D am || VX

so that the matrix representation for the mixed-mode
diffusive flux becomes

J
JA 7. 0 0 0 VX,
JB 0 %, 0 ... O VXg
¢ :_(;[H]71 0 0 %, .. O VXc
0 0 0 ¢« Dy || VX4
_JNfl_

The diffusivity matrix is now defined by

Ym0 0 0
0 %, 0 ... 0
[D]1=[H]*| O 0 %, ... O (199)
0 0 0 o 90

and this allows us to express Eq. (198) as

J, VX,
Jy VX,
J VX
¢ l=-c¢[D]] °° (200)
_JN—l_ _VXN—I_

with the compact form given by
[J]=- c[D][Vx] (201)

This represents the N-component analog of Fick’s
Law given by Eq. (135) that we recall here as

Fick’s Law: J, = —c[(M s /M )@ABJVXA (202)

Use of Eq. (201) in Eq. (186) leads to

0
%+ V-([c]v) = V-(c[D][vx]) +[R] (203)

Once again we may be faced with the difficult task
of determining the total molar concentration on the
basis of Eqg. (93), and to avoid this problem we
restrict Eq. (203) to the case of constant total molar
concentration. This leads to

A9 (1) - v-(01[ve))+ [R]
(204)
{ c = constant

N —component system

Here it is important to remember that [D] depends
explicitly on the mole fractions, as indicated by the
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definitions given in Eg. 195 and implicitly as
indicated by the definition of the mixture diffusivity
given by Eq. (145). This means that a trial-and-error
numerical solution will be necessary in which the
assumed values used for the mole fractions are
upgraded after each iteration. The solution for [c]

will provide values of c,,c; ...,cy, and the
concentration c, can be determined by the first of
Egs. (71). Similarly, the solution for [R] will
provide values of R,,R; ...,R,_, and the reaction

rate R, can be determined by Eq. (69). In the case

of complex Kinetics, the column matrix of reaction
rates will need to be expressed as

[R] = [7(caiChrenCy)] (205)

and the trial-and-error procedure will be more
complex.

8. General solution for N-component systems:
Constant total mass density

In addition to the N-component form of the species
continuity equation based on the assumption of a
constant total molar concentration, it would be
useful to develop the analogous form for constant
total density. Our starting point for this analysis is
Eq. (203) and the analysis requires that we express

[Vx] in terms of the gradient of the mass fractions,

Vw,, Va,, etc. We begin the analysis with Eq.
(105) repeated here as

xA=Mﬂa)A, A=12,..N (206)

A

in which the mean molecular mass can be expressed
as in terms of the mass fractions in order to obtain
(see Eg. C11 in the Appendix C)

— O Y D (207)
MB MC MN

We can use Eq. (206) to express the gradient of the
mole fraction as

VM
VX, =

a)A+£Va)A, A=12,..N (208)

A A

while the gradient of the mean molecular mass is
given by

VM =- M? (209)

g1 Mg

Use of Eq. (209) in Eq. (208) leads to

(210)

At this point we can make use of the fact that the
sum of the mass fractions is equal to one so that the
gradients are related by

Voy=—(Vo, + Vo, + Va, +....+ Vo) (211)

This allows us to eliminate Vo, from Eq. (210) and
express that result in the form

M BNAM M
VX, =—| Vo, - — —— Va, |,
A MA{ A A;(MB MNj B} (212)
A=12.N-1

Here we need to condition the sum with the
constraint indicated by B = A and this leads to

v, = 1, M vy,
M, My M,

(213)
B=N-1 \ Vi

o] L AT
i \My Mo

which can be expressed as a matrix equation given
by

VXA WAA WAB WAC - WAN -1 \ a)A
VXB WBA WBB WBN -1 \ a)B
VX We, Vay

VXN -1 _WN -1A WN -1B

Wy JLV oy |
(214)

Here the elements of this (N-1)x(N-1) square
matrix are defined as

w, M MM M
MM, APM, M, M, )T (2158)
A=12,.,N-1
Woo—w, M (MM
BOTAML M, M, ) (215b)

AB=12,..,N-1, A+B

At this point we recall Eq. (200) and make use of Eq.
(214) to obtain
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I, Vo,
Jg Vo,
J Vo
¢ |=-c[DIW] " (216)
_JNfl_ _va)Nfl_

in which the square matrix [W ] is defined explicitly

by
[ WAA WAB WAC WAN -1 1
WBA WBB WBN -1
W,
wl=l (217)
_WN -1A WN -1B WN -IN-1 |

Use of the third of Egs. (104) leads to the total mass
density as a multiplier and Eq. (216) takes the form

