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Abstract

An interface may be a region in which concepts are connected, or it may be a region in which physical processes
are connected. In both cases, conditions change abruptly. In this study, the interface between physics and chemical
engineering is examined from the point of view of the laws of mechanics, and the details of this particular interface
are clarified from the perspective of Euler (1703-1783) and Cauchy (1789-1857). Understanding how different
perspectives of the laws of mechanics are connected allows us to proceed with confidence from physics to the
traditional studies of fluid mechanics that one encounters in chemical engineering. Furthermore, it allows us to
proceed with confidence to the study of multi-component transport phenomena. Here we encounter the concept of
the species velocity that plays a crucial role in chemical engineering. To understand the importance of the species
velocity, one asks the question: What happens if all species velocities are equal? The answer to this question is:
Nothing! There is no purification, no mixing, no interfacial mass transfer, no adsorption/desorption, no
homogeneous reaction, and no heterogeneous reaction. To illustrate how the concepts of mechanics provide a
connection between various elements of chemical engineering, we examine the species mass jump condition as a
focal point for mass transfer, heat transfer, thermodynamics, adsorption/desorption, and heterogeneous chemical
reaction.

Keywords: Newton, Euler, Cauchy, multicomponent systems, phase interfaces.

Resumen

Una interface puede ser una region en la cual se conectan conceptos, o puede ser una region en la cual se conectan
procesos fisicos. En ambos casos, las condiciones cambian abruptamente. En este estudio, la interface entre la fisica
y la ingenieria quimica es examinada desde el punto de vista de las leyes de la mecanica, y los detalles de esta
interface particular son aclarados desde la perspectiva de Euler (1703-1783) y Cauchy (1789-1857). El entender
como diferentes perspectivas de las leyes de la mecénica estan conectadas nos permite proceder con confianza
desde la fisica hasta los estudios tradicionales de mecéanica de fluidos que uno encuentra en ingenieria quimica.
Mas aun, nos permite proceder con certidumbre en el estudio de fendmenos de transporte multi-componentes. Aqui
encontramos el concepto de velocidad de especie que juega un papel crucial en ingenieria quimica. Para entender la
importancia de la velocidad de especies, se hace la pregunta: ;Qué sucede si las velocidades de todas las especies
son iguales? La respuesta a esta pregunta es: jNada! No hay purificacion, mezclado, transferencia de masa
interfacial, ni adsorcion/desorcion, ni reaccion homogénea, y no hay reaccion heterogénea. Para ilustrar como los
conceptos de la mecanica proporcionan una conexion entre los diferentes elementos de la ingenieria quimica,
examinamos la condicion de salto de especies de masa como un punto focal para la transferencia de masa,
transferencia de calor, termodindmica, adsorcion/desorcion, y reaccion quimica heterogénea.

Palabras clave: Newton, Euler, Cauchy, sistemas multicomponentes, interfaces entre fases.
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1. Physics and Chemical Engineering

Most chemical engineering programs are preceded
by a series of courses in physics, mathematics, and
chemistry. In addition, courses in other disciplines
such as biology, ecology, economics, etc., are often
taken simultaneously. Knowledge of these other
disciplines can often be crucial to chemical
engineering students who are notorious for their
breadth of professional activities. In each of these
other disciplines, one encounters a certain culture
that generally creates an abrupt change with the
culture one finds in chemical engineering. This
cultural change represents an interface that can be
difficult to negotiate for a chemical engineering
student. To illustrate this type of abrupt change
between one discipline and another, we consider the
discipline of physics and within that discipline we
consider the subject of mechanics.

1.1 Newton’s laws

In order to develop the governing equations for the
fluid velocity, and more importantly for the species
velocity, we need a clear understanding of the laws
of physics that govern that motion. Courses in
physics present Newton’s laws and use them to
determine the motion of mass points and rigid
bodies. Truesdell (1968, page 88) tells us that
Newton listed his three laws of motion as:

Newton (1642-1727)

I. Every body continues in its state of rest, or of
uniform motion straight ahead, unless it be
compelled to change that state by forces
impressed upon it.

II. The change of motion is proportional to the
motive force impressed, and it takes place
along the right line in which the force is
impressed.

III. To an action there is always a contrary and
equal reaction; or, the mutual actions of two
bodies upon each other are always directed to
contrary parts.

Truesdell (1968, page 167) also tells us that Newton
never presented these ideas in the form of equations
and because of this there are differences to be found
in the literature. Here we choose “motion” to mean
mass times velocity, mv, and we choose “motive
force” to be represented by f. This leads to the first
law given by

Newton [: mv =constant, f=0 (1)
while the second law takes the form
Newton II: %(m v)=f )

Here the “change of motion™ has been interpreted as
the time rate of change of the momentum, mv. Often
a precise definition of v is not given in the discussion
of Newton’s first and second laws, and we will
return to this matter in subsequent paragraphs.
Clearly Newton’s first law is a special case of

Newton’s second law, and one can wonder why it
was stated as an independent law. Physicists
(Feyman et al., 1963, Vol I, page 9-1; Huggins,
1968, page 109; Greider, 1973, page 38) have
pointed out that Eq. (1) was deduced earlier by
Galileo (1564-1642), thus Newton was motivated to
elevate this result to the position of a “law”.
Newton’s third law for two interacting bodies
can be expressed as
Newton III: f,=-1, 3)

in which f}, is the force that body #2 exerts on body
#1, and f,; is the force that body #1 exerts on body
#2. The most dramatic success of these laws was
their use, along with the law of gravitational
attraction, to justify Kepler’s three empirical laws of
planetary motion. In a careful statement of Newton’s
laws, one often notes that they are valid in an inertial
frame. This naturally leads to the question: What is
an inertial frame? The answer is that an inertial
frame is a frame in which Newton’s laws are valid!
We can only escape from this circular argument by
noting that an inertial frame must be determined by
experiment (Hurley and Garrod, 1978, page 49). In
Newton’s case, the verification of Kepler’s laws
indicated that the sun and the “fixed stars”
represented a good approximation of an inertial
frame for the study of planetary motion.

If we think about applying Eq. (2) to the
motion of a body, we must wonder what is meant by
the velocity v, since all parts of a body need not have
the same velocity. Physicists often deal with this
problem by arguing that Eq. (2) applies to “mass
points” that are small enough so that their motion can
be described by a single velocity. The statement that
something is “small” always leads to the question:
Small relative to what? Feynman et al. (1963, Vol I,
page 18-1) touch on this problem by considering the
cloud of N mass points illustrated in Fig. 1. One can
apply Newton’s second law to the i ™ mass point in
the cloud in order to obtain

d =N
E(mivi):bi +j2::,fij 4)

Here we have used b; to represent the force
exerted on the i ™ mass point by the large, spherical
body located outside the cloud in Fig. 1. The force
exerted by the j ™ mass point in the cloud on the i ™
mass point in the cloud is represented by fj, and this
force obeys Newton’s third law as indicated by
£, =- fji Q)

i
To obtain Newton’s second law for the cloud of mass
points, we sum Eq. (4) over all the mass points in the
cloud (Marion, 1970, page 68)

d i=N i=N i=N j=N
=1 j

f, (6)

]

— > myv,=)> b, +
dt i=1 ; i j=

and make use of Eq. (5) to simplify this result to the
form

— > myv, :Zbi 7
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Fig. 1. Cloud of mass points interacting with a body.

The mass of the cloud is given by
i=N
m=>m ®)
i=1
while the center of mass, rcy, and the velocity of the

center of mass, vcy, are defined by
1 i=N i=N

1
Iy =— ) Mo, Ve =— ) ML v, )
CM m& itio CM m; ivi

The second of these definitions allows us to express
Eq. (7) in the form

d i=N
a(mvCM):Zbi (10)

We now identify the total external force acting on the
cloud of mass points as

f:i:szi (11)

so that Newton’s second law for a cloud of mass
points is given by

Newton II: %(m Veum ) =f 12)
Feynman et al.(1963, Vol I, page 19-2) describe this
situation by saying “Newton’s law has the peculiar
property that if it is right on a certain scale [the mass
point scale], then it will be right on a larger scale
[the cloud scale].” While this is a satisfying result, it
does not explain “how small” a particle must be in
order that Eq. (2) can be applied with confidence.
For rigid bodies the velocity v at any point r is given
by (Landau and Lifshitz, 1960)

v(r)=v,, +ox(r-r,) (13)
in which o represents the angular velocity. Here we
see that a single velocity can be used to describe the
motion of a rigid body whenever ® x (r — rey) is
small compared to vcy,, thus the constraint associated
with the “mass point” assumption is given by
Constraint: ox(r-r, )<V, (14)
For deformable bodies, one must replace Eq. (13)
with the more general representation

v(ir)=v,, + "j (Vv)T -dy (15)

N=rem

and then examine the velocity gradient tensor in
terms of it symmetric and skew-symmetric parts
(Aris, 1962, page 89). In this case, the restriction
(Whitaker, 1988) is obviously given by

n=r

[ (v) -dn<v, (16)
N=rem
however, the associated constraint would require a
detailed analysis of the fluid deformation. If one
accepts Eq. (12) as Newton’s second law instead of
Eq. (2), no constraint need be imposed.

Restriction:

Momentum balance

While Egs. (1) through (12) represent a reasonable
beginning for the study of mechanics, Newton’s
three laws are difficult to apply to the motion of a
fluid. Because of this, chemical engineering texts
often present a completely new statement of the laws
of mechanics. This new statement is known as the
macroscopic momentum balance which can be
expressed as

rate of accumulation flux of linear
of linear momentum ; + { momentum leaving

in the control volume the control volume

flux of linear forces acting
— 4 momentum entering ; = on the

the control volume control volume

While this result is relatively easy to apply, it
represents a leap of faith (Whitaker, 1999) from what
students have learned in their study of physics. In the
absence of an explanation, the momentum balance
becomes a recipe to be used under conditions
identified in a text book as opposed to a tool to be
used as one wishes. The work of Euler (1703-1783)
and Cauchy (1789-1857) provides a connection
between Newton’s laws and the macroscopic
momentum balance, and we outline this connection
in the following paragraphs.

1.2 Euler’s laws

While Newton’s laws seem to be suitable for the
study of mass points and clouds of mass points, they
cannot be applied directly to the motion of a moving,
deforming, continuous medium (Serrin, 1959, page
134). Regardless of what words are used to describe
the laws of mechanics used by chemical engineers,
those laws are indeed the laws proposed by Euler
(1707-1783) that can be stated as

Euler (1707-1783)

I. The time rate of change of the momentum of a
body equals the force acting on the body.

II. The time rate of change of the angular
momentum of a body equals the torque acting
on the body, where both the torque and the
moment are taken with respect to the same
fixed point.

4 www.amidiq.org



S. Whitaker / Revista Mexicana de Ingenieria Quimica Vol. 8, No. 1 (2009) 1-33
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b

Fig. 2. Moving, deforming body.

In addition to these two laws, we accept the Euler cut
principle (Truesdell, 1968, page 193) stated as:

Not only do the laws of continuum

physics apply to distinct bodies but

they also apply to any arbitrary body

that one might imagine as being cut

out of a distinct body.

Associated with this concept is the idea that the
velocity at a point can be thought of as the average
velocity of the molecules in the neighborhood of that
point. If the length scale associated with that
neighborhood is small compared to the characteristic
length of the system under consideration, the
continuum model should provide an accurate
representation. If the characteristic length of the
system under consideration is not small compared to
the average distance between molecules, one must
deal with the mechanics of molecular motion
(Tolman, 1938).

In order to understand how Euler’s laws are
related to Newton’s laws, we need to put Euler’s
laws in precise mathematical form. This will allow
us to demonstrate that they contain Newton’s laws
provided that we restrict ourselves to non-relativistic
phenomena. Since Euler’s two laws and the Euler cut
principle form the basis for virtually all of
engineering mechanics, it is important that we
understand these concepts.

We begin our study of Euler’s laws by
expressing them in terms of the following two
equations

time rate of change P i
of the linear momentum b= © Cc AcHng on (18)
the body
of a body

of the angular

time rate of change {
momentum of a body

torgue acting on
1
the body } (19)

to which we add the non-relativistic concept that the
mass of a body is a constant.
{ time rate of change } _0

of the mass of a body (20)

In Fig. 2 we have illustrated an arbitrary body that
one can image as being cut out of a distinct body.
The volume of this moving, deforming body is
designated as ¥, (t) , and the differential volume and

surface elements are identified as dV and dA
respectively. The vector force per unit surface area
is designated by the stress vector, t, which
represents a contact force that the surroundings exert
on the body. The vector force per unit mass is
designated by b and it represents a force acting at a
distance that is exerted on the body. For many
processes, the force per unit mass is equal to the
gravitational acceleration, i.e., b = g; however, this
simplification is only valid when the electrodynamic
and electromagnetic forces are negligible.

We begin our analysis of Eq. (18) by
constructing a mathematical representation of the
momentum of the body. The mass, dm, contained in
the differential volume element shown in Fig. 2 is
given by

dm=pdV 21)
and the momentum (mass times velocity) per unit
volume takes the form

vdm=pvdV (22)
The total momentum of the body is the volume
integral of this quantity, and we express this as

momentum
{Ofthe body} - TJ‘(UPVdV (23)

which allows us to express the first term in Eq. (18)
in the form

q time rate of change

— J pvdV =1 of the linear momentum ; (24)
dt 2 of a body

To complete our mathematical representation of Eq.
(18), we need to express the force acting on the body
in terms of the body force and the surface force. The
first of these is given by

body force acting |
{ on the body } = Jyjmpb v @5

while the second takes the form
{surface force acting} _ I

on the body ) A (26)

Q)

(1)

Use of Egs. (24), (25) and (26) in the word equation
given by Eq. (18) leads to a precise mathematical

statement of Euler’s first law.

