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Resumen 
 
Se presenta una metodología para resolver problemas típicos de transferencia de masa y reacción en ingeniería de 
las reacciones químicas en términos de funciones de Green. La idea fundamental consiste en invertir analíticamente 
un operador diferencial a partir de la solución de un problema de valor a la frontera asociado al problema original 
de transporte y reacción. La variable dependiente queda expresada en función de la solución de dicho problema 
asociado que es la función de Green. Entre las ventajas que presenta esta metodología son el suavizado de los 
errores de redondeo así como la incorporación en forma exacta de las condiciones de frontera. Un requisito 
indispensable para la aplicación de la metodología es que el operador diferencial sea autoadjunto. Para ilustrar la 
habilidad del método, se estudian problemas de difusión y reacción en una partícula catalítica involucrando 
cinéticas tanto lineales como no lineales; además se analiza el efecto de las resistencias externas a la transferencia 
de masa y se discute la aplicación a problemas de transporte no isotérmico, convectivo, en estrado transitorio y 
multicomponentes. Las predicciones se comparan con las que resultan de la solución numérica mediante diferencias 
finitas. El análisis se lleva a cabo en términos de parámetros tanto numéricos (tiempo de cómputo, tamaño de 
malla) como de transporte (módulo de Thiele, número de Biot). 
 
Palabras clave: transporte de masa y reacción, función de Green, diferencias finitas, métodos numéricos. 
 
Abstract 
 
A methodology to solve typical problems of mass transfer and chemical reaction engineering in terms of Green’s 
functions is presented. The fundamental idea consists on analytically inverting a differential operator by means of 
the solution of a boundary value problem associated to the original transport and reaction problem. The dependent 
variable is expressed then as function of the solution of such associated problem, which is the Green’s function. 
Among the advantages that this methodology presents are the smoothing of round-off errors as well as the exact 
incorporation of boundary conditions. A mandatory requirement for the application of this methodology is that the 
differential operator must me self-adjoint. To illustrate the potential of the method, diffusion and reaction problems 
are studied in a catalytic particle involving both linear and non-linear reaction kinetics; in addition, the effect of the 
external mass transfer resistances is analyzed and the application to non-isothermal, convective, transient and 
multicomponent problems is discussed. The predictions are compared with those resulting from the numeric 
solution using finite differences. The analysis is carried out in terms of both numeric (computer time, mesh size) 
and transport (Thiele modulus, Biot number) parameters. 
 
Keywords: mass transport and reaction, Green’s function, finite differences, numeric methods. 
 
1. Introducción 

 
En las últimas décadas, las necesidades de 

solución de problemas de valor a la frontera y de 
valor inicial en operaciones de diseño, análisis, 
optimización y control han llevado al desarrollo de 
algoritmos comerciales basados en esquemas 
numéricos de diferenciación (por ejemplo, 
colocación ortogonal, diferencias finitas y elemento 

finito). La ventaja que ofrecen estos métodos es el 
transformar una ecuación diferencial en un sistema 
finito de ecuaciones algebraicas, el cual resulta más 
sencillo de manejar que la ecuación original. Por 
ejemplo, considere la siguiente ecuación diferencial 
ordinaria 

 ( ) ( )
2

2

d , 0,1
d

c f x x
x

= ∀ ∈  (1) 

sujeta a las siguientes condiciones de frontera, 
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 dEn  0, 0
d
cx
x

= =  (2) 

 En  1, sx c c= =  (3) 
donde sc  es un valor constante y conocido. En los 
métodos numéricos arriba mencionados, se requiere 
satisfacer las ecs. (1)-(3) en un número finito (n) de 
nodos computacionales (i = 1,…,n), es decir 

 
1

d 0
d i

c
x =

=  (4) 

 ( )
2

2

d , 2,..., 1
d i

i

c f x i n
x

= ∀ = −  (5) 

 ( )n sc x c=  (6) 
En el método de diferencias finitas, el lado 

izquierdo de la Ec. (5) se expresa, a partir de 
expansiones en series de Taylor, como sigue 

 
( )

( )
2

21 1
2 2

2d
d

i i i

i

c c cc x
x x

+ −− + ⎡ ⎤= + Δ⎣ ⎦Δ
O  (7) 

donde se ha preferido la nomenclatura simplificada ci 
= c(xi). De la misma forma, el lado izquierdo de la 
Ec. (4) puede escribirse como 

 ( )2 1

1

d
d i

c cc x
x x=

−
= + Δ

Δ
O  (8) 