J, Vo,
Jg Vo,
J - \Y%
¢ |=—pMOIW] | (218)
_JN—l_ _va)N—l_

We are now in a position to impose the condition
that the total mass density is a constant in order to

express the mixed-mode fluxes in the form

I, Voa
Jg Vs
J - \Y
¢ |=—moiw] |,
. (219)
[ I ] R
p = constant

At this point we make use of the first of Egs. (104) to
express the column matrix of the gradients of the

species densities as

[ Vo, ] [M, 0 O 0 Ve,

Vo, 0 My O 0 Ve,

Vo _ 0 0 M. Ve, (220)
|Vona] L O 0 My [ Ve,

Substitution of this result into Eg. (219) leads

to

www.amidiq.org

[ J, ] (M, 0 0 .. o0 | Ve,
J, 0 M, 0 .. 0 | Vg
J — 0 0 M Ve

[} — _M —l[D] [W] C C
| T | | O 0 M. || Veus
(221)

in which it is understood that the total mass density

is assumed to be constant. We can represent this

result in compact form

[J]=-[D][Vc] (222)
in which the new diffusivity matrix is given by
(M,/M 0 0 0
0 M,/M 0 0
0 0 M./M
[0]-~[o1W] o/
| 0 0 My, /M |
(223)

Use of Eq. (222) in Eq. (186) yields

olc

%+V-([c]v)=V~([]D)][VC]) + [R]

(224)

p = constant
N —component system

In the trial-and-error solution of this transport
equation, values of the mole fractions will be
required as in the solution of Eq. (204); however, in
this case it is the total mass density, p, that is a
specified constant and not the total molar
concentration, ¢. This requires that we first determine
py andthen c, according to

A=N-1

=p- Z CAMy . ¢y =py /My

A=1

o (225)

The mole fractions required for the evaluation of
[D] would then be determined by

B=N
Xa=Ca/ D Cq
B=1

while the mass fractions required for the evaluation
of [W] would be calculated according to

(226)

B=N
oy = M,/ D cM, (227)
B=1

The result for constant total density given by Eq.
(224), along with that for constant total molar
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concentration given by Eq. (204), should prove to be
useful for a wide range of mass transfer problems,
provided that the Stefan-Maxwell equations are an
acceptable representation for the diffusive fluxes. A
discussion of the conditions for which the total molar
concentration and total mass density may be treated
as constants is given in Appendix E.

9. Conclusions

In this study we have examined the derivation of the
Stefan-Maxwell equations and we have explored the
structure of these equations in terms of the mass
diffusive flux, the molar diffusive flux, and the
mixed-mode diffusive flux. Several classic special
cases have been examined and the assumptions,
restrictions and constraints have been identified
whenever possible. A general method of solution of
the Stefan-Maxwell equations has been presented in
terms of the mixed-mode diffusive flux.

Nomenclature

o, (t)  surface area of a species A material

volume, m?

b, body force per unit mass exerted on
species A, N/kg

b body force per unit mass exerted on the
mixture, N/kg

Cy molar concentration of species A,
moles/m3

c total molar concentration, moles/m?

d, driving force for diffusion of species A in
an ideal solution, m™'

Do Tin, binary diffusion coefficient for

species A and B, m?/s

D mixture diffusivity for species A, m?/s

[D] diffusivity matrix used with constant total
molar concentration, m?/s

[D] diffusivity matrix used with constant total
mass density, m/s

R thermal diffusion coefficient for species
A, kg/m?’s

G number of molecular species that are
dilute

g gravitational body force per unit mass,
N/kg

in Pal,, mass diffusive flux of species A,
kg/ m%s

J, c,u,, molar diffusive flux of species A,
moles/ m%s

Ja cau,, mixed-mode diffusive flux of
species A, moles/ m’s

M, molecular mass of species A, g/mole

M mean molecular mass of a mixture,
g/mole

N total number of molecular species

N, ¢,V » molar flux of species A, mole/m’s
n unit normal vector
P, force per unit volume exerted by species
B on species A, N/m?
A=N
p > pa . total pressure, N/m?
A=1
Pa partial pressure of species A, N/m?

net mass rate of production of species A
owing to homogeneous reactions, kg/m>s

R, net molar rate of production of species A
owing to homogeneous reactions,
moles/m®s
R gas constant, J/mol K
t time, s
Eam) stress vector for species A, N/m?
T, stress tensor for species A, N/m?
U total internal energy in a volume V, J
u, v, — v, mass diffusion velocity, m/s
u, v, —v', molar diffusion velocity, m/s
v, velocity of species A, m/s
A=N
v Z o,V , , mass average velocity, m/s
A=1
A=N

v Z X,V » molar average velocity, m/s
A=1

Vi velocity associated with the net rate of
production of species A momentum
owing to chemical reaction, m/s

VAL volume of a species A body, m?