EulerI: qa J pvdV = I pbdV + I t., dA (27)
dt, T (1) (1)

Following this same type of analysis, one can show

that the word equation given by Eq. (19) takes the

form'

1 Here all torques are the moments of forces, thus body torques

have been ignored (Serrin, 1959, Dahler and Scriven, 1961; Aris,
1962).
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Euler IT: i _[
T (1) T (1) (1)
(28)
To be precise about Euler’s two laws, we need to say
that the velocity, v, is determined relative to an
inertial frame and that the position vector r is
determined relative to some fixed point in an inertial
frame. As mentioned earlier in connection with
Newton’s laws, one identifies an inertial frame by
experiment. In addition to the precise statement of
Euler’s two laws of mechanics, we need a similar
statement for the principle of conservation of mass.
Integration of Eq. (21) over the volume occupied by
a body yields the mass of the body, and this result
can be used with Eq. (20) to obtain
Mass: a4 [ pdv=0 (29)
dt
It is important to remember that these three
axiomatic statements for linear momentum, angular
momentum and mass apply to any arbitrary body that
one imagines as being cut out of a distinct body.

1.3 Euler’s laws and Newton’s laws

Given Euler’s two laws of mechanics and the Euler
cut principle, we need to know how they are related
to Newton’s three laws. To explore this problem, we
consider a body of mass m illustrated in Fig. 3, and
we locate the center of mass of that body in terms of
the position vector defined by

oM L J. pradVv (30)
T )

This definition of the center of mass for a body is
analogous to the definition for a cloud of mass points
given earlier by the first of Eqgs. (9). For a sphere of
uniform density, the center of mass would be located
at the geometrical center of the sphere; however, the
definition of rcy is completely general and Eq. (30)
is applicable to any arbitrary body that is cut out of a
distinct body. The velocity of the center of mass is
defined in a similar manner

1
Vem =— .[ pvdVv 31
T (®)
and one can use a special form of the Reynolds
transport theorem (Whitaker, 1981, page 94) to prove
that
drey,
V., =—M 32
o= (32)
The definition given by Eq. (31) can be used to
express the first term in Eq. (27) as

d d
— vdV =—(mv 33
at %J;I)p dt ( CM) (33)
As a matter of convenience, we designate the total
force acting on the body by
f= [ pbdv+ [ ¢,dA (34)

T (1) I (1)

rxpvdV = J. rxpbdV + J. rxt, dA

X

Fig. 3. Motion of a body.

so that Eq. (27) can be represented in the simplified
form given by

Euler Result I: %(m Vou ) =f (3%)
This is identical in form to Newton’s second law for
the cloud of mass points illustrated in Fig. 1, and if
the body is “small enough” so that vcy can be
replaced by v we see that Eq. (35) is identical in
form to Eq. (2) for a mass point. In addition, one can
certainly imagine that the force in Eq. (2) includes
both a body force and a surface force and this would
be consistent with the representation given by Eq.
(34). However, if one accepts this point of view, one
must be careful to indicate that Newton’s third law
given by Eq. (3) only applies to body forces. The
similarity in form (not content) of Euler’s first law
and Newton’s second law has encouraged many to
think that Newton’s laws and Euler’s first law are
essentially equivalent. This is a line of thought that
should be discouraged since Newton’s laws cannot
be applied directly to the motion of a moving,
deforming, continuous medium (Serrin, 1959, page
134). Thus fluid motion and the deformation of
solids are processes that are beyond the reach of
Newton’s laws as given by Egs. (1) through (3).

Body forces

In order to clarify the different perspectives of
physicists and chemical engineers, we apply Euler’s
first and second laws to the special case of three
interacting bodies in a vacuum’. This situation is
illustrated in Fig. 4 where we have shown two
distinct small bodies, three Eulerian cuts and a
distinct large body. For Cut I and Cut I, Euler’s first
law yields

2. In this section we have omitted surface forces in order to

simplify the analysis. In Appendix A we show that the inclusion of
surface forces does not alter the result obtained here.
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Cut I1I

Fig. 4. Three-body process.

CutI:i J. p,v,dVv = j p,b,dV + I p,b,;dVv
dt 5% 7 70

(36)
d
CutII:E J p,v,dV = J p,b, dV + J p, b, dV

Zu(t) 7 (1) Tu(t)
(37)
The application of Cut III treats the two small bodies
as a single body for which the time rate of change of
momentum is balanced by the applied external force.
This leads to

Cut I : a4 J p, v, dV + J. p, v, dV
dt 70 Tu(0)
= J p,b,;dV + J. p, b,, dV
T1(t) Tu(t)
Substitution of Egs. (36) and (37) into Eq. (38)
provides

(38)

J' p by, dV + J- p, by dV =0 (39)
7i(t) 7 ()
and it will be convenient to identify these two body
forces as
f, = _[ pb,dvV, f, = I p, b, dV  (40)

71(t) Tu(®)

At this point we repeat Eq. (35) as

Euler Result I: %(m Vou ) =f 41
and note that Egs. (39) and (40) lead to
Euler Result II: f,=- 1, 42)

Equation (41) provides Newton’s second law for the
cloud of mass points illustrated in Fig. 3, and when
applied to a mass point it yields Newton’s second
law as given by Eq. (2). Equation (42), which was
derived by applying Euler’s first law to the process
illustrated in Fig. 4, is identical to Newton’s third
law. Here we see that Euler’s first law can be used to
obtain all three of Newton’s laws; however, the
inverse is not true, i.e., one cannot use Newton’s
laws for mass points or for a cloud of mass points in
order to obtain Euler’s first law. Euler’s laws are
based on the Euler cut principle and the assumption
that the material under consideration can be treated
as a continuum. These constructs are not to be found

in Newton’s treatment of mechanics (Truesdell,
1968)°.

Given that Euler’s first law contains all that is
available in Newton’s three laws, one must wonder
why physicists do not move forward one century and
accept Euler’s first law as their axiom for mechanics.
The answer would appear to be associated with
Euler’s second law that we examine in the following
paragraphs.

Central forces

In the absence of any surface forces, we can express
Euler’s second law as

— j rxpvdV = j rxpbdVv
dt 7 T ()

and for the three Eulerian cuts illustrated in Fig. 4 we
have

(43)

d
Cutl:a I rxp v, dV = I r,xp, b, dV

71t 71t

(44)
+ I r,xp, b, dV
71t
d
Cutll:— I r,xp,v,dV = f r,xp,b, dV
dt T (t) T (t)
(45)
+ j I.2 x p2 b23 dV
T (t)
d
Cut III: — I r,xp, v, dv + I r,xp,v,dV
t K] Tu(® (46)

= J. r,xpb,;dV + f r,xp, b, dV
71 Tu()
Use of Egs. (44) and (45) in Eq. (46) leads to a
constraint on the body forces given by
_[ r,xp,b,dV + J' r,xp,b, dV=0 (47)

Ti(®) T (0

3, See “A Program toward the Rediscovering the Rational

Mechanics of the Age of Reason”, Chapter 2 in Essays of the
History of Mechanics, C. Truesdell, Springer-Verlag New York
Inc., 1968
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The position vectors can be expressed in terms of the
position vectors locating the centers of mass
according to
L= (rCM )1 + f‘1 » = (rCM )2 + l~'z (48)

and this leads to

(rCM)l X J‘ pl b12 dV + J. f‘l Xpl b12 dV

7i(0) 7i(0)
~ (49)
+(rCM)2>< J' p, b, dV + J' r,xp,b, dvV=0
T (1) T (t)

Next we make use of Egs. (39) and (40) to express
this result in the form

|:(rCM )~ (rem )zj|><f12

(50)

+ I r,xpb,dV+ I r,xp,b, dV =0
71 7u ()

In Appendix B we demonstrate that the last term in

this result can be neglected when the following
constraint is satisfied:

o) + O(r,)

O|:(rCM )] - (rCM )2]

Under these circumstances, Euler’s second law leads
to

Constraint:

<1 (628

|:(rCM)1 - (rCM)Z]Xflz =0 (52)

There are three ways in which this result can be
satisfied, and we list them as

Lo (rew), —(rey), =0(53)
2. f,=0 (54)
3. (*ew ), —(rey ), and f,, are parallel (55)

Since the first two possibilities can not be generally
true, we conclude that the interaction force between
two bodies must be parallel to the vector

(rem ), = (rew ), - We express this result as

Euler Result I11: f,, =Q,, [(rCM ), = (Yem )J (56)

in which Q;, is some scalar parameter of the
interaction force law. Equation (56) indicates that the
interaction force between two bodies subject to the
constraint given by Eq. (51) must act along the line
of centers, i.e., it is a central force.

In this analysis we have shown that Euler’s
first law contains Newton’s three laws, while Euler’s
second law provides what is known as the central
force law for the case of mass-point mechanics.
Given the power and economy of Euler’s laws, one
can wonder why Newton’s three laws are not
discarded in favor of Euler’s two laws. The answer
lies in the fact that the central force law, represented
by Eq. (56), is a non-relativistic phenomenon. Since
forces are propagated at the speed of light, the force
that one body exerts on another cannot lie along the
line of centers when the relative velocity between the
two bodies approaches the speed of light. Because of
this, physicists prefer to view mechanical phenomena
in terms of Newton’s laws and make use of the

central force law as a special case which can be
discarded when relativistic  phenomena are
encountered. Engineers, on the other hand, are rarely
involved in relativistic phenomena and what is a
special case for the physicist is the general case for
the engineer. Because of this, engineers uniformly
formulate their mechanical problems in terms of
Euler’s two laws and the Euler cut principle.

1.4 Euler’s laws and Cauchy’s equations

At this point we have traveled part of the route that
takes us across the interface between Newton’s laws
of motion and the macroscopic momentum balance.
To complete our journey and connect physics and
chemical engineering (in the mechanical sense) we
need to show how Euler’s laws can be used to derive
the macroscopic momentum balance given by Eq.
7).

In order to derive the macroscopic momentum
balance on the basis of Euler’s laws, we must first
deal with the stress vector that appears in Egs. (27)
and (28). This leads us to the work of Cauchy (1789-
1857). Cauchy’s lemma indicates that the stress
vector acting on one side of a surface is equal and
opposite to the stress vector on the other side of the
surface leading to (see Appendix C)

Cauchy’s lemma:  t.,, =—t_, (57)

This represents the first step in the development of
Cauchy’s fundamental theorem given by (see

Appendix D)
Cauchy’s fundamental theorem:
t,=n-T (58)
in which the stress tensor, T, is defined by
T=(ity)+(ity)+(kty) (59)

Here we encounter dyadic multiplication of vectors
which is different from the more well known “dot”
product or ‘“cross” product between two vectors.
When this result is used in Eq. (27) we obtain

Euler I: 3 j pvdV = j pbdV + j n- T dA (60)
dt, Tn(®) (1)

and application of the appropriate form of the

divergence theorem leads to

Euler I: & [ pvav = [ pbav+ [ V-Tdv (61)
dt 7 Tn(®) T (®)

In order to extract a governing differential equation

from this result, we need to make use of the

Reynolds transport theorem to express the left hand

side of Eq. (61) as

Ll J. pvdV = I i(pv)dV+ J. pvv-ndA (62)
dt,’ Ot (1)

While Osborne Reynolds (1842-1912) is often

credited with the development of this theorem for

interchanging  differentiation and integration,

Truesdell (1954, page 53) suggests that “the

transport theorem is really an alternative formulation
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arbitrary
volume, (1)

n (w-n)

fluid motion

Fig. 5. Arbitrary, moving control volume

of Euler’s expansion formula.” From a different
perspective, one can argue that Eq. (62) is nothing
more than a three-dimensional version of the Leibniz
(1646-1716) rule for differentiating an integral.

The use of Eq. (62) with Eq. (61) leads to the
following form of Euler’s first law

I 2(pv)anL J. pvv-ndA
P (1) ot oo (t)
m m (63)
= [ (pb+V-T)av
()
and the use of the divergence theorem with the
second term provides

I [i(pv)+v-(pvv)—pb—V-T}dV:O (64)
Rl

If we assume that the integrand is continuous and
note that the limits of integration are arbitrary, we
conclude that the integrand is zero. This leads to
what is sometimes referred to as Cauchy’s first
equation (Truesdell, 1968, page 186).

Cauchy I: %(pv)+V~(pvv)zpb+V'T (65)

Cauchy’s second equation is based on Euler’s second
law given by Eq. (28) and Cauchy’s fundamental
theorem given by Eq. (58). The development is
complex; however, the final result is quite simple
and is given by
Cauchy II: T=T" (66)
in which T" represents the transpose of T. In terms
of the components of the stress tensor, Eq. (66) takes
the form

Ti=T;, i,j =123 (67)
In addition to Cauchy’s two equations that one can
derive from Euler’s two laws of mechanics, we need
to add the continuity equation that can be derived
from Eq. (29). Use of the Reynolds transport
theorem with Eq. (29) provides
Mass:
d op
— [ pav = j Pav + j pv-ndA=0  (68)
dt, 7w Ot <l ()

Application of the divergence theorem leads to

| {%w.(pv)}dv =0 (69)
T (1)

and from this we extract the well known continuity
equation given by

Continuity equation:

@+V-(pv):0 (70)
ot

Often the continuity equation is used to modify the
left hand side of Eq. (65) to obtain

pgt—v+pv-VV:pb+V-T 71)

and the material derivative can be used to produce
the more compact form given by

Dv
—=pb+V-T 72
P =P (72)

When applying this result to fluids, one often follows
the work of Stokes (1819-1903) in which the stress
tensor is decomposed according to (Aris, 1962, page
106)

T=-pl+7 (73)
This leads to the viscous stress equations of motion
pg—::pb—Vpﬁ-Vﬂr (74)

For linear, isotropic fluids the viscous stress tensor
takes the form

T:M(VV+VVT)+(K—§M)V-V (75)

in which p is the shear coefficient of viscosity and k
is the bulk coefficient of viscosity. When
compressible viscous effects can be ignored, and the
shear coefficient of viscosity can be treated as a
constant, substitution of Eq. (75) into Eq. (74) leads
to the well known Navier-Stokes equations.
p%:pb—Vp+quv (76)
Given Egs. (65), (66) and (70) we are ready to
complete the transition from Newton’s laws to the
macroscopic momentum balance indicated by Eq.