Si bien las ecs. (7) y (8) son una 
representación exacta de la segunda y primera 
derivada de c con respecto a x, respectivamente; para 
poder trabajar con ellas es necesario despreciar los 
términos de orden O[(Δx)2] y O(Δx). De esta forma, 
sustituyendo las ecs. (7) y (8) en las ecs. (4) y (5) y 
rearreglando las ecuaciones resultantes se obtiene el 
siguiente sistema de ecuaciones algebraicas 
 1 2 0c c− + =  (9) 

 ( )2
1 12i i i ic c c x f− +− + = Δ , 2,..., 1i n∀ = −  (10) 

 n sc c=  (11) 
El cual puede resolverse usando métodos 

clásicos de inversión de matrices. Sin embargo, este 
tipo de métodos de aproximación no pueden 
fácilmente detener la propagación de los errores de 
aproximación, lo que reduce la exactitud de las 
soluciones numéricas. Además, si las condiciones de 
frontera no son del tipo Dirichlet, se suelen 
involucrar aproximaciones con un orden de error 
mayor que el usado en la ecuación diferencial, como 
se mostró arriba. Esto puede traer como 
consecuencia inestabilidades en las soluciones; para 
compensar este efecto, se suelen usar mallas 
computacionales refinadas o de tamaño variable. Lo 
cual puede resultar más costoso en términos de 
tiempo de cómputo y no siempre garantiza la 
convergencia del método.  

En este trabajo se lleva a cabo la solución de 
problemas de valor a la frontera comúnmente 
encontrados en ingeniería de las reacciones químicas 
en términos de funciones de Green. La idea 
fundamental de esta metodología consiste en invertir 

(analíticamente) un operador diferencial autoadjunto 
que permite expresar la solución como una ecuación 
integral donde las condiciones de frontera (ya sean 
de Dirichlet, Neumann o Cauchy) se incorporan de 
manera exacta. En la Sección 2 se expone 
detalladamente esta metodología.  

Como lo ejemplifican Mishra y col. (1991), 
las aplicaciones de las funciones de Green pueden ir 
desde la ingeniería química hasta la dinámica 
cuántica. En ingeniería química, el uso de las 
funciones de Green puede remontarse al trabajo de 
Amundson y Schilson (1961), quienes estudiaron el 
transporte difusivo de masa en una esfera 
considerando una reacción de primer orden. Más 
tarde Denn y Aris (1965a, b y c) resolvieron sistemas 
de optimización a partir de funciones de Green, 
mostrando que esta metodología lleva a esquemas 
iterativos que reducen el trabajo computacional. 
Kesten (1969) aplicó esta metodología para predecir 
perfiles de concentración para la descomposición de 
amoniaco en una partícula catalítica esférica. Por su 
parte, Dixit y Tavlarides (1982) fueron los primeros 
en usar esquemas de iteración Newtoniana para 
resolver las ecuaciones no-lineales resultantes del 
problema de difusión y reacción en una esfera y en 
un cilindro infinito. Posteriormente Mukkavilli y col. 
(1987a y b) estudiaron la transferencia de masa 
bidimensional con reacción de primer orden en un 
cilindro imponiendo condiciones de frontera tipo 
Dirichlet y Cauchy. Resolvieron los problemas de 
valor a la frontera para calcular la función de Green 
mediante expansiones de funciones propias y 
propusieren una función de Green modificada para 
acelerar la convergencia de la serie en dos órdenes de 
magnitud. Adicionalmente, Mishra y col. (1994), 
estudiaron el problema de transporte difusivo-
convectivo de masa en la combustión de flama de 
CO/H2/O2 a partir de funciones de Green.  

El efecto estabilizador que proporciona la 
solución mediante funciones de Green fue 
aprovechado por Axelsson y Gololobov (2003), 
quienes propusieron combinar métodos de 
diferenciación centrada con el método de funciones 
de Green para problemas de difusión-convección, 
alcanzando convergencias de segundo orden. Más 
aún, Alvarez-Ramírez y col. (2007) recientemente 
mostraron que al aplicar el método de funciones de 
Green en puntos discretos, es posible recuperar las 
fórmulas de diferencias finitas involucrando un 
factor de corrección en las condiciones de frontera 
que mejora el funcionamiento del método de 
diferencias finitas. Además, dado que el método de 
diferencias finitas es un caso particular del método 
de elemento finito, es posible concebir a las 
funciones de Green como funciones de peso que son 
la base de los métodos de aproximación de residuos 
ponderados (Galerkin, Elemento finito, Elemento a 
la frontera, entre otros). A su vez, esto permite 
extender la aplicación de la metodología aquí 
propuesta a dominios que involucren geometrías 
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complicadas, lo cual probablemente traiga como 
consecuencia el uso de funciones de Green más 
complicadas que las aquí usadas.  