X c, / ¢, mole fraction of species A

Greek Letters

Pa mass density of species A, kg/m®

P total mass density, kg/m®

u viscosity, N/m?s

T viscous stress tensor, N/m?

T, viscous stress tensor for species A, N/m?
ToN pa ! p, mass fraction of species A
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Appendix A: Chemical Reaction and Linear
Momentum

The rate of change of linear momentum of species A
owing to chemical reaction, r, v}, can be caused
either by the increase of species A (production) or by

the decrease of species A (consumption). If species A
is consumed by chemical reaction, it seems plausible
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Fig. Al. Reaction of species B to form species A

that the rate of change of linear momentum is given
by r,v,. Here we need to note that the molecular
velocity (Hirschfelder et al., 1954, page 453) of
species A is much larger than the continuum velocity,
v, ; however, the average velocity associated with
the consumption of species A should be adequately
represented by v, . If species A is produced by a
chemical reaction, the rate of change of linear
momentum depends on the velocities of the species
that react to form species A.

The simple reaction illustrated in Fig. Al can
be described as 2B — A, and we assume that the
loss of momentum by species B is equal to the gain
of momentum of species A. We express this idea as
[see Eq. (21)]

vy + v, =0 (A1)
—
loss gain

and note that conservation of mass [see Eq. 2]
requires

+r, =0 (A2)
On the basis of the argument given above, we
assume that

Vg =Vg (A3)

and Eq. (Al) takes the form

rLvg + r,v, =0 (A4)
—
loss gain

When Eqg. (A2) is used with this result we find that
v/, is given by

VA=V (A5)

and the rate of change of linear momentum of
species A can be expressed as

~
@

Fig. A2. Reaction of B and C to produce A and D

rate of change of
linear momentum ¢ =r, v, =1, v, + 1, (vy —v,) (A6)
of species A

The species velocities can be expressed in terms of
the mass average velocity and the diffusion velocity
to obtain

V,=V+u,, Vg =V+ug (A7)

and these results can be used in Eg. (A6) so that the
rate of change of momentum of species A takes the
form

rate of change of
linear momentum ¢ =r, v, +1, (ug —u,) (A8)
of species A

This leads to the estimate

rate of change of
linear momentum t =r, v, +O(r,u,) (A9)
of species A

suggested by Whitaker (1986, Egs. 1-19 and 1-55).

If we consider the slightly more complex
reaction illustrated in Fig. A2, the concepts
illustrated in Egs. (A2) and (A4) take the form

rB + rc + rA + I'D
—— ==
loss gain  gain

=0 (A10)

lLVg + LV, + LV, + vy, =0 (All)
BB cc A" DD

loss gain gain

In this case constructing a value for v, is not as
simple as the result illustrated by Eq. (A5). In terms

of molar rates of reaction, we have
g = MBRB’ g = MBRB'

(A12)
I, = MgRg, I3 = MgRy

in which M, represents the molecular mass of
species B and R; represents the molar rate of
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reaction for species B. In terms of molecular masses
and molar rates of reaction, we can express Eq.
(All) as

MRy vy + MR, v, + MR, Vv,
A ATA

loss gain

(A13)
+ M R, v, =0
N
gain
and Eq.(A10) can be replaced by
Re=R., R.=-R,, R, =Ry

Use of this constraint on the molar rates of reaction
in Eq. (A13) leads to

Mgyvg+M. v, =M, Vv, +M vy (Al4)
We now express the species velocities in terms of the
mass average velocity and the diffusion velocities in
order to obtain

Va=V+u, V= V+u,

(A15)
Vo =V + U
Use of these relations in Eq. (A14) provides
Mg ug + M u, +(Mg +M)v=M, (v -v,) (AL6)

+MD(VB—VD)+MAHA+MDUD+(MA+MD)V
that can be simplified to

MA(V’;—VA)+MD(VE —VD)

=(Mguz;+M u. )—(M,u, +M_u,)
Provided that the molecular masses are all the same
order of magnitude, this result suggests that the
difference, v, —v,, is on the order of the diffusion
velocities. Given the general constraint on the
diffusion velocities [see Eq. (14)], the result given by
Eq. (A17) suggests that

Vi=V,+0(u,) (A18)

which is equivalent to Eq. (A9).