7).
1.5 Macroscopic momentum balance

In order to develop a completely general
macroscopic form of Eq. (65), we make use of an
arbitrary moving control volume designated by
9%, (t) in which the “a” stands for arbitrary. In Fig. 5
we have illustrated an arbitrary moving control
volume for which the speed of displacement of the
control surface is w-n. The general form of the
macroscopic momentum balance is derived by
integrating Eq. (65) over %, (t) to obtain

j {%(pv) + V-(pvv)}dv
Ta(®) (77)
= [ pbav+ [ v-Tav

T2 (0 72 (®
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control /

volume

Fig. 6. Control volume for the analysis of the plane
jet.

While this result indeed represents the macroscopic
momentum balance, only the body force term is
susceptible to macroscopic interpretation. In order to
transform the other terms so that they are also
susceptible to macroscopic interpretation, we first
use the divergence theorem to transform the volume

integrals of V~(pvv) and V-T to area integrals

leading to
I 2(pv)dV+ .[ pvv-ndA
2 (t) ot /(1)
a a (78)
= [ pbav+ [ t, dA
70 A1)

Here one can see that the first term is certainly not
susceptible to macroscopic interpretation; however,
use of the general transport theorem (Whitaker,
1981, page 88) provides

d

— j pvdV = Ii(pv)dv+ j pvw-ndA (79)
dt 2w Ot (1)

When this is used with Eq. (78) we obtain the
macroscopic momentum balance in the form

%jpvdv+ f pv(v—w)-ndA

Ta(t) o (1)

net flux of momentum
leaving the control volume

time rate of change
of momentum in the

control volume (80)
= [pbdv + [ t,dA

Ta(t) (1)

[N —

body force acting on the surface force acting on the
material in the control volume  material in the control volume

This is a precise representation of the result
suggested earlier by Eq. (17), and it is only useful for
solving macroscopic problems when the terms are
susceptible to macroscopic interpretation. One
classic example of a process that can be analyzed
successfully using Eq. (80) is illustrated in Fig. 6. In
this case, the x-component of the force exerted on the
plate can be obtained from Eq. (80) on the basis of a
few judicious assumptions. However, it is difficult to
create confidence in students by imposing
assumptions about kinematics and stress (Euler &
Cauchy) when the students have little or no
knowledge of these concepts. In many cases,
macroscopic balance analysis of flow problems

requires the use of the macroscopic mechanical
energy equation. This can only be derived starting
from Eq. (65), and one is again faced with the
necessity of following the path identified by Euler
and Cauchy.

1.6 Summary

In the previous paragraphs we have outlined a
connection between Newton’s laws and Euler’s laws
as they apply to both mass points and continuous
media. Students who travel this path can appreciate
the similarities between these two points of view and
they can appreciate the differences. They can derive
the macroscopic momentum balance and, with
practice, they can apply it with confidence. In
addition, they can derive and apply tools such as
Bernoulli’s equation and the mechanical energy
equation (Whitaker, 1981, page 221). A quick survey
of Egs. (18) through (80) indicates that a rigorous
derivation of the macroscopic momentum balance is
not an easy task, and one can certainly question
whether the rigorous approach is worth the effort.
The answer is YES for two reasons. First, if Eq. (80)
is presented as a recipe for solving problems,
students will only use it with confidence to solve
problems that have already been solved. Second,
chemical engineering students must deal with multi-
component systems in which one is confronted with
the species velocity and the species body (Truesdell,
1969, Lecture 5). Working with these quantities is
difficult if one does not have some experience with
the developments of Euler and Cauchy.

2. Multicomponent systems

In this section we provide a brief outline of the
axioms for the mass and momentum of
multicomponent systems, and we present several
important forms of the proved theorems associated
with these axioms. A key concept associated with the
continuum approach to multicomponent transport
phenomena is the species body. In Fig. 7 we have
illustrated a two-component system containing
species A and species B from which we have cut out
a species A body. At t = 0 the space occupied by the
species A body is also occupied by a species B body
having the same configuration. However, as time
evolves the two species separate since their velocities
are not equal.

For single component transport phenomena,
one considers a continuum whose motion is
described by

r=r(R;t) (81)
in which r represents the time-dependent position of
a material element whose reference position is R.

The velocity of any material element can be
expressed as
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Fig. 7. Motion of a species A body.

v=|dr| _br (82)
dt). Dt

in which Dr/Dt is the material derivative that

appears in Eq. (72). The motion of a species body is
described in an analogous manner, thus the motion of
a material element of species A is represented as

ra II'A(RA,t) (83)
and the velocity is given by
dr,
Vo= —— (84)
dt ),

Points within the species A body illustrated in Fig. 7
move with the velocity, va.

2.1 Conservation of mass

In terms of the concept of a species body, we state
the two axioms for the mass of multicomponent

systems as
Axiom I:
4 j p,dV = j rdv,A=12..N (85)
dt . .
Ta®) Ta(t)

>

=N
Axiom II: r,=0 (86)
A=
Here pa represents the mass density of species A
while rp represents the net mass rate of production
(per unit volume) of species A owing to chemical
reaction. In order to extract a governing differential
equation from Eq. (85), we make use of the Reynolds
transport theorem for the volume %, (t) to obtain

4 [ padv= | 9P gy 4 [ pava-mdA  (87)
dt 2 7w 0 EAQ)

and then apply the divergence theorem so that Eq.
(85) can be expressed as

%+V-(pAVA)—I’A:|dV =0,

ot (88)

Ta)
A=12,..,N

Here we note that the volume %,(t) is arbitrary in

the sense that the Euler cut principle suggests that

we can identify any region in space as the species

body. If we assume that the integrand in Eq. (88) is

continuous, the arbitrary nature of %, (t) leads us to

conclude that the integrand must be zero. Requiring
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that Eq. (88) be satisfied leads to the species
continuity equation and we repeat the constraint on
the reaction rates so that our point equations are
given by (Truesdell and Toupin, 1960, Sec. 159)

%"‘V'(QAVA):rAaAzL 2 » N (89)

A=N
r,=0 (90)
A=1
It is important to demonstrate how Egs. (89) and (90)
are related to earlier studies of single component
transport phenomena and the continuity equation. If
we sum Eq. (89) over all species and impose the
axiom given by Eq. (90) we obtain

6 A=N A=N
_ZPA"'V'ZPAVA:O o1
ot a5 A=l
We define the total mass density as
A=N
P=2.Pa (92)
A=l
and note that the mass fraction is given by
Wy = pA/p (93)

In terms of the total mass density Eq. (91) takes the
form

op A=N
4V pav,a=0 (94)
ot A=l

and use of the definition of the mass average velocity

A=N
v=> ®,v,,massaveragevelocity  (95)
A=1
leads us to

@+V-(pv):0 (96)

ot
This result has exactly the same form as the
continuity equation for single component systems;
however, one should think of it as having greater
physical content since the density and velocity are
related to the associated species quantities by Egs.
(92) and (95).

2.2 Molar forms

Often the molar form of Eq. (89) is preferred because
both reaction rates and phase equilibria are expressed
in molar quantities. We can divide Eq. (89) by the
molecular mass of species A and make use of the
definitions

Ca=pPa/Ma, Ry =1, /M, 97
in order to express Egs. (89) and (90) as

%w.(oAvA): RLA=12..N (98)

A=N
> M,R,=0 99)
A=l

While Eq. (90) will be of some use to us in our
analysis of both the mass and mechanics of
multicomponent systems, Eq. (99) will be of very
little use. In actual fact, the axiomatic form given by

Eq. (86) is less predominate among chemical
engineers and chemists than the following statement

atomic species are
neither created nor
destroyed by chemical
reactions

and we need to represent this concept in precise
mathematical form.

(100)

2.3 Stoichiometry

To be precise about the role of atomic species in
chemical reactions, we need to replace the word
statement given by Eq. (100) with a word equation
which we write as

total molar rate of production
of J -type atoms owing to =0, =12,...T
chemical reactions
(101)
From this we need to extract a mathematical

equation and in order to do this we define the
number N;a as (Amundson, 1966, page 51)

number of J -type

i ) J=12,..,T
N ja = 1 atoms associated with ¢,
. A=12..,N
molecular species A
(102)

We will refer to Nja as the chemical composition
indicator, and we can use this definition to express
the axiom represented by Eq. (101) as

A=N
AxiomIl: D N, R,=0,J =12,..T (103)
A=1
This represents a precise mathematical statement that
atomic species are neither created nor destroyed by
chemical reactions, and one can use this result to
prove Eq. (86) as a theorem. While the concept
expressed by Eq. (100) appears to be quite simple,
the application of Eq. (103) requires some thought
and the details of the application are given by Cerro
etal., (2009).

2.4 Laws of mechanics

It should be clear that Eqs. (98) and (103) are
essential elements of chemical engineering, since
they have direct application to the design of
separation processes and chemical reactors. Use of
Eq. (98) requires a knowledge of the species velocity
which, in turn, requires an understanding of the
mechanics of the species body illustrated in Fig. 7.
Our approach to the laws of mechanics for
multicomponent systems follows the original work
of Euler and Cauchy and is based on the perspective
of Truesdell (1969, Lecture 5). We begin with the
species A body illustrated in Fig. 7 and express the
balance of species A momentum as

12 www.amidiq.org



S. Whitaker / Revista Mexicana de Ingenieria Quimica Vol. 8, No. 1 (2009) 1-33

) d
Ax1omlza I PavadV = I pab,dV + I tom dA

Ta(t) Tat) T (t)

B=N
+ [ X Pedv+ [ ryv,dv,A=12,.,N
Ta(t) B=1 Tat)

(104)
The left hand side of this expression represents the
time rate of change of linear momentum of the
species A body and this is analogous to the left hand
side of Eq. (27). The first term on the right hand side
represents the body force acting on the species A
body. In many cases, the only body force is the
gravitational force and b, can be replaced by g. The
second term on the right hand side represents the
surface force acting on the surface of the species A
body. The body force and the surface force are the
only forces that appear in Euler’s first law, and it is
consistent with the work of Euler to refer to tan) as
the species A stress vector. Because other species
may occupy the space identified as %, (t), we need

to consider the forces that these other species exert
on species A. We use Ppg to represent the force per
unit volume that species B exerts on species A, and
this gives rise to the third term on the right hand side
of Eq. (104). We will refer to Pag as a diffusive force
since it should depend on the relative velocity
between species A and species B. This relative
velocity is illustrated by the motion depicted in Fig.
7 where species A and species B obviously have
different velocities.

Finally we need to consider the fact that the
momentum of the species A body may be increased
or decreased by the change in the mass of species A
owing to chemical reactions. We represent the
source (%) of species A momentum per unit volume
as rava and this leads to the last term on the right
hand side of Eq. (104). If species A is consumed by a
chemical reaction, it seems reasonable that the loss
of momentum per unit volume would be given by
rava; however, if species A is produced by the
decomposition of species B, the gain in momentum
per unit volume should be represented by ravs. A
precise description of the source of species A
momentum depends on the details of the chemical
reaction process; however, the difference between vu
and vg is on the order of the diffusion velocity, and in
subsequent paragraphs we will show that this
difference is, in general, unimportant in terms of the
contribution of rava to the species momentum
equation.

At this point one can repeat the development
of Cauchy’s lemma and Cauchy’s fundamental
theorem using Eq. (104) in order to express the
species A stress vector as

tymy =0T, (105)

Use of this result in Eq. (104) and applying the
divergence theorem leads to

%ijvAdvz [ pabuadv+ [ V-T,dv

Ta®) Tat) Tat)

B=N
+ _[ D PedV + J' r,v,dv
Ta(t) B=1 Ta()
(106)
With an appropriate interpretation of the
nomenclature, one finds that this result is identical to
the second of Egs. 5.10 of Truesdell (1969, page 85)
provided that one interprets Truesdell’s growth of
linear momentum as the last two terms in Eq. (106).
Truesdell and Toupin (1960, page 567) refer to T as
the partial stress while Truesdell (1969, page 82)
favors the word peculiar.
A variation of the Reynolds transport theorem
illustrated by Eq. (87) can be applied to express the
first term in Eq. (106) as

% j PV, adV = J. %(pAVA)dV+ J. PAVAV, -ndA
Talt) Ta(t) e (1)

(107)
Use of this result, along with the divergence
theorem, allows us to collect all the terms in Eq.
(106) under a single integral over Y5 (t), and from
that integral equation we can extract the following
point equation for the momentum of species A:

0
_(pAVA) + V'(pAVAVA) = paby + VT,
ot NI L8 — A
[ — convective body force surface
local acceleration acceleration force

B=N
+ D Py +  Lv, LA=1,2,..,N (108)
B=1 S

source of momentum
owing to reaction

diffusive
force
An appropriate interpretation of the nomenclature
used here will indicate that this result is identical to
Eq. A2 of Curtiss and Bird (1996) for the case in

which rp =0 provided that one takes into account

the different sign convention for the stress.