El trabajo está organizado como sigue: en la 
Sección 2, se exponen las ideas clave sobre la 
solución de problemas de valor a la frontera a partir 
de funciones de Green. En la Sección 3, se presentan 
algunos ejemplos de aplicación de la metodología. 
Estos ejemplos tratan sobre el transporte de masa 
considerando cinéticas de reacción tanto lineales 
como no lineales, además se analiza el efecto de 
incorporar o no resistencias externas a la 
transferencia de masa. Los problemas se estudian en 
coordenadas rectangulares y curvilíneas y se 
comparan con las correspondientes soluciones 
analíticas (cuando es posible) y numéricas mediante 
diferencias finitas. El análisis se centra en la 
influencia de parámetros macroscópicos, como son el 
número de Biot y el módulo de Thiele, en la 
velocidad de convergencia de la solución. Además, 
se explica la aplicación de la metodología aquí 
propuesta a problemas más complicados como son, 
transporte no isotérmico, convectivo, en estado 
transitorio y en sistemas multicomponentes. 

 
2. Metodología. 
 
Considere la siguiente ecuación diferencial,  

 
( ) ( )( ) ( )

dd , , 0,1
d d

m mc x
x x R x c x x

x x
⎛ ⎞

= ∀ ∈⎜ ⎟
⎝ ⎠

 (12) 

donde c es la concentración molar del reactivo en 
una partícula catalítica cuya geometría está 
determinada por la variable m, de manera que m = 0 
corresponde a una placa , m = 1 a un cilindro y m = 2 
a una esfera. Para simplificar el problema se supuso 
que los cambios importantes ocurren en una sola 
dirección (x). El término fuente R en el lado derecho 
de la Ec. (12) se refiere a la velocidad de consumo de 
reactivo, la cual es, en general una función dada de c. 
La ecuación diferencial (12) está sujeta a las 
condiciones de frontera (2) y (3), siendo cs el valor 
de la concentración en la superficie externa de la 
partícula, la cual se supone conocida.  

Asociado a este problema de valor a la 
frontera, se propone el siguiente (ver Apéndice)  

 
( ) ( ) ( )0

0

d ,d , 0,1
d d

m G x x
x x x x

x x
δ

⎛ ⎞
= − ∀ ∈⎜ ⎟

⎝ ⎠
 (13) 

 
( )0d ,

En 0, 0
d

G x x
x

x
= =  (14) 

 ( )0En 1, , 0x G x x= =  (15) 
En la Ec. (13), G(x,x0) es la función de Green 

y δ (x0− x) es la función delta de Dirac, definida 
como 

 ( ) ( ) 0
0 0

0

0,
,
x x

x x x x
x x

δ δ
≠⎧

− = − = ⎨∞ =⎩
 (16) 

Note que las condiciones de frontera (14) y 
(15) son las versiones homogéneas de las 

condiciones (2) y (3). Por otro lado, del cálculo 
diferencial se sabe que  

 d d d d d d
d d d d d d

m m mu u v ux v v x x
x x x x x x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (17) 

 d d d d d d
d d d d d d

m m mv v u vx u u x x
x x x x x x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (18) 

Restando a la Ec. (17) la Ec. (18) y 
sustituyendo u → c y v → G se obtiene  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0

0

0

0

dd ,
d d

d ,d
d d

dd ,
d d

d ,
d

m

m

m

c x
x G x x

x x

G x x
x c x

x x

c x
x G x x

x x

G x x
c x

x

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
⎡ ⎛

= ⎢ ⎜
⎢ ⎝⎣

⎤⎞
− ⎥⎟

⎥⎠⎦

 (19) 

La cual en su forma general, 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

0

0

0

0

dd ,
d d

d ,d
d d

dd ,
d d

d ,
d

c x
p x G x x

x x

G x x
p x c x

x x

c x
p x G x x

x x

G x x
c x

x

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
⎡ ⎛

= ⎢ ⎜
⎢ ⎝⎣

⎤⎞
− ⎥⎟

⎥⎠⎦

 (20) 

se conoce como la forma diferencial de la identidad 
de Lagrange (Haberman, 2004). El resultado de 
integrar la identidad de Lagrange es la llamada 
fórmula de Green, 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

00

0

0

1

0

0

dd ,
d d

d ,d d
d d

d
,

d

d ,
d

m

m

m

c x
x G x x

x x

G x x
x c x x

x x

c x
x G x x

x

G x x
c x

x

⎡ ⎛ ⎞
⎢ ⎜ ⎟
⎢ ⎝ ⎠⎣

⎤⎛ ⎞
− ⎥⎜ ⎟

⎥⎝ ⎠ ⎦
⎡ ⎛

= ⎢ ⎜
⎢ ⎝⎣

⎤⎞
− ⎥⎟

⎥⎠⎦

∫

 (21) 

Sustituyendo los lados derechos de las 
ecuaciones que conforman los problemas de valor a 
la frontera para c(x) y G(x,x0), permite expresar la 
Ec. (21) como  