The two cases represented in Figs. Al and A2
are especially simple; however, most chemical

reactions are likely to be binary in nature, thus Eq.
(A18) represents a plausible estimate of the velocity

*
A\

(A17)

Appendix B: Thermodynamic pressure

The decomposition given by Eq. (42) indicates that
T, is represented in terms of the partial pressure,
p,, and the viscous stress tensor, t,. The partial
pressure of species A can be defined by (Whitaker,
1989, Chapter 10)

Pa :pi(aeA/apA) (B1)

S, g1 G 1ereene

in which e, is the internal energy of species A per
unit mass of species A, and p, is the mass density of

species A. We defined the total pressure in terms of
the partial pressures according to

A=N
p= Z Pa (B2)
A-1

However, the total pressure, p, can also be expressed
as

p=p*(ce/op),, . (B3)
in which e is the total internal energy defined by

A=N
e=>Y w,e, (B4)
A-1

In this appendix we wish to show that there is no
conflict between Egs. (B1), (B2) and (B3), and this
requires that we demonstrate the following:

N oe oe
I N ®)
A=l PAJs po i pr P Js, pg.pe v pa

In order to illustrate how the thermodynamic
definition of the partial pressure is related to the
thermodynamic definition of the total pressure, we
need the following theorem:
=N oA OA
Theorem: Pr—2=p— (B6)
é Yon Ton
Here A, is a partial mass quantity such as the
species internal energy represented in Eq. (Bl),
while A is a total mass quantity defined by

A=N
A= oA, (B7)
A=1

In Eg. (B6) we have used 7 to represent some
thermodynamic  state variable such as the
temperature, the total mass density, etc.
We begin this proof with some variable Q
that can be represented as
PQ= P Qu +ps Qs +..4 0, Q  (BB)
or in a manner identical to Eq. (B7)
Q=w,Q,+w; Qy +...+ 0, Q (B9)
Here the mass fractions are defined by the second of
Egs. (11) and they are constrained by
Oy + 05 +..+wy =1 (B10)
Because of this constraint all the mass fractions are
not independent and the functional representation for
Q is given by
Q=0(p,T,0,, @, ....,0,) (B11)
If we differentiate © with respect to @, we can
hold all the mass fractions constant except one. For
convenience we choose this one to be @, and write
(Slattery, 1999, page 447)
(0Q/0m,) =0,-Q, (Bl2)

P, T, o5 (B=AN) -

This allows us to express Qp as
Q, =(0Q/0w,) +Q, (B13)

P T, wg(B=AN)

and Eq. (B8) can be used to obtain
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A=N A=N aQ
PRA=D Py Q=D pa +pQy
A=l A=L 66()/_\ 2.7, wg (B=AN)

(B14)
Subsequently we will use this result in the form

N oQ
ZPA[ ] =pQ - pQ, (B15)
p. T, wg(BzAN)

A=1 0w,

At this point we consider the special case in which

Q:a—A, QA:aAA,A:LZ,...,N (B16)
on on

Use of this result in Eq. (B15) yields

5 0(oA/on oA OA

D P 2(anjon) =p—-p—+ (BL7)

A=1 aa)A 677 877

».T,08(B=AN)
Here we write Eq. (B13) for the variables A, and A
to obtain

A,=(0A/0w,) Ay (B18)
Use of this result in the left hand side of the theorem
we wish to prove leads to

& an, & [ofea oA,
- < +—N
épA on ZpA|:677[ ]p,T,a)E(B:AN) :l

P, T, wg(B=AN

el 0w, on

(B19)
Changing the order of differentiation in the first term
and carrying out the summation with the second term
provides

AN oA, AN 9(0A/on oA

IR i) ”

A=1 677 A=l aa)A T, o5 (B#AN) 877
(B20)

Substitution of this result in Eq. (B17) provides the
desired proof given by
&N oA OA
Theorem: Pp—2=p— (B21)
é Yo o
At this point we want to verify the relations
contained in Eg. (B5), and we begin with the

following representation of the partial pressure
Pa= pi (aeA/apA)slvapc vvvvvvvv (822)
which can be summed over all species to obtain

Our objective now is to represent the right hand side
of this result in terms of the total thermal energy. We
begin with Eq. (B21)in the form

A=N
S, (2&} _ ,{aa_e) (B24)
A=l P S.P8PC s PN P SiPBPC - PN

and multiply by the total density to obtain

N oe oe
D PP (a—J = p’ [a—j (B25)
A=l P S,PB 1 C 1+ PN P $1PB 1 C 1+ PN

The functional dependence of e, can be represented

in terms of the mass fractions or the species densities
as indicated by

e, =eA(p, S, a)A,wB,....,a)Nfl) (B26a)

€x=€,(S, P Por o py)  (B26D)
In addition, the density of species A, for example,
can be expressed as

pA:p_(pB+pC+"“+ pN) (B27)

or in the functional form given by
Pa=Pa(P: Poyos Py ) (B28)
On the basis of this representation for p, we can
express Eq. (B26b) as a composite function given by
eA:eA[S' palp, pBl""pN)lpB"“"pNJ (B29)

Directing our attention to the derivative on the left
hand side of Eq. (B24) we note that it can be
expressed as (Stein and Barcellos, 1992, page 149)