The second axiom for the species body
illustrated in Fig. 7 is the angular momentum
equation given by

AxiomH:i I rxp,v,dv = J rxp,b,dv

Tat) Ta(t)

B=N
+ [ rxtyg dA+ [ Y rxPgdv (109)

oy (1) Pa(t) B=1

+ [ rxrnv,dv,A=12, N
Ta(t)

This result is based on the idea that all torques are
the moments of forces and all angular momentum
results from the moment of linear momentum, a
concept in keeping with the perspective of Euler as
indicated by Egs. (27) and (28). Truesdell (1969,
page 84) presents a more general version of Axiom II
in which a growth of rotational momentum is
included. The analysis of Eq. (109) is rather long;
however, the final result is simply the symmetry of
the partial stress tensor as indicated by

www.amidiq.org 13



S. Whitaker / Revista Mexicana de Ingenieria Quimica Vol. 8, No. 1 (2009) 1-33

T, = T,, A=1,2,..,N (110)
In addition to Axioms I and II, we also impose the
following constraint on the diffusive force, Pg, that
appears in Eq. (104):

A=N B=N

D D P =0 (111)

A=1 B=l

This constraint is required in order that Cauchy’s
first equation (see Eq. 65) be valid for mixtures. A
little thought will indicate that Axiom III is easily
satisfied by the condition Pag = —Pgy which is
reminiscent of Newton’s third law of action and
reaction for mass points. However, a law for mass
points does not necessarily carry over to a law for
continua, thus Eq. (111) represents an appropriate
constraint on the diffusive forces.

Hirschfelder et al. (1954, page 497) point out
that “even in a collision which produces a chemical
reaction, mass, momentum and energy are
conserved” and the continuum version of this idea is
given by:

Axiom III:

A=N
Axiom IV: D rv,=0 (112)
A=1
Once again we should note that rava may not be a
precise representation of the momentum source (+)
during a chemical reaction; however, the error will
only be on the order of rh times the diffusion
velocity.

2.5 Total momentum equation

In order to compare the results given by Egs. (108)
and (110) with Cauchy’s equations, we first sum Eq.
(108) over all N species in order to develop the total
momentum equation. This is given by

o AN A=N
_ (pAVA)J"V' Z (pAVAVA)
ot =3 A=l

(113)
A=N A=N
= ZpAbA +V- ZTA
A=l A=1
in which Axioms III and IV have been used to
eliminate the sum of the last two terms in Eq. (108).

At this point we define the following total or mass
average quantities according to

p= Afj p,, total density (114)

op i:;)A/p, mass fraction (115)

v= A:zN ®,V ,,Mass average velocity (116)
-

b= ) o,b,, massaveragebody force (117)

A=1
so that Eq. (113) takes the form
a A=N A=N
—(pv)+V~Z:pAvAvA:pb+V-Z:TA (118)
8’[ A=1 A=1
In order to extract a simplified form of the

convective acceleration, we need to introduce the
important concept of a diffusion velocity. In the

chemical engineering literature, one finds references
to a molar diffusion velocity and a mass diffusion
velocity; however, it is only the latter that plays a
role in the mechanics of multicomponent systems.
We define the mass diffusion velocity according to
the decomposition given by
va=v+u,,A=1,2,..,N (119)

and one can easily show that the mass diffusion
velocities are constrained by

A=N
D pau,=0 (120)
A=1

The representation given by Eq. (119) can be used to
express the convective inertial term in Eq. (118) as

A=N A=N
szVAVA = szVA(V+uA) (121)
A=l A=l

and a little thought will indicate that this result takes
the form

A=N A=N
Z PaVaAVA =PVV T+ Z PaValla (122)
Al Al

With the aid of Eq. (119) one can express the last
term in this representation as

A=N A=N A=N
Z PaVaUp = Z pavu, + z pauu,  (123)
Al Al Al

and the constraint on the mass diffusion velocities
given by Eq. (120) leads to the simplification

A=N A=N
ZpAVAuA:szuAuA (124)
A=1 A=1
Use of this result in Eq. (122) leads to
A=N A=N
z PaVaVA =PVV+ z PaUAU, (125)
A=l A=l

and this allows us to write Eq. (118) as

a A=N
a(pv)+V-(pvv)+V- z PAULU,
A (126)

A=N

=pb+V->'T,

A=1
At this point it is convenient to define a total stress
tensor for multicomponent systems as

A=N
T= ZTA—pAuAuA (127)
A=1

in which the terms represented by pauaun are
referred to as the diffusive stresses. Use of this result
in Eq. (126) leads us back to Cauchy’s first equation
given by
%(pv)+V~(pvv):pb+V-T (128)
It is easy to see that one can use Eq. (110) along with
Eq. (127) to produce the symmetry condition given
earlier as Cauchy’s second equation.

Cauchy II: T=T" (129)
The result given by Eq. (127) is identical to Eqs. A6
and A7 of Curtiss and Bird (1996); and Eq. 215.1 of
Truesdell and Toupin (1960); however, different
choices have been made concerning the words used

Cauchy I:
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to describe T, and different choices have been made
concerning the sign convention for the stress.

2.6 Stefan-Maxwell’s equations

The importance of Eq. (108) is based on the fact that
we must determine the species velocity v, in order to
solve Eq. (98) and thus predict the species
concentration, Ca. The task of extracting a useful
relation for va from Eq. (108) is not as difficult as it
might appear, provided that we are willing to make a
few reasonable simplifications. We begin our
analysis of the species momentum equation by
making use of the following representation for the
SDECiES stress tensor

T,=-p,l+T,, viscous fluid (130)
which is the species analogy of Eq. (73). In this case,
pa is the partial pressure of species A and 14 is the
viscous stress tensor for species A. Use of Eq. (130)
allows us to write Eq. (108) as

0

E(pAvA) + V'(pAVAVA) =paby = VD,
(131)

B=N
+VoT, + Z P, + 1V,
B=1
In addition to the restrictions imposed by Eq. (130),
we now limit our analysis to ideal mixtures so that
the partial pressure can be written as
P, = X, P, ideal mixture (132)

in which X, is the mole fraction of species A and p is
the total pressure. Use of this representation for the
partial pressure allows us to arrange Eq. (131) in the
form

0
ot (pA A) + V'(pAVAVA)_ Pab,+ X, Vp-V-T,

(133)
—I, v, =—pVx, + ZPAB, =1,2,..,N

Our next step in the analysis of the species
momentum equation is the use of Maxwell’s
representation for the force Pag which we express as
(Chapman and Cowling, 1970, page 109)

P =P X0V “ V) ap_ja N (134
Q’AB
It should be intuitively appealing that the force
exerted by species B on species A should depend on
the velocity difference, vg — va. In addition, one can
develop arguments to show that the term pXaXs is
proportional to the frequency of collisions between A
and B, and the force exerted by B on A should
certainly be proportional to the frequency of
collisions between the two molecular species. It is
important to understand that Eq. (134) was
developed for dilute gases in which only binary
collisions need be considered, and that the details of
the collision process are accounted for in the binary

diffusion coefficient, ;. The binary diffusion

coefficients all satisfy the relation

U =T, AB=12,..,N (135)

and when we substitute Eq. (134) into Eq. (133) we
obtain a result that can be expressed as

4| 0
p”! E(QAVA)+V-(pAvAvA)—pAbA+xAVp—V-'l,-A

—r,v,]=-Vx, +ZL’*) A=12,..N
A

B

(136)
Here we have N equations for the N species velocity,
Va, VB, ..., VN, and it would appear that we are faced

with an extremely complex problem. Nowhere in the
chemical engineering literature is one confronted
with this equation as a means for determining the
species velocity, and the reason for this is that the N
complex equations represented by Egs. (136) can be
arranged in terms of N relatively simple equations.
The reason for this simplicity is that the left hand
side of Egs. (136) is usually small compared to the
two terms on the right hand side. We can express this
situation as
A=Q,+¥,,A=123,.,N (137a)
e, <Q,,¥,,A=123,.,N (137b)
however, if we set £, =0 we are left with only N —1

independent equations since Qn and W, are
constrained by

A=N A=N
2Q,=0,>¥,=0 (138)
A=l A=1

To develop the simple equations associated with Egs.
(136), we first note that the sum over all N equations
leads to

A=N a
B —(PaVa )+ V- (pavava)—pab
p ;|:at(pA A) (pA A A) PaDA p (139)
-Vt - I’AVA]:O
This can be arranged in the form
6 A=N
S (PV)+V-(pv) =3 p,b, ~ VP
. (140)

A=N A=N
+V- ) (Ta—paualy )+ D TV,
A=1 A=1
and on the basis of Egs. (112) and (117) we have

0
E(pv) +V-(pvv)=pb -Vp
(141)

A=N
+V. Z(TA—pAuAuA)
A=1

It is consistent with the definition of the stress tensor
given by Eq. (127) to define the viscous stress tensor

according to
A=N

T=) (T, -Pauau,) (142)

Use of this result along with the continuity equation
given by Eq. (70) allows us to express Eq. (141) in
the form

p%—pb Vp4V.1 (143)
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Rather than attempt to solve Eqs. (136) for all the N
species velocities, we use Eq. 143 to determine the
mass average velocity and Egs. (136) to determine
N-1 species velocities. This means that the N — 1
species velocities are determine by

4l 0
p 1|:E(pAVA) + V'(pAVAVA) —pab, + X, VP

XaXg (Vg —V,)
-V T, — rVA]_ VX +Z#, (144)
A=12,.,N-1
while the N " species velocity is determined by
1
vy :w—[v—(mAvA+vaB+ ...... + Oy, V. I)J (145)
N
in which Vv is obtained from a solution of Eq. (143).
The use of Egs. (143) and (144) in place of
Egs. (136) will only be of value if the left hand side
of Egs. (144) is negligible. We assume that this is the
case and we assume that small causes give rise to
small effects (Birkhoff, 1960, page 4) so that Eq.
(144) leads to the well known Stefan-Maxwell
equations given by

0=-Vx, +ZXX(VB Va) A12,.. N—1(146)
If the ideal mixture relatlon given by Eq. (132) is
replaced with a general equation of state

Pa = F(Xas Xgs Xe oo Xy s T, P) (147)
the analysis becomes more complex and the details
are presented in Appendix E. There we conclude
that the so-called generalized Stefan-Maxwell
equations should take the form

—X,Vin (VA) SIS <= VH,

RT

(148)
+ZXX(VB o) A=1,2,. N -1

in which v, is the activity coefficient and p, is the
chemical potential. When Eq. (132) is indeed a valid
approximation for the partial pressure, Eq. (146) can

be used with confidence provided that the following
inequality is satisfied:

] 0
p 1|:E(pAVA) + v'(pAVAVA) — pab,

+X,Vp-V-1, -1,v,| < VX, (149)

B=N
or ZM A=1,2,..N-1

B=I Do
Here we have indicated that we can compare the left
hand side of Eq. (144) with either of the two terms
on the right hand side. In general, it is easier to
estimate VX, but there may be situations in which the
second term involving vg —va is preferred. The
constraints related with the restrictions associated
with Eq. (149) were originally explored by Whitaker
(1986, page 9); however, more reliable constraints
can be developed by using the total momentum

equation to simplify the left hand side of Eq. (149),
and this is done in the following paragraphs.

In order to simplify the terms on the left hand
side of Eq. (149), we represent the species velocity in
terms of the mass average velocity and the diffusion
velocity

VA=V+up (150)
to obtain the following expression

1| 0
p {at(PAVA) + V:(pavAYA) — PabA
+XAVp—V-TA— rAVA]
_ ov
=p 1{9A[_ + V'VVJ—PAbA
ot
+ XaVp — V-1a]
151
. (151)

Here we have made repeated use of Eq. (150) along
with the continuity equation given by Eq. (89). At
this point we can make use of Eq. (74) to simplify
Eq. (151) to the form

- 0
+p 1{pp‘[ﬂ+vA-VuA+uA~VV]

_1| ©
p 1{at(pAvA)+V (pAvAvA)—pAbA
+ XaVp = V.tp — rAVA]

= p oA -bp)- pH(@p—Xa)VP (152)
+ p oAV -T-V-Tp)

- 0
+p lpA[%+vA-VuA+uA-Vv)

and this allows us to express Eq. (149) as
pilpA(b _bA) - pil((‘)A - XA)Vp
+ p(0V-T-V-T,)

0
+ pIPA[%+VA-VuA+uA-ij<<VxA (153)

B=N
or ZM,A:I,Z,...,N—I

B-1 D
The various terms on the left hand side of this
inequality can take on both positive and negative
values, and a conservative approach to satisfying the
inequality is to require the following four inequalities

XaXg (Vg —V,)

p'p.(b=b,) < VX, orz 7 (154a)
XaXg (Vg —V,)
P (, —X,)VP < VX, or Z% (154b)
P (0,V-T-V-T,) < Vx, o ZM(IS%)

‘(]AB

0
p]p,{ ('l;tA +VA-VHA+HA-VV] K VX,
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8N X, X -
or 3 Xe(eTVA) 154
Bl De
Here it is understood that these inequalities apply to
A=12,..,N—1. We refer to these inequalities as

restrictions that must be satisfied if the Stefan-
Maxwell equations are to provide reliable solutions
to the N—1 species momentum equations. In order to
obtain constraints (Whitaker, 1988) we must develop
estimates of all the terms. If gravity is the only body
force, we have b = by = g and Eq. (154a) is
automatically satisfied. However, if species A is an
ionic species and an electrostatic field exists, the
body force term must be retained and Eq. (146) must
be modified in an appropriate manner (Bird et al.,
2002, page 781). The restriction given by Eq. (154b)
indicates that we need an estimate of Vp and for
some processes this may be difficult. The third
restriction given by Eq. (154¢) presents a problem
since little is known about the partial stress, Ta,
however, it seems plausible that
®,V-T-V-1,<0,V-T (155)

which leads to the more conservative restriction
given by

L X Xp (Vg —V,)

(o,V-T)< VX, or
P {0V T) & VX o 3=

AB

(156)

In this case one might be able to use Eq. (75) to
obtain an estimate of V-t and thus develop a
constraint associated with the restriction given by
Eq. (154c¢).