 
( ) ( )

( )( ) ( )

0
0

1
1

00

d ,
d

, , d

s
x

m

G x x
c x c

x

x R x c x G x x x

=

=

+∫
 (22) 
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donde se empleó la siguiente propiedad de la función 
delta de Dirac ( ) ( ) ( )

1

0 00
dy x x x x y xδ − =∫  

(Greenberg, 1971). Por último, cambiando x0 → x en 
cada término de la Ec. (22) da como resultado 

 
( ) ( )

( )( ) ( )
0

0

0 1

1

0 0 0 0 00

d ,
d

, , d

s
x

m

G x x
c x c

x

x R x c x G x x x

=

=

+∫
 (23) 

Note que en la ecuación anterior se ha 
impuesto que la función de Green sea simétrica, es 
decir G(x0, x) = G(x, x0). De acuerdo a la Ec. (13), la 
función de Green es la respuesta en la posición x 
debida a una fuente concentrada en x0. La 
consecuencia de la condición de simetría es entonces 
que la respuesta en x debida a una fuente ubicada en 
x0 es la misma que la respuesta en x0 debida a una 
fuente concentrada localizada en x. Esta propiedad se 
conoce como reciprocidad de Maxwell y no es 
físicamente obvia. Más aún, a partir del segundo 
término en el lado derecho de la Ec. (23), se tiene 
que G(x, x0) refleja la influencia del término fuente 
en la Ec. (12) ( )( )0 0 0,mx R x c x⎡ ⎤⎣ ⎦  en 0x  sobre la 
concentración c(x) en la posición x. Por su parte, el 
primer término en el lado derecho de la Ec. (23) 
muestra el efecto de la condición de frontera no-
homogénea (3) sobre el perfil de concentración. Esto 
es atractivo desde el punto de vista físico, ya que la 
estructura de la Ec. (23) permite identificar 
fácilmente la influencia de la fuente y las 
condiciones de frontera en la solución. Más aún, 
desde un punto de vista matemático, la estructura de 
la Ec. (23) es también conveniente, ya que la 
solución se expresa como la suma de una solución 
particular que satisface las condiciones de frontera 
homogéneas (segundo término) y una solución 
homogénea que satisface las condiciones de frontera 
(primer término). 

Por ultimo, note que sí ( )( ),R x c x  es una 
función no-lineal de la variable dependiente c(x), la 
Ec. (23) se convierte en una ecuación integral no-
lineal expresada en términos de la función de Green, 
la cual se obtiene de resolver el problema lineal de 
valor a la frontera dado por las ecs. (13)-(15). La 
solución de este problema se presenta en el 
Apéndice; aquí solo se resumen los resultados en la 
Tabla 1 para sistemas coordenados rectangulares y 
curvilíneos. Note que las funciones de Green son el 
resultado de invertir el operador diferencial de 
difusión y son, por tanto, independientes de la 
expresión de velocidad de reacción en la Ec. (12). 
Además, a partir de los resultados de la Tabla 1, se 
obtiene que la derivada en el lado derecho de la Ec. 
(23) es la unidad. Para el caso en que R es una 
función no lineal, se deben usar esquemas numéricos 
de iteración como ha sido sugerido previamente 
(Denn y Aris, 1965a, b y c; Dixit y Tavlarides, 1982, 
Valdés-Parada y col. 2007). De hecho, sólo es 

posible obtener soluciones analíticas para cinéticas 
de órdenes cero y uno. En la siguiente sección se 
analizan ejemplos usando cinéticas de primer orden y 
de tipo Langmuir-Hinshelwood, los resultados se 
comparan con los obtenidos con el método de 
diferencias finitas. 
 

Tabla 1. Funciones de Green para el operador de 
difusión. 

Geometría (m) Función de Green 
Rectangular 

(m = 0) ( ) 0 0
0

0

1,
,

1,
x x x

G x x
x x x

− <⎧
= ⎨ − >⎩

 

Cilíndrica 
(m = 1) ( ) ( )

( )
0 0

0
0

ln ,
,

ln ,
x x x

G x x
x x x

⎧ <⎪= ⎨ >⎪⎩
 

Esférica 
(m = 2) ( )

1
0 0

0 1
0

1 ,
,

1 ,
x x x

G x x
x x x

−

−

⎧ − <⎪= ⎨
− >⎪⎩

 

 
Desde un punto de vista práctico, la condición 

de frontera (3) es difícilmente útil, ya que la 
concentración del reactivo en la superficie de la 
partícula no es, en general, conocida a priori. En la 
mayoría de las aplicaciones, existen resistencias a la 
transferencia de masa en la superficie (Aris, 1975), 
por lo que la condición de frontera está dada por 