). 3 2
op S P8y ey PN apA 8. PBy e Py op P81 PC s PN

(B30)
Since the mass density for species A can be
expressed as

Pa= 0, p (B31)
we have

(0PalOP), . ., =@ (B32)
and Eq. (B30) takes the form
(6EA /ap)sr Py PC - PN = a)A (aeA /apA )Sv PB 1P PN (833)

Use of this relation in Eq. (B25) leads to

N oe oe
P [a—j =p [a—j (B34)
A=l ,0 S, Py PCr - PN p S, P8 PC 1+ PN

and on the basis of the definition of the partial
pressure, this takes the form
A=N ae
D Pa=p’ [—j (B35)
A=l a S, P PC 1+ PN

We now define the total pressure according to [see
Eq. (B2)]

A=N
p= Z Pa (836)
A=1
which leads to
p=p* (@) (B37)
ap SiPBPC s PN

At this point we have proved Eg. (B5).

To complete this discussion we need to
indicate how this representation of the total pressure
is related to the classic description for equilibrium
systems. If we represent the volume per unit mass as

v=Yp (B38)
we see that Eq. (B37) leads to the following
expression for the total pressure

p= —(@j (B39)

In terms of thermo-statics (Truesdell, 1971), we

consider a system at equilibrium having a mass m

with the volume and internal energy given by
V=mv, U=me (B40)
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Under these circumstances the equilibrium pressure
takes the classic form (Gibbs, 1928, page 33) given
by

p=—(dU/oV), (B41)

Appendix C. Useful algebraic relations

We begin by noting that the total mass density and
total molar concentration for a N-component system
are given by

P=Ppt Pt Pctet Py (Cla)
C=C,+Cy +Cc +...+Cy (C1b)
The mass fractions and mole fractions take the form
Pa Ca
I T (€2)
A=12..,N
and the constraints on these quantities are given by
lefa)Azl, Bz:NXA:l (C3)
B=1 B=1
The mean molecular mass is defined by
M = XM, + XMy + XM +...+ X M (C4)

and multiplication by the total molar concentration
gives
cM=c,M, +Cc,M, +C. Mg +...+¢ M, (C5)
The species molar concentration and the species
mass density are related by
pA:CAMA’ CA:pA/MA (C6)
and the use of the first of these in Eq. (C5) provides
CM=p, +pg+pc+..+py (C7)
Use of Eq. (Cla) allows us to express this result as
cM=p (C8)
We can use Eqg. (C1b) and the second of Egs. (C6) to
obtain

c=PryPo P L Pn (C9)
MA MB MC MN
Dividing both sides by the total mass density
provides the following result

and on the basis of Eq. (C8) we have
é:ﬂ Do Do 4O (C11)
M M, M, M. M,
For a N-component system, the mole fraction of
species A is given by
G _GM _(p/MIM _ M

=—aw, ,

Ao p P M, * (C12)
A=12..,N

and in compact form we express this result as

X, =£0)A: A=12.,N (C13)

M A
For use in the Stefan-Maxwell equations we need the
product form of this result that is given by

MZ

XaXg ORI AB =12.,N (Cl4)

B M A M B
In order to develop a relation between the gradient of
the mole fraction, Vx,, and the gradient of the mass
fraction, Vw,, for a binary system we begin with
Eqg. (C13) and take the gradient to obtain
VXAzma)A+£Va)A, A=12.,N (C15)
M A M A

In terms of binary systems, the gradient of the mean
molecular mass takes the form

VM =(Vx, )M, + (VX3 )M,

=(M,—M;)Vx,

and use of this result in the binary form of Eq. (C15)
provides

(C16)

@ M
VX, =—2(M, -M_)VX, +—Vao, ,
A MA( A= Ma) VX, M, (C17)

A=12
Collecting terms leads to

o M
VXA|:1—M—A(MA—MB)1|=M—AV0)A,

; (C18)
A=12
which can be simplified to the form
VX, (M, + o,Mg)=M Vo, , (C19)
A=12
At this point we use Eg. (C13) to obtain
VX, XeMeM,  X:MMs |_ Va,,
M M (C20)
A=12
which can be simplified to (Bird, 2009)
\/ 2
VX = Ve, A=12 (C21)

A B
This result is Eg. (107) in the section on binary
systems.

Appendix D: Assumptions, restrictions and
constraints

Throughout this paper we have imposed various
assumptions associated with the analysis. The most
frequent of these concerned the total mass density
and the total molar concentration, and an example
concerning the total mass density is given in Eq.
(63). In engineering analysis there is a logical
sequence of events that begins with a simplifying
assumption, or an idea, and leads to a theory with an
identifiable domain of validity. In this section we
wish to illustrate this sequence of events with an
example from fluid mechanics where the path from
an assumption to a constraint is well known
(Whitaker, 1988)

A large class of fluid mechanical problems
can be described by the continuity equation for
incompressible flow
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V.v=0 (D1)
and the Navier-Stokes equations

p[%+v-ij:—Vp+pg+yV2V (D2)

The development of these two equations requires
assumptions that may be supported by restrictions or
reinforced by constraints; however, we will simply
accept Eq. (D1) and Eq. (D2) without inquiring into
their limitations.