The inequality given by Eq. (154d) involves
the diffusion velocity, thus it might be easier to
explore this restriction in the form

plpA[a;tA +v, 'VUA+UA~VV]
(157)

< Z ali (“B ) A12, N-1

since both sides of the 1nequa11ty are directly related
to the diffusion velocity. For gas phase processes, it
may be convenient to approximate the pressure
according to (Whitaker, 1981, page 402)
p~pC? (158)

where C represents the speed of sound that is on the
order of 300m/s for a gas at atmospheric pressure.

The problem of establishing the domain of
validity of the Stefan-Maxwell equations is much
more difficult than identifying the constraints
associated with laminar boundary layer theory
(Schlichting, 1968, page 117) or lubrication theory
(Batchelor, 1967, page 219) or geostrophic flows
(Dutton, 1976, page 512). Those special cases are
well known and have received considerable attention
while the species momentum equation has generally
been ignored as a source of information for the
solution of mass transfer problems. In the next
section we examine the classic diffusion process
associated with the Stefan diffusion tube and we

illustrate how one could begin to explore the
inequalities given by Egs. (154).

2.7 Stefan diffusion tube

In the previous paragraphs we have outlined an
approach to the determination of the species velocity,
va where A = 1, 2, ..., N. Various approximations
have been imposed, such as the ideal mixture
condition given by Eq. (132) and the simplified
representation for the diffusive force given by Eq.
(134). While restrictions have been imposed that
allow us to derive the Stefan-Maxwell equations, no
constraints have been presented (Whitaker, 1988).
Here one must remember that restrictions indicate
what must occur in order for a result to be valid,
while constraints indicate when these conditions
occur in terms of parameters that are known a priori.
To illustrate how one can develop constraints, we
consider the classic process of binary diffusion in the
Stefan diffusion tube illustrated in Fig. 8. In this
example, we assume that the gas passing over the top
of the tube is pure species B and that the liquid in the
bottom of the tube is pure species A.

For a binary diffusion process, there are two
momentum equations to be considered. One of these
should be a Stefan-Maxwell equation as indicated by
Eq. (146) while the other should be the total
momentum equation as indicated by Eq. (143).
However, in the classic analysis of the Stefan
diffusion tube (Bird et al., 202, page 545), the total
momentum equation is ignored and is replaced by the
following assumption for the velocity of species B in
the gas phase:

Assumption: vy, =0 (159)
The motivation for discarding Eq. (143) in favor of
Eq. (159) is based on the fact that vg is very small
compared to v and is, in fact, small enough so that it
can be set equal to zero. The restriction given by
Restriction: Vg KV, (160)

is consistent with Eq. (159) if one is willing to
assume that small causes give rise to small effects.
One can be more precise about the velocity of
species B and note that
szk%, z=1((t) (1e1)
dt

if the solubility of species B in species A is
negligible. The species jump condition (Whitaker,
1992) can be used to estimate the velocity of species
A in the gas phase according to

VA ( Allq/ Agas)(:jf (162)
When this estimate is compared with Eq. (161) we
conclude that the assumption given by Eq. (159) can
be replaced with the following constraint:

(Catig /Cagas ) > 1 (163)
While the simplification indicated by Eq. (159) is

certainly plausible based on the constraint given by
Eq. (163), discarding a governing equation should al-

Constraint:
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Fig. 8. Stefan diffusion tube.

Species A

ways be done with care. Having provided some
words of caution, we adopt Eq. (159) as an
acceptable solution to the momentum equation for
species B.

The second momentum equation is the
species momentum equation for species A and this is
given by Eq. (146). For the binary system under
consideration, with the constraint indicated by Eq.
(159), the species A momentum equation takes the
form

Species A: 0=-Vx,

L LAY (164)

7
~Z;AB

Equation (159) could be considered as one of
Birkhoff’s (1960, page 4) plausible intuitive
hypotheses, while Eq. (164) is a result of imposing
the restrictions indicated by Egs. (154).

Body force

To explore the first of the restrictions given by Egs.
(154), we consider a binary system subject to Eq.
(159) in order to obtain

X, X
Restriction: p~'p,(b-b,) < A,—BVA (165)
zn
Use of the definition given by Eq. (117) leads to
- X\ XgV
p lpA(DB(bB_bA)<<W (166)

For a binary system with v, =0 the velocity of
species A is related to the mass average velocity by
Vy=— (167)
0‘)/-\
We can use this result, along with Eq. (158), to

express the body force restriction in terms of the
following constraint:

X,(1-%,) MC’
0,(1-0,) Yy

in which M is the Mach number defined by

Constraint: >0, |bB —bA| (168)

v
M =— 169
c (169)

For a binary system, the constraint given by Eq. (168)
will generally be satisfied by the assumption

b,=b,=g=b (170)
since a ternary system will be required to produce
ionic species and body forces that are different than
the gravitational force.

Viscous force

At this point we ignore the restriction given by Eq.
(154b) and move on to the restriction given by Eq.
(154c¢). This can be used, in the form given by Eq.
(156), with Eq. (164) to obtain

. Xy Xg V
Plo,V T AEA

)

/he
Estimating viscous effects for process illustrated in
Fig. 8 is not a straightforward matter. For the classic
problem of laminar flow in a tube, one could
estimate the viscous stress and its divergence as
(Whitaker, 1986, page 16)

t=0(pv/D), V-T=0(nv/D’) (172)

Here p represents the viscosity, v represents the mass
average velocity, and D represents the diameter of
the tube as indicated in Fig. 8. This estimate of V-t
would be appropriate for the parabolic velocity
profile shown in Fig. 9a but not for the flat velocity
profile (Whitaker, 1967) shown in Fig. 9b. An
approach that is more appropriate for the diffusive
process illustrated in Fig. 9b is to estimate the value
of V-7 using the average value according to

Restriction: (171)

1 1
V'*’*““Z;iv" dv :y;[/n-‘r dA (173)

Here 9 is the control volume illustrated in Fig. 8 and
o/ is the surface area of that control volume. In

terms of the three distinct areas associated with the
control volume, this result takes the from

(V1) = <TZZ>|Z:L(I)+f(t) _ <TZZ>|2:/,(I)

L(t) L(t)
It seems plausible to neglect the viscous stresses at
the entrance and exit of the control in order to
simplify this result to

4
+ B<T'Z>|r:'°/2 (174)

(V-1) =

In order to develop an estimate of (t,,) at the wall,

4T, o
" r=bz 175
D (175)

we first make use of Maxwell’s one-sided flux
expression given by (Kennard, 1938, page 63)
flux of species A

crossing a surface; =n, C, (176)

1
4
from one side
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Fig. 9. Velocity profiles in a Stefan diffusion tube

Here n, is the number density of species A and C, is
the mean speed of species A which is on the order of
the speed of sound. It is important to note that Eq.
(176) is valid for an unbounded gas at equilibrium.
In our analysis of the momentum transfer process at
a gas-solid interface, we assume that the rate at
which molecules strike the surface is given by

flux of species A molecules

incident upon a wall bounding y =+ n, C, (177)

1

4
a semi-infinite region

The idea behind the application of Eq. (176) to

produce Eq. (177) is that the molecules leaving the

wall do not alter the nature of the incoming

molecules.

When the mean free path is small compared
to the tube diameter, the tangential component of
momentum that is transferred to the wall by an
incoming molecule can be approximated by

average tangential component

of momentum transferred to the y =m, v,, |r:D 1

wall per molecule of species A

(178)
in which my is the mass of a molecule of species A.
Here we have evaluated the momentum of a
molecule of species A at the wall because the mean
free path for species A is small compared to the tube
diameter. To be very clear about this situation, we
denote the mean free path of species A by {4 and note
that Eq. (178) is constrained by the inequality

l, <D 179)

In order to obtain the rate of tangential momentum
transferred to the wall by species A, we multiply the
flux of species A by the momentum of species A
leading to

rate of tangential

momentum transferred to = % n,Cym,v, | (180)

r=D/2
the wall by species A

This representation for the rate of tangential
momentum transferred to the wall by species A
assumes that there is no net tangential momentum
associated with the molecules reflected from the
wall, i.e., the molecules are diffusely scattered by the
wall. To obtain the total rate of tangential momentum
transferred to the wall, we sum over all species to
obtain

total rate of tangential N

=z

1

momentum transferred ; = Z
=1

to the wall

My CaMy V|, (181)

r=D/

>

The species density is the mass of a molecular times
the number density
py=nm, ,A=12.,N (182)

and use of this result in Eq. (181) leads to

total rate of tangential A |

momentum transferred ; = z ZpA Cava |r:D/2 (183)
A=1

to the wall

Here we recognize that the total rate of tangential
momentum transferred to the wall is equal to the
shear stress at the wall, and we express this idea as

total rate of tangential

momentum transferred ; = (t,, >|r:D 2
to the wall (184)

A=N 1
= ; ZpA CAVAZ|r=D/2

For the special binary system under consideration,
we have v, <v, and the rate of transfer of
tangential momentum takes the form

1
<Trz>|r=t>/z TP CaVaelr_ps (185)

Directing our attention to the flat velocity profile
illustrated in Fig. 9b, we use this result in Eq. (175)
to obtain

V-T~(V-T):LSVAZ (186)
Use of Eq. (186) in Eq. (171) provides the inequality
p! 0 PaACaV4 <« XaXg Vo, (187)
D g,

“AB

At this point it is convenient to represent the pressure

using Eq. (158) and use the approximation C, = C in

order to extract the following constraint from Eq.

(187):

XW(1-X%) CD (188)
Wy De

Given the following values for the system illustrated
in Fig. 8

C ~300 m/s, %, ~0.1cm*/s,D ~ 0.1 cm (189)
we find that

Constraint:
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CD

QAB

~3x10* (190)

and the constraint given by Eq. (188) will generally be
satisfied unless Xa is very, very close to one. One
could also argue that the constraint given by Eq. (188)
could also fail when D is much, much less than 0.1
cm; however, the tube diameter must be much, much
larger than the mean free diameter, as indicated by Eq.
(179), thus arbitrarily small values of D are excluded
from this analysis.

Pressure force

Returning to the restriction given by Eq. (154b), we
make use of Eq. (159) to obtain the inequality
X, X
Restriction: p~' (0, —X,)Vp < Za%sVa (191)
2
In this case we estimate the pressure gradient as
<p>|z:¢(t) - <p>|z:L(t)+f,(t)
L(t)

To obtain a representation for the pressure change in
the tube, we make use of the macroscopic
momentum balance associated with Eq. (143) when
inertial effects are negligible. This gives rise to a
macroscopic momentum balance of the form
nD?
0= _(< p>|z:L(t)+/,(t) - <p>|z:/,(t)) 4
nD’L(t) nD’
+ <TZZ>|2:L(t)+/,(t) 4
nD?

- <t22>|z:ﬂ(l)T + (T rZ>|r:D/z nDL(t)
Neglecting the viscous stresses at the entrance and
exit of the control volume, along with the
gravitational term, leads to

__ < p>|Z:L([)+/X(l) - <p>|z:/,’(t) + 4<T I’Z>|r:D/2 (194)
D

Vp=0 (192)

+ pg, (193)

L(®)
This result leads to the estimate given by

_ 4<T rZ>|r=D/2
Vp = O(TJ (195)

and when used in Eq. (191) we obtain
At fZ>|r:D/2 < XaXgVa
pD 9,

‘AB

Restriction: (w, — X,) (196)
At this point we can extract an estimate of the wall

shear stress given by Eq. (185) to obtain
< Xa (- XA)

“AB

(@3~ Xy pgf; (197)

and use of Eq. (158) to estimate the pressure leads to
the constraint given by

X,(1-x,) CD
(DA((DA - XA) QAB

Constraint: > 1 (198)

This constraint is similar to that given by Eq. (188);
however, the left hand side does not tend to zero as
Xa approaches one.

Local acceleration

We now direct our attention to the last of the four
restrictions given by Egs. (154), and we express the
restriction associated with the local acceleration as

ou X, XgV
Restriction: p'p,| —2 |« AL A 199
P Pa [ ot ] 7 (199)
An estimate of the local acceleration is given by
s _of U (200)
ot t

in which t" is the characteristic time associated with
the process illustrated in Fig. 8. for a binary system
in which v, =0 we can relate the species velocity to
the diffusion velocity by

uA

v, 201)

- l1-m,

Use of Eq. (200) and Eq. (201) in the restriction

given by Eq. (201) provides

1< ML (202)
Pi%e 1-0,

and when the pressure is estimated by Eq. (158) we
obtain the following constraint:

X,(1—x,) C*t’
o (l-w,) QAB
In general it is very, very difficult to violate this
constraint.

Constraint: > 1 (203)

Convective acceleration

The restriction associated with the convective
acceleration term in Eq. (154d), subject to the
condition of a binary mixture with v, =0, provides

the special case given by

.. _ X, XgV
Restriction: p™'p, (v, -Vu, +u,-Vv) < % (204)
~AB
In this case the characteristic length associated with
Vuy and Vv is L(t) illustrated in Fig. 8. One can
express va and up in terms of the mass average
velocity to obtain
v v(l-m,)
Vy=—,u,=——A
(‘DA (‘DA

(205)

and this allows us to represent Eq. (204) in the form

PPa {L-V{V(l_w’*)} + vazo,) -Vv} < —XAX,BV

7
Wy Wp Wy Op Dpg

(206)
Using L(t) in the estimates of the gradients suggests
the following form

Pa VV (I_OOA) X\ XgV
PaYY V" "M 40 Za%8Y
o o CreelsgT e
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At this point we make use of Eq. (158) for the
pressure in order to express this result in the form

X,(1-x,) L®C
(1-0,) M7,
in which M is the Mach number defined by

\%
M=— 209
c (209)

Clearly this constraint will always be satisfied for the
process illustrated in Fig. 8.