 ( )( )dEn 1, 1
d f
cx Bi c c
x

= − = −  (24) 

donde Bi es el número de Biot y cf es el valor de la 
concentración en la fase fluida externa. Esta última 
puede calcularse a partir de las ecuaciones 
gobernantes del sistema de reacción, por ejemplo un 
reactor continuo tipo tanque agitado o bien un lecho 
empacado. Para los propósitos de este trabajo, se ha 
preferido suponer que cf es conocida, dejando para 
trabajos posteriores el análisis de la influencia de los 
parámetros del sistema de reacción en la solución a 
partir de funciones de Green. La condición de 
frontera asociada para el problema de valor a la 
frontera de la función de Green es la siguiente  

 
( ) ( )0

0

d 1,
En 1, 1,

d
G x

x BiG x
x

= − =  (25) 

Siguiendo el procedimiento presentado en el 
Apéndice, se calcularon las funciones de Green 
presentadas en la Tabla 2 para m = 0, 1 y 2. Note 
que, en este caso, las funciones de Green dependen 
del número de Biot. De hecho, si se toma el límite 
cuando Bi → ∞, en los resultados de la segunda 
columna de la Tabla 2 se recuperan los resultados de 
la Tabla 1. Más aún, si se denotan a los resultados de 
la Tabla 1 como G1(x, x0), todos los resultados en la 
Tabla 2 (G2(x, x0)), pueden resumirse mediante la 
siguiente expresión 
 ( ) ( ) 1

2 0 1 0, ,G x x G x x Bi−= −  (26) 
Es decir, para obtener los resultados de la 

Tabla 2, se debe substraer a cada resultado de la 
Tabla 1el inverso del número de Biot. Por lo que 
para valores bajos de Bi ( 1Bi ), la respuesta 
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debida al término de reacción química se retrasa con 
respecto a la respuesta que se obtendría si no 
existieran resistencias externas (Bi → ∞), lo cual es 
el comportamiento esperado. 

Dado que las condiciones de frontera (24) y 
(25) no son del tipo Dirichlet, la estructura de la 
solución debe modificarse. A partir de la fórmula de 
Green (Ec. (21)), no es muy complicado llegar al 
resultado deseado 

 
( ) ( )( ) ( )

( )

1

0 0 0 0 00

0

, , d

1,

m

f

c x x R x c x G x x x

BiG x c

⎡ ⎤= ⎣ ⎦
−
∫  (27) 

De nuevo, puede demostrarse que en límite 
cuando Bi → ∞, se recupera el resultado para el caso 
en que no hay resistencias externas a la transferencia 
de masa (Ec. (23)). En la siguiente sección se 
presenta la evaluación y discusión de estas 
soluciones. 
 

Tabla 2. Funciones de Green para el operador de 
difusión considerando resistencias externas a la 

transferencia de masa. 
Geometría (m) Función de Green 

Rectangular 
(m = 0) ( )

1
0 0

0 1
0

1 ,
,

1 ,
x Bi x x

G x x
x Bi x x

−

−

⎧ − − <⎪= ⎨
− − >⎪⎩

 

Cilíndrica 
(m = 1) ( ) ( )

( )

1
0 0

0 1
0

ln ,
,

ln ,
x Bi x x

G x x
x Bi x x

−

−

⎧ − <⎪= ⎨ − >⎪⎩
 

Esférica 
(m = 2) ( )

1 1
0 0

0 1 1
0

1 ,
,

1 ,
x Bi x x

G x x
x Bi x x

− −

− −

⎧ − − <⎪= ⎨
− − >⎪⎩

 

 
3. Resultados y Discusión 
 

En esta sección se muestra la habilidad del 
método de solución basado en funciones de Green a 
partir de algunos ejemplos típicos de transferencia de 
masa y reacción. Como se mencionó anteriormente, 
el método aquí planteado involucra un proceso 
iterativo para predecir los perfiles de concentración. 
En la literatura se han usado métodos de Newton o 
bien de punto fijo (Picard) para llevar a cabo esta 
operación; en otro trabajo hemos reportado 
detalladamente la implementación de estas técnicas 
para la solución de las ecuaciones integrales 
resultantes de esta metodología (Valdés-Parada y 
col., 2007). 
Ejemplo 1. Consideremos el transporte isotérmico de 
masa por difusión en estado estacionario con cinética 
de primer orden en una partícula catalítica, 

 
( ) ( ) ( )2dd , 0,1

d d
m mc x

x x c x x
x x

⎛ ⎞
= Φ ∀ ∈⎜ ⎟

⎝ ⎠
 (28) 

sujeta a las condiciones de frontera (2) y (3). De 
acuerdo a los desarrollos de la Sección 2, la solución 
de este problema de valor a la frontera es 
 ( ) ( ) ( )