As an illustration of the development of
assumptions, restrictions and constraints, we
consider Eq. (D2) and assume that the convective
inertial effects are negligible in order to obtain

p%:—Vp+pg+,uV2v (D3)
This linear form can be easily solved for a wide
variety of initial and boundary conditions, whereas
the general form given by Eq. (D2) represents a
difficult problem. It is important to clearly identify
the assumption that leads one from Eq. (D2) to Eq.
(D3), and one way to express this is
Assumption: pv-Vv=0 (D4)
Equation (D4) indicates exactly what is being done
in a mathematical sense, but it is not necessarily a
precise description of the physics of any particular
fluid mechanical process. Strictly speaking, Eq. (D4)
can only be true when the velocity vector is a
constant and this is not likely to occur in any real
flow.

From a physical point of view, the
simplification of Eq. (D2) to Eq. (D3) is based on the
idea that the convective inertial term, pv-Vv, is
negligible. This immediately raises the question:
“Negligible relative to what?” and one answer is that
the convective inertial term is negligible relative to
the viscous term. This represents the second level in
our process of simplification, and in this case we
express our simplification as a restriction.
Restriction: pv-Vv << uViv (D5)
In writing inequalities of this type, it is understood
that the comparison is being made between the
absolute values of the vectors under consideration. If
we apply the idea represented by Eq. (D5) to the
Navier-Stokes equations, we again obtain Eq. (D3)
provided we are willing to assume that small causes
give rise to small effects (Birkhoff, 1960). Equation
(D5) has a definite advantage over Eq. (D4) since it
indicates what is required in a physical sense;
however, neither Eq. (D4) nor Eq. (D5) indicate
when Eq. (D3) will be valid in terms of parameters
that are known a priori. In order to determine
precisely under what circumstances Eq. (D3) will be
valid, one must be able to estimate the magnitude of
the terms in Eq. (D2).

We begin our analysis of the inertial term by
expressing the velocity in terms of a unit vector and
the magnitude according to

vV=VA (D6)

Here A is a unit tangent vector to a streamline and v
is the magnitude defined by

V=4/V-V (D7)
The representation given by Eq. (D6) allows us to
express the inertial term as

pv-Vv=VA-Vv (D8)

in which A -V is known as the directional derivative
(Stein and Barcellos, 1992, Sec. 14.7). The
directional derivative can be expressed as

AV = L (D9)

ds

where S represents the arc length measured along a
streamline. Use of Eq. (D9) in Eq. (D8) provides the
following exact representation of the inertial term

pv-Vv = pvE (D10)
ds

While this form is not often used in the development
of solutions of the Navier-Stokes equations, it is
extremely useful in the development of an estimate
of the magnitude of the inertial term. To do so, we
need only think about how the velocity vector
changes as we proceed along a streamline and this
suggests that we define an inertial length, L , by the

estimate

dv

—=0(v/L D11

a5 -°/L) (O11)
One should think of the inertial length as being the
distance, along a streamline, over which significant
changes in the velocity take place. A little thought

will indicate that the estimate of L requires an

intuitive knowledge of the flow field, and this
intuitive knowledge is based primarily on a
knowledge of the no-slip condition. Use of Eq. (D11)
allows us to estimate the inertial term as

d ,
PV-VV =pvd—:=0(pv /L) (D12

and we need only develop an estimate of the viscous
term in Eq. (D5) to complete our analysis.

We begin developing an estimate of the
magnitude of the viscous term by expanding the
Laplacian in rectangular, Cartesian coordinates to
obtain
.  0°v 0*v v
Vv=s——t+_—+—>

ox® 0y° o0z
In terms of order of magnitude estimates, we express
this result as

Vz Ale AVly AVlz
v=0| —X [+0| —X |+0| —=* (D14)
L H L

Here Av|x represents the change of v that takes place

(D13)

over the distance L,, and the meaning of Av|y and

Av|Z is analogous for the y and z-directions. We now
represent the largest of the three terms on the right
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hand side of Eqg. as Av/LjI so that our estimate of
the viscous term becomes

Viv=0(Av/L,) (D15)
We refer to L, as the viscous length and note that in

general it is quite different than the inertial length.
Once again we note that knowledge of the no-slip
condition is crucial for the determination of a reliable
estimate of the viscous length. For a large class of
problems, Av in Eg. (D15) is on the order of the
velocity itself because of the no-slip condition, i.e.,

Av ~ v, because of the no-slip condition (D16)

and this allows us to estimate the viscous term in Eq.
(D5) as
wV'v=0(uv/L,) (D17)