Constraint:

>[1+0(w,)]  (208)

A special form of the Stefan-Maxwell equations

When the constraints indicated by Eqgs. (168), (188),
(198), (203) and (208) are satisfied, we expect that
Eq. (164) will indeed be a valid approximation for
the species A momentum equation that we repeat
here as

XAXBVA

o7
“‘ZAB

0=-Vx, (210)
This can be used to express the molar flux of species
A in the form

c7,
CaVa=N,=- =

VX, 211
XB
and for the one-dimensional process illustrated in
Fig. 8 we have
cY X
N, = 0¥ (212)
Xg dz
Other special forms of the Stefan-Maxwell equations
are given by Whitaker (2009).

2.8 Knudsen diffusion

One crucial constraint leading to the Stefan-Maxwell
equations given by Egs. (146) is the constraint on the
mean free path indicated by Eq. (179). When that
constraint is satisfied we are assured that molecule-
molecule collisions are much more numerous than
molecule-wall collisions. When the inverse of that
constraint is valid, i.e., when
l,>D (213)

we have the situation illustrated in Fig. 10 where we
have shown a single molecule-molecule collision and
many molecule-wall collisions. As the mean free
path becomes large relative to the tube diameter, D,
the diffusive force becomes negligible, i.e., Pag > 0
and the simplification leading from Eq. (131) to Egs.
(143) and (146) is no longer valid. This requires that
we return to Eq. (131) in the form given by

0
_(PAVA)+ \4 '(pAVAVA)

ot (214)

=p,g-Vp,+V-t,,A=12.,N
in which the term rava has been discarded with the
idea that the influence of chemical reactions can be

ignored. In addition, we have replaced b, with g with
the idea that gravity is the only body force. At this

point we make use of the macroscopic momentum
balance associated with Eq. (214) in order to obtain

d
EJ.pAVAdV + IpAvAvA-ndA: JpAng
7 s 7 (215)
—jnpAdA+In-1AdA
ot ot

Here 9 represents the control volume illustrated in
Fig. 10 and o</ represents the surface of that control
volume. The component of this equation in the z-
direction is given by

diijvA ‘kdVv + I p.k-v,v, -ndA

tr s 216)
= J‘pAg‘de - Jn-k p,dA + J.n-‘rA -k dA
7 ol o/

and for a steady, uniform flow this simplifies to

0=[p,gkdV - [n-kp,dA+ [n-7, kdA 217)
v o/ o
Evaluating the terms in this momentum balance leads to

D’L D’
0=pn 0, (Pl ~ (P, )

2 2
m —“4D (218)

+ <TAZZ)L:L 4 <TAZZ>|Z:0
+(t Arz>|r=D/z nDL
For a uniform flow we can impose the condition
<TAZZ>|Z:L = <TAZZ>|Z:O (219)
so that Eq. (218) simplifies to
nD?

DL
0=p 8, = (Bl — (Pl ) ™ 220,
+(t Arz>|r:D/2 nDL

4
This momentum balance can be divided by nD*L/4 in
order to obtain

<pA>|Z:L _<pA>|Z:0 4
++5 (t An>|r:m2 (221)

and we take the limit L — 0 in order to express this

result in the form
XP,) 4

= a—zA+ PO, + B(r )l (222)

At this point we refer to Egs. (180) through (182) to
estimate the partial stress as

0=p,0, -

0

1
<17Arz>|r:D/2 = ZpACAVAZ |r=D/2 (223)

One must remember that Eq. (180) is based on the
approximation given by Eq. (176) and that the latter
is valid for an unbounded gas at equilibrium. For the
process illustrated in Fig. 10, we can assume that
both the velocity and the pressure will be uniform
over any cross section of the tube, and this allows us
to express Eq. (222) as

op 1
0:6_;"'[);\ gz+BpACAVAz (224)

In many cases, the following inequality is valid
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Fig. 10. Knudsen diffusion

g, <<%CAVAZ (225)
and Eq. (224) simplifies to
op 1
O:a_;+BpACAVAZ (226)

The species mass density can be expressed in terms
of the species molar concentration according to
Pa=CaM, (227)
in which M, is the molecular mass of species A. Use
of this expression in Eq. (226) leads to
D dp,
M,C, oz
in which Cpva, is the molar flux often represented by
Na;. Expressing the partial pressure of species A in
terms of the ideal gas law leads to
O(CART
%:—(A ):RT% (229)
oz oz oz
and use of this expression in Eq. (228) provides a
result that can be expressed as

Xu AZ12,.N (230)
oz

CA VAZ = (228)

N, =-D

Az AK

The coefficient Dpk has units of m?/s and it is known
as the Knudsen diffusion coefficient for molecular
species A. It is defined explicitly by

Dpx = |\le D ,A=1,2,..,N (231)

A ™A

Like the Stefan-Maxwell equations, this result has its
origins in the species momentum equation, i.e., it is a
mechanical result. Knudsen diffusion usually occurs
in porous media where pores of small diameter are
prevalent (Jackson, 1977, page 8).

2.9 Summary

In this section we have seen how the species
momentum equations given by Eqgs. (136) can be
used to obtain the total momentum equation given by
Eq. (143). In addition, we have shown how the
species momentum equations can be used to produce
the Stefan-Maxwell equations given by Egs. (146).
The restrictions that are required to produce the
Stefan-Maxwell equations are given by Egs. (154)
and the constraints associated with those restrictions
are developed for the Stefan diffusion tube illustrated
in Fig. 8. The treatment of the species momentum
equations is not a straightforward process. This is
illustrated in the classic treatment of the Stefan
diffusion tube, where one of the governing

differential equations was discarded in favor of a
plausible intuitive hypothesis. The Stefan-Maxwell
equations describe mass transport when the diffusive
force plays an important role in the species
momentum equation. When the mean free path is
large compared to the characteristic length associated
with a system, the diffusive force becomes negligible
and the species momentum equations become
uncoupled. Under these circumstances the N species
momentum equations lead to the Knudsen diffusion
equation.

The manipulation of the species momentum
equations is a crucial element of chemical
engineering analysis since those equations are
required to determine the species velocities, va, Vg ,
..., V. In turn, knowledge of the species velocities is
essential for the determination of adsorption and
desorption rates, inter-phase transport rates, and
heterogeneous reaction rates. These processes will be
considered in the next section.

3. The interface between two phases

In Sec. 1 of this work, the interface between physics
and chemical engineering was explored from the
point of view of the laws of mechanics. Constructing
a connection between the perspective of a physicist
and the perspective of a chemical engineer is based
on the work of Euler and Cauchy. Understanding
Euler’s laws, Cauchy’s equations, and the Euler cut
principle allows the chemical engineer to create a
fundamental understanding of fluid mechanics. What
is more important is that the work of Euler and
Cauchy provides the framework for a study of
multicomponent systems. In terms of mechanics, this
leads to a method of determining the species
velocities as outlined in the previous section.

3.1 Hierarchical systems

Most chemical engineering systems are hierarchical
in nature, thus important processes take place at a
variety of length scales. This perspective is shown in
Fig. 11 where we have illustrated a large-scale
chemical production system that may consist of
several (in this case three) specialized chemical
plants. Within one of these chemical plants we have
illustrated a purification unit called a scrubber and
we have further illustrated a bubble in the scrubber
where mass transfer takes place. Finally, we have
illustrated the gas-liquid interface in which the liquid
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chemical production system

chemical
plant

scrubber

gas-liquid mass transfer

interface

Fig. 11. Hierarchical systems

is identified as the B-phase and the gas is identified
as the y-phase. The orientation of the interface is
identified by the unit normal vector, mg, that is
directed from the B-phase toward the y-phase. At
every length scale illustrated in Fig. 11 there are
challenging engineering problems associated with
the purification of raw materials and the production
of useful products. However, if nothing happens at
the B—y interface and the other interfaces within the
entire system, nothing happens in the entire system!
We explore this point of view in the following
paragraphs.

3.2 Mass transport

The most dominant characteristic of a chemical
species is its concentration, C with A= 1, 2,..., N. If
we could predict this concentration for all species of
interest, many chemical engineering problems would
be solved problems. Prediction of this concentration
requires that we solve the species transport equation
given earlier by Eq. (98) and repeated here as

%+V~(CAVA)=RA,A=1,2,..,N (232)
Here v represents the species velocity for species A,
and Rp represents the net molar rate of production
(per unit volume) of species A owing to chemical
reaction. In order to solve Eq. (232), in a general
sense, we need to be able to determine the function

Ry =7 (Ca,Cqyenes T) (233)

along with the species velocity, va, and an
appropriate set of boundary conditions. The
temperature will be determined by the laws of
thermodynamics (Truesdell, 1969) while the species
velocity will be determined by application of the
laws of mechanics (Truesdell and Toupin, 1960). In
order to focus attention of the net molar rate of
production of species A, we ask the question: What
would happen if all reaction rates were zero, i.c.,

R,=R;=R. =R, =etc.=0 (234)
Clearly the answer is that the earth would be a
biologically inert sphere not at all like the planet with
which we are familiar. Along the same lines, we can
focus our attention of the species velocity and ask the
question: What would happen if all species velocities
were the same, i.e.,

V,=Vg =V, =V, =etc. (235)

If all molecular species had the same velocity, there
would be no mixing and thus no chemical or
biological reactions as indicated by Eq. (234).
Clearly Eq. (232) is a central issue for chemical
engineers and the determination of the species
velocity and the net rate of production owing to
chemical reactions is of the utmost importance.

The direct solution of Eq. (232) everywhere
would lead to the prediction of concentration, Ca, the
flux, cava, and the rate of reaction, Ra. This, in turn,
would provide the solution to many, many chemical
engineering problems. However, the solution of Eq.
(232) in the neighborhood of an interface is
complicated by the fact that Ca, va, and Ra change
very rapidly in this region. For example, if there is
significant adsorption at the interface between the [3-
phase and the y-phase illustrated in Fig. 11, the
concentration profile has the form illustrated in Fig.
12. The solution of Eq. (232) can be carried out in
the interfacial region (Wood, et al., 2004) to predict
Ca; however, the computation is quite complex and in
general it is avoided by the construction of a jump
condition for the B-y interface. In this approach, the
direct use of Eq. (232) is avoided and instead one
makes use of governing equations for the B-phase
and the y-phase given by

aciJrv‘(c v,)=R
a V) = (236)

A=1,2,3,..,N, inthe B-phase
0Cp,

F + V. (CAyVAy) = RAy > (237)
A=1,2,3,..,N, inthe y-phase
These equations are solved in both the homogeneous
regions of the 3 and y-phases and in the regions up to
the dividing surface illustrated in Fig. 12. The
boundary condition that joins these two transport
equations is constructed in a manner that requires Eq.
(232) to be satisfied on the average in the interfacial
region. This leads to an interfacial flux boundary
condition that can be derived using only undergradu-
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Fig. 12. Concentration distribution caused by
adsorption at the -y interface.

ate vector analysis (Stein and Barcellos, 1992), and
the result is given by (Whitaker, 1992).

dc
As
—s +V, (V4G ) +Cp (V, -1y )(W o, )
—
M (Wenp, ) surface transport effect of the changing surface area
surface accumulation
= [CA‘3 (Vag = W) = Cp (Vy, —w)}nBy + R

heterogeneous

interfacial flus reaction

at the -y interface

(238)
When the interface can be treated as flat, the
concentration profile illustrated in Fig. 12 leads to

the surface concentration given by
=0 2=8/2

Cpe = .[ (Ca—Cpy)dz+ f (ca—cy, )0z (239)
7=-5/2 =0

and the net rate of production owing to

heterogeneous reaction, Ry, is defined in a similar

manner. The boundary condition, or jump condition

given by Eq. (238), provides a connection between

the interfacial fluxes in the two phases, and to

complete the formulation of this mass transfer

process, we need a connection between the

concentrations in the two phases. When the condition

of local thermodynamic equilibrium is valid, the

connection between the concentration in the two

phases is given in terms of the equivalence of the

chemical potentials, i.e.,

Wap = Ha, »A=12,..,N ,at the B-y interface (240)

The chemical potentials are functions of the state of
the system, and Eq. (240) can be used to develop a
relation between either the concentrations in the two
phases or the mole fractions in the two phases. When
the condition of local thermodynamic equilibrium is
not valid, Eq. (238) can sometimes be replaced with
an interfacial flux constitutive equation (Whitaker,
1999, Sec. 1.1.1; Wood, et al., 2004) that provides a
connection between the concentrations.

In Eq. 238 we have used Cas to represent the
surface concentration having units of moles per unit
area. This concentration is sometimes referred to as
the excess surface concentration and a graphical
illustration of this concentration is illustrated in Fig.
12. The mean curvature of a surface is defined by

H A(L ; L} Qa1)
2{R R,
where R; and R, are the principle radii of curvature.
With the use of more advanced differential geometry
(McConnell, 1957; Slattery, 1990) one can show that
the surface gradient of the unit normal vector is equal
to twice the mean curvature
V,-ng =2H (242)

in which H is given in terms of the principle radii of
curvature by Eq. (241). Use of this result allows us to
express the jump condition as

dc
As
ot Vo (VpCa)+  Cp2H(W-ng)
V. —
Mg (Woig,) surface transport effect of the changing surface area
surface accumulation
=[Cy(Vig=W) = Cu (v =W |'my + R,

heterogeneous

interfacial flus reaction

at the y-p interface
(243)
in which we need to pay attention to the sign of the
curvature, H. When H = 0 (flat surface) or when
w-ng =0 (zero speed of displacement), there is no

changing surface area and ¢, 2H(w-n, ) is equal to

zero. For the case of expanding or contracting
bubbles and drops, this term must be considered
whenever the surface concentration, Cas, plays an
important role in the jump condition. The first term
on the right hand side of Eq. (243) represents the
interfacial transport of species A from the B-phase to
the y-phase, while the second term represents the
classic rate of heterogeneous reaction. Clearly the
jump condition given by Eq. (243) is a central issue
in the world of chemical engineering since it
contains the phenomena of adsorption, surface
transport, surface accumulation, interfacial mass
transfer and heterogeneous reaction.