1 2
0 0 0 00

, dm
bc x c x c x G x x x⎡ ⎤= + Φ⎣ ⎦∫  (29) 

donde G(x, x0) está dada en la Tabla 1. Como 
parámetro de comparación, se ha escogido el factor 
de efectividad η de la partícula, el cual se define 
como 

 

( )( )
( )( )

( )
( )( ) ( )( )

1

0 0 0 00
1

0 00

1

0 0 0 00

,

1, 1

1
,

1, 1

m

m

m

x R x c x dx

x R c dx

m
x R x c x dx

R c

η =

+
=

∫
∫

∫

 (30) 

Dado que, en este caso, ( )( ) ( )2
0 0 0,R x c x c x= Φ , se 

pueden obtener expresiones analíticas para η (Aris, 
1975), 

m = 0 
( )tanh

η
Φ

=
Φ

 (31) 

m = 1 
( )
( )

1

0

2 I
I

η
Φ

=
Φ Φ

 (32) 

m = 2 
( )

3 1 1
tanh

η
⎡ ⎤

= −⎢ ⎥
Φ Φ Φ⎢ ⎥⎣ ⎦

 (33) 

La solución numérica de este problema se 
llevó a cabo usando diferencias finitas centradas para 
el operador de difusión. Las predicciones del factor 
de efectividad para determinados valores del módulo 
de Thiele se muestran en la Fig. 1 como función del 
número de nodos empleados en la malla 
computacional. Para mantener claridad en la 
presentación, sólo se muestran los resultados 
correspondientes a una placa y a una esfera (m = 0 y 
2). Respecto a los resultados de la Fig. 1, se 
presentan los siguientes comentarios  
a) Las discrepancias entre las predicciones 

obtenidas usando diferencias finitas y funciones 
de Green son más evidentes en coordenadas 
cartesianas que en esféricas. En ambas 
geometrías, las mayores desviaciones se 
presentan para valores bajos del modulo de 
Thiele (Φ < 1.0) y mallas computacionales 
pequeñas, es decir, usando menos de diez nodos.  

b) El hecho que la metodología aquí planteada 
ofrezca mejores resultados para valores bajos del 
módulo de Thiele es de esperarse, ya que en este 
caso el transporte difusivo domina sobre el 
consumo por reacción química. Dado que la 
función de Green es el resultado de invertir el 
operador de difusión, las predicciones a partir de 
esta metodología, reproducen en este caso los 
resultados de la solución analítica exacta al usar 
pocos nodos computacionales. Y como 
consecuencia, para valores elevados del modulo 
de Thiele, las mejoras con respecto a diferencias 
finitas son menos evidentes.  

c) La solución a partir de funciones de Green 
provee, en general, resultados aceptables para un 
amplio rango de valores del módulo de Thiele. 
De hecho, note que el usar mallas 
computacionales con cincuenta nodos 
computacionales es suficiente para obtener 
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errores de aproximación reducidos (del orden de 
1% respecto a la solución exacta), lo cual es 
aceptable a menudo en aplicaciones prácticas.  

En este ejemplo se ha estudiado el efecto de la 
reacción química y el tamaño de malla en la solución 
a partir de funciones de Green. En el siguiente 
ejemplo se estudiará el efecto de considerar las 
resistencias externas a la transferencia de masa. 
 
Ejemplo 2. Consideremos ahora el transporte 
difusivo de masa con reacción química no lineal en 
una partícula catalítica con y sin resistencias externas 
a la transferencia de masa. En particular, se usará una 
expresión tipo Langmuir-Hinshelwood para la 
cinética de reacción. La ecuación diferencial 
gobernante es 

( )

( ) ( )
( )( )

( )
2

2
2

dd
d d

1
, 0,1 , 0

1

m

m

c x
x

x x

c x
x x

c x

γ
γ

γ

⎛ ⎞
⎜ ⎟
⎝ ⎠

+
= Φ ∀ ∈ >

+

 (34) 

Sujeta a las siguientes condiciones de frontera 

 
( )d

En 0, 0
d
c x

x
x

= =  (35) 

Sin resistencias externas a la transferencia de masa ; 
( )En 1, fx c x c= =  (36) 

Con resistencias externas a la transferencia de masa

 ( )( )dEn 1, 1
d f
cx Bi c c
x

= − = −  (37) 

La solución del problema es, de acuerdo a los 
desarrollos de la Sección 2,  

( ) ( ) ( )
( )( )