Use of this result, along with the estimate of the
inertial term, in the restriction given by Eq. (D5)
leads to the inequality

LAYl (D18)
L L

It is traditional to define the Reynolds number in
terms of the viscous length

_ pvL,

U
and this allows us to express Eg. (D18) as a
constraint that takes the form

Constraint: Re(L,/L,)<<1 (D20)

We refer to this as a constraint with the thought that
the Reynolds number, the viscous length, and the
inertial length will all be known, at least in an
approximate sense. This means that the domain of
validity of Eq. (D3) is established by Eq. (D20), and
this is something that is not done by either the
assumption given by Eq. (D4) or the restriction
given by Eq. (D5).

Re

(D19)

Appendix E: Constraints for constant total molar
concentration

Throughout this paper we have imposed the
condition of constant total molar concentration and
constant total mass density in order to obtain
transport equations that could be used to determine
the species molar concentration or the species mass
density. In general the assumption of constant total
molar concentration is associated with gas-phase
diffusion processes, and the assumption of constant
total mass density is associated with liquid-phase
diffusion processes. In this appendix we will treat
only the first of these two cases with the thought that
the second case can be explored on the basis of our
analysis of the first.

The assumption that the total molar
concentration is constant can be expressed as
Assumption: € = constant (E1)
however, nothing is constant and what is meant by
Eq. (E1) is that the variations of the total molar

concentration are small enough so that they can be
neglected. The general application of the Stefan-
Maxwell equations requires that we replace cVx,

with Vc, and this leads to the restriction given by
Restriction: X,VC << CVX, (E2)

If small causes give rise to small effects (Birkhoff,
1960), the condition represented by Eq. (E2) will
lead to the multi-component transport equation given
by Eq. (204) and the binary form given by Eq. (124).

In order to identify the conditions under
which Eq. (E2) is valid, we need to express this
inequality in terms of parameters that are known a
priori and to achieve this we follow the approach
outlined in Appendix D. While that approach has led
to an established success, the problem under
consideration in this appendix is more difficult and
further study is in order.

As an example we consider the process
illustrated in Fig. E1 in which the y-phase represents
a flowing fluid. The x—y interface might be an
interface at which adsorption or desorption occurs, or
an interface at which a catalytic reaction occurs, or
an interface at which mass transfer between the «-
phase and the y-phase occurs. This could occur
because the k-phase is a porous catalyst phase or
because of a difference in the chemical potential of
species A between the k-phase and the y-phase. The
direction of mean flow is indicated by the unit vector
2., and the direction orthogonal to the mean flow is
indicated by the unit vector n.

Directing our attention to Eq. (E2) we express
that result in the form
Restriction: c Ve << x,.'Vx, (E3)
And note that we need to consider the gradients in
the direction of flow (the A -direction indicated in
Fig. 1E) and the direction orthogonal to the direction
of flow (the m-direction indicated in Fig. 1E). We
represent the two inequalities associated with Eq.
(E3) as
Restriction: ¢ A-Vc << X' h-VX, (Eda)
Restriction:  ¢™m-Vc << x,'n- VX, (E4b)
and note that the second of these is likely to be the
most important restriction. We limit our analysis to
ideal gases so that the equation of state is given by

pVvV =nRT, ideal gas (E5)
and the total molar concentration can be expressed as
c=p/RT (E6)

For an ideal gas, the left hand side of Eq. (E3) takes
the form

c'Ve=p'Vp-T'VT (E7)
and this yields two restrictions associated with Eq.
(E3) that are given by
Restrictions:
PrVPp<<X1VX,, TVT << x'VX, (E8)
In this appendix we will consider only the first of
these restrictions and that requires an analysis of the
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Fig. E1. Mass transfer in a two-phase system

Navier-Stokes equations. The second restriction
requires an analysis of the thermal energy equation,
and in many cases it would be appropriate to include
the rate of chemical reaction and the heat of reaction.
We begin our analysis of the first of Egs. (E8)
by considering the direction of the mean flow
illustrated in Fig. E1. This leads to a restriction given
by
Restriction:  p™A-Vp << X' h-VX, (E9)
and we can make use of Eq. (D2) to obtain

s 1 A(v-1)
AVp==0| p——=2
o Evp=d [p v }

+%0[V~V(V.X)]+%0[pg~ﬂ (E10)

+%O|:/JV2(V~K)]

The magnitude of the velocity in the direction of the
mean flow is given by

V=v-A (E11)
and this allows us to express Eq. (E10) in the form
ptA-Vp= iO(p%j+ lO(pV-Vv)
P P (E12)

+%o(pg.X)+%o(wzv)

Following the development given in Appendix D, we
estimate the inertial and viscous terms according to
pv-W=0(pv'/L,), uV'v=0(uAv/L,)(EL3)
and we estimate the local acceleration as

ov PV

—=0|— El4

P [ v j (E14)

in which t* is a characteristic process time. Use of
Egs. (E13) and (E14) in Eqg. (E12) leads to the

following estimate for the pressure gradient in the
direction of the mean flow:

[ Y] =£0(pv/t*)+£0(pvz/Lp)
1p . P (E15)
+Fo(pgi)+50(yv/Li)

Here we have assumed that the no-slip condition is
valid at the y—« interface, thus Av can be replaced
with v.