3.3 Adsorption/Desorption

If the PB-phase is a rigid solid phase at which
adsorption and/or desorption takes place, Eq. (243)
for species A takes the special form given by (with
Mg, ="My )
ac,,
ot
This provides a boundary condition for Eq. (237)
which we repeat here as

=CpVa, "Ny, atthey-B interface (244)

Cpy

ot

+ V- (CpVpa) =R, , in the y-phase (245)
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In order to connect the surface concentration, Cps, to
the bulk concentration, Ca,, we need to assume the
condition of local thermodynamic equilibrium (see
Eq. 240) or we need to develop an interfacial flux
constitutive equation. If the condition of local
thermodynamic equilibrium is valid and the
adsorption  isotherm is linear, the surface
concentration is given by

Local equilibrium:
Cps = KeyCp, » at the y-P interface (246)

Under these conditions the jump condition takes the
form

oc,, ;
. a:( =C,,V,, ‘0, at the y-B interface (247)

In this simple case of adsorption we see a connection
between mass transfer (Eq. 245), thermodynamics
(Eq. 246), heat transfer (K¢ is a function of
temperature), and mechanics (Egs. 143 and 146). If
the condition of local thermodynamic equilibrium is
not valid, one must develop an interfacial flux
constitutive equation and the simplest case is the
linear process described by
Non-equilibrium:
0C,
ot
Use of this type of constitutive equation has been
examined by Wood et al. (2004) in some detail.

K

=k c,, — K, C,,at the y-B interface (248)

3.4 Heterogeneous reaction

Here we again assume that the B-phase is rigid and
we assume that the y—f interface is a catalytic
surface. We neglect surface transport and assume
that the process is either steady or quasi-steady so
that Eq. (243) simplifies to
0=c, v, ng+R,,

at the y-p interface, A=1,2,...,N
The heterogeneous rate of reaction, Rps, should
depend on the surface concentrations (Bird et al.,
2002, page 544) of the participating species, i.e., Cas,
Cgs, €tc., and we express this idea as
Ras = Ras(Cag»Cogoeeees T) , A=1,2,..,N (250)
Here we see the need for a connection between the
surface concentrations and the bulk concentrations at
the y—B interface. If the condition of local
thermodynamic equilibrium is valid, Eq. (250) can be
expressed as
Rys = Rys(CyyCoypees T) , A=1,2,.0,N (251)
and the jump condition for heterogeneous reaction
takes the form
CaVay My == Ry (CpsCgppennes T)

(249)

(252)
at the y-p interface ,A=1,2,...,N

Here we should note that Ras represents the net rate of

production of species A, thus the flux of species A

from the y-phase toward the B-phase is positive when

Ras is negative. In this simple application of Eq. (243)
to the case of heterogeneous reaction we see a
connection between mass transfer (Eq. 245),
thermodynamics (Eq. 251), heat transfer (Ras is a
function of temperature), and mechanics (Egs. 143 and
146). If local thermodynamic equilibrium is not valid,
one may be confronted with a three-step process
involving (1) a rate of adsorption, (2) a rate of
reaction, and (3) a rate of desorption. In that case,
concepts from Sec. 3.3 need to be incorporated into
the analysis.

3.5 Interfacial mass transfer

When adsorption and heterogeneous reaction are

negligible at a fluid-fluid interface, we have the

apparently simple case of interfacial mass transfer and

Eq. (243) simplifies to

Cop (Vag =W) My, =Cy (Vs —W) Mg, 53)
at the f —y interface

Here it is important to recognize that the speed of
displacement of the P—y interface, denoted by
w-ng, can only be determined, in a general sense,

by solving the equations of motion. This means that
the speed of displacement of the interface illustrated
in Fig. 12 is part of the solution of the fluid
mechanical problem and not part of the problem
statement. The hierarchical system illustrated in Fig.
11 is likely to contain many, many moving interfaces
at which mass transfer takes place, and dealing with
these moving interfaces represents a challenge that is
generally ignored in texts on mass transfer. The
moving boundary illustrated in Fig. 8 can be treated
in a relatively simple manner (Bird et al., 2002, page
549) because the mass transfer process is quasi-
steady. The process of diffusion with a moving
boundary is discussed by Crank (1956, page 99) who
has also provided a survey of methods for treating
moving boundary problems (Crank, 1984).

As in the case of adsorption and the case of
heterogeneous reaction, we need to impose either the
condition of local thermodynamic equilibrium or we
need to develop a model for the interfacial flux in
order to connect Xag with Xa,. If Eq. (240) is
applicable, and the system is linear, we can use an
equilibrium relation of the form
Xp5 = K, X, ,equilibrium at the §—y interface  (254)
in which K, is the equilibrium coefficient. For non-
linear systems, one must work with a general
relation that can be expressed as
Xa5 =7 (Xu,) sequilibrium at the -y interface (255)

While interfacial flux constitutive equations, such as
Eq. (248), are common in the treatment of
adsorption/desorption phenomena and in the
treatment of heterogeneous reactions, they are not for
mass transfer process that can be described by Eq.
(253). In this simple application of Eq. (243) to the
case of interfacial mass transfer we again see a
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connection between mass transfer (Eq. 245),
thermodynamics (Eq. 254), heat transfer (K, is a
function of temperature), and mechanics (Eqs. 143
and 146).

3.6 Summary

In this section we have examined three mass transfer
processes that occur at phase interfaces, and all three
of these processes are related by the species mass
jump condition. We have seen how the species mass
jump condition serves as a focal point for the
connection of mass transfer, heat transfer,
thermodynamics, and mechanics. As a focal point,
the jump condition serves to connect various areas of
chemical engineering that are often taught as
separate and isolated subjects. This isolation appears
in various forms and perhaps the most obvious form
is visible in terms of the so-called special discipline
of chemical reaction engineering. Other special
disciplines are in the making; however, the physical
processes in the world around us care little for
special disciplines. Instead they are bound only by
the laws of physics.

Conclusions

In this study we have examined the interface
between physics and chemical engineering in terms
of the subject of mechanics. Connecting the two
different perspectives required a study of the work of
Euler and Cauchy which, in turn, provided the basis
for a study of the mechanics of multicomponent
systems. Finally we examined a single equation, the
species mass jump condition, that served to illustrate
the connections between mass transfer, heat transfer,
thermodynamics, and chemical reaction.

Nomenclature

o/  surface area of a fixed control volume, m>

o#y(t) surface area of a material volume, m’

o%(t) surface area of an arbitrary moving control
volume, m’

o%/p(t) surface area of a species A material volume,
m?

A area, m’

b total body force per unit mass, N/kg

b; i=1,2,..., N, body force exerted by a large,
external body on the i™ mass point, N

b;,  body force per unit mass exerted by body #2
on body #1, N/kg

b,;  body force per unit mass exerted by body #l1
on body #2, N/kg

Ca molar concentration of species A, mole/m’

Cap  molar concentration of species A in the B-
phase, mole/m’

Cay  molar concentration of species A in the y-
phase, mole/m’

Cas

Na

Pas

Pa

r'cm
fa

Ra

RAs

t)
tam)
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surface concentration of species A associated
with the B~y interface, mole/m”

speed of sound, m/s

speed of sound for species A, m/s

diameter, m

Dga, binary diffusion coefficient for species A
and B, m/s

Knudsen diffusion coefficient for species A,
m’/s

force, N

force exerted by body #2 on body #1, N

force exerted by body #1 on body #2, N

force exerted by the j™ mass point on the i"
mass point in a cloud of mass points, N
gravitational body force per unit mass, N/kg
curvature, m™!

unit vectors

unit tensor

adsorption equilibrium coefficient, m
interphase equilibrium coefficient for species A
adsorption rate coefficient, m/s

desorption rate coefficient, s

mean free path of species A, m

diffusion path for the Stefan diffusion tube, m
molecular mass of species A, g/mole

mass, kg

mass per molecule of species A, kg/number
chemical composition indicator

cava, molar flux of species A, mole/m’s

unit normal vector

number density of species A molecules

— ng,, unit normal vector directed from the f3-
phase to the y-phase

|- ng, ng,, projection tensor

diffusive force per unit volume exerted by
species B on species A, N/m”

pressure, N/m’

partial pressure of species A, N/m*

position vector, m

position vector locating the center of mass, m
net mass rate of production of species A
owing to homogeneous reactions, kg/m’s

gas constant, J/mole K

net molar rate of production of species A
owing to homogeneous reactions, mole/m’s
net rate of production of species A owing to
heterogeneous reactions, mole/m’s

time, s

characteristic time, s

stress vector, N/m?

stress vector for species A, N/m’

stress tensor, N/m’

stress tensor for species A, N/m®

(i, j = 1,2,3) components of the stress tensor,
N/m?

absolute temperature, K

va — v, mass diffusion velocity, m/s

velocity of species A, m/s
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A=N
v Z ®,V, , mass average velocity, m/s
A=1

vem  velocity of the center of mass, m/s

w-ng, speed of displacement of the f—y interface,
m/s

¥ volume, m*

Ym(®) volume of a body, m*

Yat) volume of an arbitrary, moving control

volume, m’

Ya(t) volume of a species A body, m’

\Y volume, m’

Xa Ca/ €, mole fraction of species A

Xag  Cap / Cg, mole fraction of species A in the B-
phase

Xay Cay / C,, mole fraction of species A in the y-
phase

Greek letters

\Y% ii +j i +k i , gradient operator, m
ox “oy oz

Vs P -V, surface gradient operator, m!

Ya activity coefficient (ya — 1 as Xp — 1)

PA mass density of species A, kg/m’

p total mass density, kg/m’

T viscous stress tensor, N/m?

TA viscous stress tensor for species A, N/m’

0 viscosity, N/m’s

Ha chemical potential for species A, J/mol

(o) pa/ p, mass fraction of species A
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Appendix A. Influence of Surface Forces

In our analysis of body forces and central forces in
Sec. 1.3, we neglected the influence of surface forces
in order to keep the analysis as simple as possible. In
this appendix we include the effect of surface forces
in order to demonstrate that they have no influence
on our conclusions concerning central forces. We

begin the analysis with Cuts I and II shown in Fig. 4
and apply Euler’s first law to obtain

Cu‘[I:i I p, v, dv = j p,b,dv
dt 7 7i(t)
(AT)
+ [ pbydv+ | t,,dA

7 /(1)

d
CutH:a 'f p,v,dV = J. p, b, dV

7 (t) Zu() (A2)
+ I p, by dV + .[ t dA
T (t) oy (1)
At this point we introduce the new form of Cut III
illustrated in Fig. 1A. In this case the cylinder joining
the two spherical portions of the cut is arbitrarily
small and makes no contribution to either the volume
or area integrals. Under these circumstances the
application of Euler’s first law to Cut III leads to

d
E J.plvldv+ ijVZdV =jplb]3dV
710 7 0] (A3)
+ [ pbpdv+ [ o, dA+ [ t,,dA
T (®) o (1) e/ (1)

Use of Egs. (A1) and (A2) in this result immediately
leads to
[ pibpdv+ [ p,b,dv=0 (A4)
70 T ()

This is Eq. (39) which provides Newton’s third law
given earlier by Eq. (42). Here we see that the
inclusion of surface forces does not alter our
conclusion about the “equal and opposite” nature of
the body forces associated with the system shown in
Fig. 1A.

Application of Euler’s second law, including
surface forces, to Cuts I and II shown in Fig. 4 leads
to

d
Cutlza I rxp v, dV = j r,xp, b, dV

21 (1) 71t

(AS)
+ I r,xp b,dV+ .[ rxt., dA
F1(t) o/ (t)
d
Cutll: — .[ r,xp,v,dV = j r,xp, b, dV
dt Tu(® Tu(t)
(A6)
+ J. r,xp,b,, dV + I r,xt,,dA

T (®) A (1)

We can now apply Euler’s second law to Cut III
shown in Fig. 1A to obtain

CutIII:i .[rlxplvldeL f r,xp,v,dV

dt| 57 7u(t)
= j rxp b dV + _[ r,xp, by dV (A7)
71 T (®)
+ f rxt, dA+ .[ r,xt,, dA

o/ (t) o/ (1)
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- N\ Cut 11

Fig. 1A. Three body process

Here we have again made use of the fact that the
portion of the control volume connecting the two
spheres makes a negligible contribution to either the
area integrals or the volume integrals in Euler’s
second law. Use of Egs. (AS) and (A6) in Eq. (A7)
leads to the result given earlier by Eq. (47) that we
repeat here as

J r,xp, b, dV + j r,xp,b, dV =0 (A8)
710 T ()
At this point we can follow the original analysis to
obtain Eq. (50) and apply the development in
Appendix B to obtain the restriction given by Eq. (51).
Application of this restriction yields Eq. (52) which in
turn provides the central force law given by Eq. (56).