( )
2

1 02
0 0 020

0

1
, d

1
m

f

c x
c x x G x x x

c x

c

γ

γ

⎡ ⎤+⎢ ⎥= Φ
⎢ ⎥+⎣ ⎦

+

∫  (38) 

donde G(x, x0) está dada en las tablas 1 y 2 si se usa 
la condición de frontera (36) o (37), respectivamente. 
De hecho, ya que la condición de frontera (36) es el 
resultado de tomar el límite cuando Bi → ∞ en la Ec. 
(37), las funciones de Green reportadas en la Tabla 2 
pueden usarse para obtener los resultados de la Tabla 
1 al hacer Bi → ∞. 
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Fig. 1. Factor de efectividad vs. número de nodos para ( )( ) ( )2,R x c x c x= Φ  y a) 0.1Φ = , b) 1.0Φ = , c) 5.0Φ = , 

d) 10.0Φ =  mediante diferencias finitas ( − □ − ), funciones de Green ( − ○ − ) y usando la solución exacta 
( ) . 
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Tabla 3: Tiempo de cómputo para la solución del Ejemplo 2, sin resistencias a la transferencia de masa, como 
función de Φ para m = 0, 1 y 2 usando diferencias finitas y funciones de Green. 

 

Tiempo de cómputo (x 10-7 seg) 
Coordenadas rectangulares Coordenadas cilíndricas Coordenadas esféricas 

Modulo de 
Thiele 

(Φ) FG DF FG DF FG DF 
0.1 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

0.73 
0.23 
0.48 
1.47 
1.47 
1.22 
1.22 
1.47 
1.47 
1.45 
5.61 
5.63 

37.30 
142.00 
106.00 
8.55 
1.95 
0.73 
0.48 
0.48 
0.48 
0.25 
0.48 
0.25 

0.25 
0.23 
0.23 
0.73 
0.73 
0.48 
2.67 
2.45 
2.44 
2.44 
2.44 
3.17 

0.73 

2.69 
5.38 
2.94 

1.45 

1.72 

1.22 

1.95 

0.73 

1.22 

0.48 

0.23 

0.48 

0.48 

0.23 

0.50 

1.47 

1.45 

1.47 

1.47 

1.47 

1.47 

1.47 

1.70 

3.91 

3.91 

3.66 

5.61 

3.41 

4.16 

2.69 

3.91 

1.47 

1.22 

0.97 

0.73 
FG = Funciones de Green; DF= Diferencias finitas. 
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Fig. 2. Factor de efectividad vs. número de nodos para una cinética no lineal con 5Φ =  y a) 0.1Bi = , b) 10Bi =  
usando diferencias finitas ( − □ − ) y funciones de Green ( − ○ − ). 
 

Como se mencionó anteriormente, el objetivo 
de este ejemplo es analizar ele efecto del número de 
Biot y el tiempo de cómputo en los cálculos usando 
funciones de Green. Como lo muestra la Ec. (26), el 
tomar en cuenta las resistencias a la transferencia de 
masa se traduce en restar el inverso del número de 
Biot a los resultados de la Tabla 1, por lo que el 
programa de computadora desarrollado para llevar a 
cabo los cálculos del Ejemplo 1 tuvo que modificarse 
sólo en este aspecto. Sin embargo, para calcular el 
tiempo de cómputo, se desarrolló una rutina donde se 
resuelve el problema usando una cantidad variable de 
nodos hasta lograr independencia de este parámetro 
numérico. Esta operación se repitió 800 veces para 
posteriormente calcular el promedio de los tiempos 
de cómputo de cada corrida. Mediante esta rutina, se 
obtuvieron los resultados de la Tabla 3. Los cuales 
vienen de resolver el problema de valor a la frontera 
dado por las ecuaciones (34)-(36), es decir, sin 
considerar resistencias externas a la transferencia de 
masa en una placa, un cilindro y una esfera. Por 
conveniencia, se fijó γ = 1 en la Ec. (34), aunque se 

obtendrían resultados similares para otros valores de 
γ. 

De los resultados de la Tabla 3, se puede 
concluir que la solución del problema involucrando 
funciones de Green requiere un tiempo de cómputo 
significativamente menor que el de la solución 
mediante diferencias finitas para valores bajos del 
módulo de Thiele ( 2Φ < ). Para valores mayores de 
Φ, tanto diferencias finitas como la solución usando 
funciones de Green requieren aproximadamente el 
mismo tiempo de cómputo. Esto se atribuye, al igual 
que en el ejemplo anterior, al efecto dominante de la 
velocidad de reacción sobre el mecanismo de 
difusión; de manera que las ventajas de la 
metodología aquí propuesta no son tan evidentes. 