The magnitude of the pressure can be
estimated as

p=0(pC?) (E16)

where C is the speed of sound (Whitaker, 1981, Sec.
10.3). Use of this result in Eq. (E15) leads to

2
ptA-Vp=0 M* +o| M
Ct L,

2 2
o/ M1 oML
Fr Lﬂ Re Lﬂ

in which the following dimensionless quantities have
been used:
M = Mach number = v/C

Fr = Froude number =v’/g-oL,  (E18)
Re = Reynolds number = pvL, /u
Directing our attention to the right hand side of Eq.
(E9) we estimate the gradient as
L-VX, =0(AX, /L) (E19)
in which L, represents the convective length scale

for the transport of species A. Use of this result along
with Eq. (E17) in Eq. (E9) leads to the constraint
given by

2 2
O[i}(,('\"_}o('\ﬂ_i]
Ct L, FrL,
2
0) M_i << 0O %i
Re L, X, L,

Since Ax,/x, will be less than or on the order of

one, a conservative representation of this constraint
is given by

2 2
o ML) o WL | of M7
Ct L, Fri,

For Mach numbers small compared to one, it will be
difficult to violate this constraint; however, one must
remember that this constraint is based on Eq. (E9)
and we also need to consider the restriction given by
Restriction:  p™n-Vp << x,'n-Vx, ((E22))
To explore this restriction, we express Eq. (E10) in
the form

(E17)

(E20)
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. 2(v-n)
1v_o
pinvp-Lo| 2T

+%o[pv-V(v.ﬁ)} (E23)

+ %O[pg~ﬁ]+%0[yvz(vi)]
For the special case in which n is replaced by the
unit normal vector to a streamline, the inertial term
takes the form (Whitaker, Sec.7.4, 1968)

pv-V(v-)=pv-Vyv-n=pVic  (E24)
in which « is the curvature (Stein & Barcellos, Sec.
13.4, 1992). Here it is important to keep in mind that
n is a constant unit vector as indicated in Fig. E1
while the unit normal to a streamline will be a
function of position. Equation (E24) helps us to
estimate the inertial term in Eq. (E23) as

%O[pv V(v- n)]z;pv (E25)

in which i represents some appropriate mean
curvature associated with the system illustrated in
Fig. E1. About the other terms in Eq. (E23) we can
only say that they will be smaller than the analogous
terms in Eqg. (E10). This means that we can over

estimate p™n-Vp as

- 1 o(v-L)
'h.vp = O ~0| pv
PRV = o {p pn } > [PV ic]

1
F [pg n] + —O[yV (v- l)}
(E26)
and follow our earlier development to obtain

e M _
p 1n-Vp=0[Ct*j+o[sz]

2 2
e
Fr L, Re L,
In this case the Froude number is defined by
Fr = Froude number = v’/g-nL,  (E28)

Directing our attention to the right hand side of Eq.
(E22) we estimate the gradient as

n-Vx, =0(Ax,/L,) ((E29))
in which L, represents the diffusive length scale for

the transport of species A. Use of this result along
with Eq. (E27) in Eq. (E22) leads to the constraint

o[th j+O[M2 —]+o('\£—zl_ij

(E30)

Since Ax,/x, will be less than or on the order of
one, a conservative representation of this constraint

is given by

O[M";/J o[M’L, K]+0[M L(/]
Ct FrL

v

2
+ ML, <<1
Re L,

Once again, it will be difficult to violate this
constraint whenever the Mach number is small
compared to one.

At this point we have developed a constraint
associated with the restriction given by the first of
Egs. (E8); however, the second restriction given by
Restriction: THVT << X,'VX, (E32)

still needs to be explored. This will require an
analysis of the thermal energy equation and for most
realistic systems the thermal energy equation will be
coupled to a mass transfer and reaction process. In
addition, the constraints associated with non-ideal
gases need to be developed along with the
constraints associated with the assumption for liquid
phase mass transfer processes given by

Assumption: p = constant (E33)

The constraints associated with this assumption will
be much more difficult to obtain than those given by
Egs. (E21) and (E31); however, the developments
presented in this appendix should provide guidance
for the attack on Eq. (E33).

(E31)

www.amidiq.org 243