Appendix B. Central Force Law

Deciding when some quantity is “small enough” so
that it can be discarded is not an easy task. In this
appendix we consider the analysis that led from Eq.
(50) to Eq. (51) and then to the central force law
represented by Eq. (56). We begin with Eq. (50)

[(rCM ) — (rem )z]xflz

+ j r,xpb,dV + I r,xp,b, dV [=0 ®BD
71t Ta(®
and make use of the following nomenclature
|:(rCM W~ (rCM)2:| =R (B2a)
f,=F (B2b)
[ Expb,dv+ [ Fxp,b,dV =D (B2¢)

710 Tu ()
to express Eq. (B1) as

RxF+D=0 (B3)
Here we would like to know when the vector D can
be discarded in order to simplify this result. A
plausible intuitive hypothesis (Birkhoff, 1960)
associated with this simplification is given by
Assumption: RxF=0 (B4)
however, we cannot discard D as being small
compared to R x F since Eq. (B3) requires that D
and R x F are the same order of magnitude. This

type of problem has been considered before
(Whitaker, 1988), and we will follow the procedure
suggested in that earlier work. This requires that we
decompose F into a part that is parallel to R and a
part that is perpendicular to R
F= F. + F, (B5)
—— ——

parallel part  perpendicular part
On the basis of this decomposition, we see that Eq.
(B3) provides the two results given by

RxF_=0 (B6a)
RxF; +D=0 (B6b)

This allows us to estimate F, as
= om) (B7)

O(R)

in which O indicates an order of magnitude estimate.
If F, is small relative to F-, and if small causes give
rise to small effects, we can replace F- with F and
Eq. (B6a) leads to the central force law given as Eq.
(56). In order to develop the conditions that must be
satisfied in order that F, be negligible compared to
F_, we impose the inequality given by

Restriction: F.>F| (BY)
In terms of the estimate given by Eq. B7 this leads to
F_> o) (B9)
O(R)

and because of the constraint given by Eq. B§ we can
express this result as

F> @

O(R)

Making use of the definitions given by Egs. (B2) we
have

(B10)

(0] I rxpb,dvV + J. r,xp, b, dV
710 T (0)

o (I:(rCM o~ (o), :|)

o(f,) >

(B11)
On the basis of Egs. (40) we obtain the estimates
[ Expb,dv = O(F)f,

Ti()
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[ Exp,b,dv = O, (B12)
T ()
in which f}, = f,;. Use of these two estimates, along
with Eq. (42), in Eq. (B11) leads to the constraint
given by
o) + O(r,)

0|:(rCM ) — (rem )z:l
This would appear to be a general constraint
associated with “mass point mechanics”.

Constraint:

<1 (B13)

Appendix C. Cauchy’s Lemma

In this development, we begin with Eq. (27) and
apply it to the body illustrated in Fig. 1C. This leads
to

4 J. pvdV = J. pbdV
dt A0) 0]

(C1)

+ I to) dA+ J' L dA+ J' o dA
An(t) An(t) Agrip (1)

in which A(t) represents the area of the two parallel
surfaces and Agyip(t) represents the area of the
connecting strip having a unit normal p. In terms of
average quantities, this form of Euler’s first law
reduces to

%[<pv>ALA(t)]=[<pb>ALA1(t)]+ [t dA
A, (t)
" (€2)
+ J. t(“z) dA + <t(u)> Ktrip (t)

An (1)
Here the volume averages are represented explicitly
by
[ pvav=(pwaLA®.
T (V)
[ pbdV =(pb)ALA )
T (1)
while the area average of the connecting strip has
been expressed as

j t, 0A= (t, ) Ay, (D) (C4)
Astrip (1)
For the limiting case in which the thickness of the
slab tends to zero, we have

ALA (1) =0, Ay, (1) >0,as AL—>0  (C5)
and Eq. (C2) reduces to
0= [ [tu, + ta,]dA,AL>0  (C6)

An(t)

(©3)

Since the limits of integration are arbitrary, the only
non-trivial solution to this result is given by

Coy =t (%)
Traditionally, one uses n; = n and n; = — n so that
this result takes the form given by
Cauchy’s lemma* to ==t , (C8)

4 James, G. and James, R.C. 1959, Mathematics Dictionary

(multilingual edition), “lemma, a theorem proved for the use in the
proof of another theorem”, D. van Nostrand Co., Inc., New York.

Fig. 1C. Body having the form of a slab

One can easily become confused when discussing the
sign of a particular component of the stress vector
acting on a particular surface, and the careful use of
Eq. (C8) will help to avoid this confusion.

Appendix D. Cauchy’s Fundamental Theorem

In Appendix C we learned something very important
about the stress vector by applying Euler’s first law
to the slab illustrated in Fig. 1C, and we can learn
more with an application to the tetrahedron shown in
Fig. 1D. One should think of the tetrahedron as a
body cut out of a distinct body according to the Euler
cut principle.

The stresses shown in Fig. 1D are identified
in a consistent manner, i.e., t) represents the vector
force per unit area acting on a surface having an unit
normal n. The unit normal vectors for the three
coordinate surfaces shown in Fig. 1D are —i, —j, and
—k respectively, thus the stress vectors acting on the
coordinate surfaces are identified as t_;, t.j, and
t_i while the stress vector acting on the oblique
surface is identified as t(,). The areas, normal vectors,
and stress vectors associated with the tetrahedron
shown in Fig. 1D are listed in Table D-1. The
oblique area is designated by AA, and the areas of the
coordinate surfaces are identified in terms of the
coordinate that is constant over the surface. Thus the
coordinate surface coincident with the y-z plane is
identified as AA, and we will refer to this surface as
the X-surface. While this nomenclature is convenient
for the identification of the coordinate surfaces of the
tetrahedron shown in Fig. 1D, one must be careful to
remember that AA, does not represent the component
of a vector.

We can apply Eq. (27) to the tetrahedron and
express the result as

4 J. pvdV = I pbdV + J.t(") dA
dt AV AV AA (Dl)
+ I to dA + _[ t; dA + .[ t o dA

AA AA AA
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t(n)

tj) =

tx)

Fig.1D. Stresses acting on a tetrahedron.

Table D-1. Stresses acting on a tetrahedron
Plane Area Normal Stress vector

ABC AA n tw
BCD AA,  -—i te)
ADC  AA,  —j te
ABD AA, -k t g

Here we have used AV to represent the volume of the
tetrahedron while the four areas are represented by
AA, AA,, AA; and AA,. In terms of average quantities,
Euler’s first law takes the form

Llovav]-[pn)av]

+ (ta))AA + (t ) )AA (D2)
+ (AR + (E )AA
in which volume averages are expressed as

d d
— av =— AV . D
thjvpv Glovav] et (D3)

while the area averages are represented by
[ta dA=(t, AR, [t dA=(t )AA, et (D4)
AA AA,

It is our intention to examine Eq. (D2) in the limit as
AV — 0, but before taking that limit, we need to use
the projected area theorem in order to express the
areas of the coordinate surfaces according to

AA =(n-i)AA (D5a)
AA = (0 )AA (DSb)
AA, = (n-K)AA (D5c¢)

The projected area theorem is discussed by Stein and
Barcellos (1992, Secs. 12.2 and 17.1). Equations
(D5) can be used in Eq. (D2) to obtain a form
containing only the oblique area, AA given by

%[(p v) AV ] =(pb)AV
+ AA[ (tg) + (i)t ) (D6)

+ (n : j)(t(,j)> + (l'l : k)<t(7k)>]

We can eliminate the first two terms in this form of
Euler’s first law by recognizing that the volume, AV,
tends to zero faster than the area, AA. To do this, we
divide Eq. (D6) by AA and take the limit to obtain

(1 d o AV,
Al\}lllo {Ea[@ v) AV]} - Al\}llqo{<pb> AA} " (D7)
AI\EIEO{“:(n)) + i)t ) + ()Xt )+ (n 'k)<t("‘)>}

Given the limiting condition for the ratio of the

volume to the area,
lim (ﬂj =0 (D8)
Av-o{ AA

we see that the first two terms in Eq. (D7) tend to
zero and we are left with a result involving only the
four stress vectors acting on the tetrahedron
illustrated in Fig. 1D.

0=t, +(m-t_, +(@m-jt_; + -kt _,, (DY)
On the basis of Cauchy’s lemma, we have the
following three relations

toy ==Lty =~ Ly sty =~ e (D10)
which allow us to express Eq. (D9) in the form
Cauchy’s fundamental theorem:

ty =@t +(m-j)t, +mKk)t,, (D11)
This famous theorem specifies the functional
dependence of the stress vector on the unit normal
vector, n, and we need to use this result in Egs. (27)
and (28) in order to derive the governing point
equations associated with Euler’s two laws of
mechanics. We begin with Eq. (D11) and rearrange
that expression to obtain

to =n-(it)+n-(jty)+n-(kt,) (D12)
This encourages us to remove the unit normal vector

as a common factor in order to express the stress
vector as

to) :n-[(itm)+(j ty )+ (Kt )} (D13)
We now define the term in brackets is the stress
tensor, T, leading to the compact representation
given by

t,=nT (D14)

Here one can think of the stress tensor as operating
on the vector n to produce the vector t,), or one can
think of the stress tensor as mapping the vector n
onto the vector tg).

Appendix E. Use of the chemical potential

In the development of the Stefan-Maxwell equations
we made use of the ideal mixture relation given by
P, = X, P, ideal mixture (E1)

and in this appendix we remove this limitation. We
begin with the idea that the state of a system can be
characterized by N — 1 mole fractions along with the
temperature and pressure. To be explicit about this
assumption we write
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{state ofan N -component}

system (E2)

= (Xps Xgs Xgoeeos Xy_gs 15 P)

This representation does not apply to an elastic
material for which the strain would also be required
to specify the state, nor would it apply to a magnetic
material for which the magnetic field would be
required to specify the state. To be clear about
dynamic systems, we note that the use of Eq. (E2)
requires the assumption of local thermodynamic
equilibrium. To give a specific example of this idea,
it means that the functional dependence of the
chemical potential of species A is taken to be
(Prigogine and Defay, 1954, page 85)

Ha = Ha(Xy, Xg, X Xno s P) (E3)
even in the presence of gradients such as VX, VT,
and Vp, or in the presence of time derivatives such as
op / ot, etc. This is a common assumption made in
studies of transport phenomena, but it is rarely stated
in a clear manner.

In this appendix we will avoid the limitation
imposed by Eq. E1 and make use of the more general
relation given by

pA:f(XA7XB X ,XN,laTa p)a

local thermodynamic equilibrium (

In order to connect this development with that given
in Sec. 2.6, it will be convenient to express the

functional dependence of the partial pressure
according to
pA:XAp+oy/7(XA7X39XC’ 9XN717T7 p) (ES)

Furthermore, it will be convenient to express this in
the general notation given by
Pa =XaP+F (WaWe Voo Wyys Wy Wiyy)  (E6)
Use of this more general representation for the
partial pressure in Eq. (131) leads to
0
a(pAVA) +V- (pAVAVA) —paby +X,VP
B=N+1
+ (60%/6WB)VWB —VT,— LV,

=1

(E7)

cn

=—pVX, +ZP A=1,2,..,N

AB >

and we can follow the development from Eq. (133)
to Eq. (136) to obtain

e
p l|:(3t (pAVA)+v (pAVAVA)_pAbA+XAVp

B=N+1

-Vt —nv,]+p Z (07 |0y )V, (E8)

— VX, +ZXX(VB a) A=1,2,...N

At this point we represent the chemical potential as
(Denbigh, 1955, page 269) as

Py =pa+RTIn(y, Xa),y, > 1las x, —1 (E9)
and form the gradient of the chemical potential to
obtain

E4)

X
Vx, = 2oy
ATRT M RT

—ﬁ(am/ap)vp = X,Vin(y,)

Substitution of this relation into Eq. (E9) leads to

Zal(oms/aT )+ Rin(r, x,) VT

4l 0
p ]|:a(pAVA)+V'(pAVAVA)_pAbA
+X VP =V 1, = 1,V,]
B=N+I
+p D (07 /oyg )V,
B=1

—;—_“r[(apg/m)+ RIn(y, x) [VT  (E1D)

X 0
= =2(0m3/0p) VP - X,V In(y,)
BN X, X, (Vi — v
:—ﬁvli Z A B‘E(yB )
B=1 ” AB
A=1,2,..,N

At this point we can follow Egs. (150) through (152)
to simplify this result to the form

pilpA(b _bA) - pil((’)A - XA)vp
+p ! (0,V-T-V-1,)

5

0
+ plpA[%+vA -VuA+uA-ij

B=N+1
+p Y (0T [oyg )V,

. (E12)
- R—_Ar[(a /T )+ Rin(y, x,) [VT

X
——A(au‘;/ap)Vp— X Vn(y,)

——TA vy, + BZ":‘ XaXg (Vg —V,) i
RT = D
A=1,2,.,N-1

In some cases, all of the terms on the left hand side

are discarded to obtain what is referred to as the

generalized Stefan-Maxwell equations (Taylor and
Krishna, 1993) given by

0= _X_AVHA 4 Bf:\‘ XAXB(,YB —Va)

RT o YDs

A=12,..,N-1

Arguments are given in Sec. 2.7 suggesting that the

first four terms on the left hand side of Eq. (E12) can

often be discarded. The fifth term involves a series of

corrections to the partial pressure for species A. The

most important term in this series of terms would be

the first one (for species A) that is given by

(6@7/ OX A)VX A however, there may be many

s>

(E13)

situations in which this entire series of terms is
negligible. It is plausible that the sixth and seventh
terms are also negligible compared to either one of
the two terms on the right hand side of Eq. (E12);

32 www.amidiq.org

(E10)



S. Whitaker / Revista Mexicana de Ingenieria Quimica Vol. 8, No. 1 (2009) 1-33

however, the eighth term is problematic. For ideal
solutions, the Stefan-Maxwell equations represented
by Eq. (146) should suffice. For non-ideal solutions,
it is difficult to argue that

X
X, Vin(y,)< ﬁVHA (E14)

thus a more appropriate form of the generalized
Stefan-Maxwell equations is given by

X BN X, X (Vg —Vv,)
_XAVIH(“):_ﬁV“”;%’ (E15)
= ‘AB
A=12,..,N-1

There are numerous variations of the basic Stefan-
Maxwell equations to be found in the literature (Bird
et al., 2002, page 769; Slattery, 1999, Sec. 8.4.4;
Deen, 1998, Sec. 11.8); however, there would
appear to be no detailed studies of the magnitude of
the terms that are discarded or retained. On the basis
of the material presented in Sec. 2.7 and the author’s
intuition, it would appear that Eq. (E15) should be
the first choice if one wants to move beyond Eq.
(146).
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