En la Fig. 2, se presentan las predicciones del 
factor de efectividad usando dos valores del número 
de Biot como función del tamaño de malla. En este 
caso hay una diferencia fundamental entre las 
formulaciones usando funciones de Green y 
diferencias finitas, en la primera el número de Biot 
se incluye en el cálculo de G(x, x0) (Ec. (26)) y la 
condición de frontera es incorporada en forma exacta 
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(es decir, sin necesidad de discretizar alguna 
derivada) en la solución; mientras que en el método 
de diferencias finitas este parámetro se incluye sólo 
en la expresión algebraica discretizada de la 
condición de frontera (37), la cual es una 
aproximación de segundo orden. A partir de los 
desarrollos de la Sección 2, es de esperarse que para 
valores bajos del número de Biot (Bi < 1), las 
diferencias entre las dos metodologías de solución 
sea más plausible, incluso para tamaños de malla del 
orden de cien nodos. 

En general, los resultados anteriores muestran 
que, a pesar de que se debe realizar algo de trabajo 
analítico para calcular las funciones de Green, este 
tipo de formulación lleva a soluciones numéricas 
más exactas usando menores tamaños de malla. 
Desde un punto de vista computacional, esto ofrece 
la ventaja de reducir los tiempos de cómputo cuando 
se tienen requerimientos de soluciones masivas, 
como en los ciclos de optimización (Denn y Aris 
1965a,b y c).  

A su vez, esta metodología permite explorar 
problemas mas complicados como se muestra a 
continuación: 

 
- Difusión y reacción no isotérmica en una partícula 
catalítica. En este caso se deben considerar las 
siguientes ecuaciones adimensionales de transporte 
de masa y energía (Aris, 1975), 

( ) ( )2d d , , 0,1
d d

m mcx x R c T x
x x

⎛ ⎞ = Φ ∀ ∈⎜ ⎟
⎝ ⎠

 (39) 

( ) ( )2d d , , 0,1
d d

m mTx x R c T x
x x

β⎛ ⎞ = − Φ ∀ ∈⎜ ⎟
⎝ ⎠

 (40) 

donde β es el número de Prater. Si se imponen las 
siguientes condiciones de frontera, 

 d dEn 0, 0, 0
d d
T cx
x x

= = =  (41) 

 En 1, 1, 1x T c= = =  (42) 
se obtiene de combinar las ecs. (39) y (40) e integrar 
dos veces, la siguiente relación entre la temperatura y 
la concentración 
 ( ) [ ]1 1 , 0,1T c xβ= + − ∀ ∈  (43) 

Si en las ecs. (39) y (40) ( ) ( )1
, exp

T
R c T c

T
γ −⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

se tiene entonces que resolver solamente la siguiente 
ecuación diferencial  

( )
( ) ( )2

d d
d d

1
exp , 0,1

1 1

m

m

cx
x x

c
x c x

c
γβ

β

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞−
= Φ ∀ ∈⎜ ⎟⎜ ⎟+ −⎝ ⎠

 (44) 

en la ecuación anterior, γ es el número de Arrhenius. 
De acuerdo a los desarrollos de la Sección 2, no es 
muy complicado determinar que la solución de este 
problema está dada por  

( ) ( )
( )( )
( )( )

( )

1 02
0 00

0

0 0

1
1 exp

1 1

, d

m c x
c x x c x

c x

G x x x

γβ

β

⎡ ⎛ ⎞−
⎢= + Φ ⎜ ⎟⎜ ⎟+ −⎢ ⎝ ⎠⎣
⎤⎦

∫  (45) 

donde G(x, x0) está dada en la Tabla 1, ya que, a 
pesar que el lado derecho de la Ec. (44) es distinto al 
empleado en los ejemplos 1 y 2, el problema de valor 
a la frontera asociado con la función de Green sigue 
estando dado por las ecs. (13)-(15). La comparación 
de los factores de efectividad obtenidos a partir de la 
Ec. (45) con los que resultan del método de 
diferencias finitas se encuentra en el trabajo de 
Valdés-Parada y col. (2007). Mientras que el análisis 
para el caso en que el transporte difusivo se de 
preferentemente en la dirección radial y el 
convectivo en la axial fue presentado por Mukkavilli 
y col. (1987a y b). 
 
- Difusión y convección en un reactor tubular. Las 
ecuaciones que gobiernan el transporte de masa en 
este sistema son  

( ) ( ) ( )( ) ( )
2

2

d d
, , 0,1

dd
c x c x

Pe R x c x x
xx

− = ∀ ∈  (46) 

 ( )En  0, enx c x c= =  (47) 

 
( )d

En  1, 0
d
c x

x
x

= =  (48) 

en la Ec. (46), Pe  es el número de Péclet y en la Ec. 
(47), cen es la concentración a la entrada del sistema 
de reacción, la cual se supone conocida. Dado que el 
operador diferencial no es auto-adjunto, se debe 
multiplicar ambos lados de la Ec. (46) por un factor 
de integración (σ), el cual en este caso es σ = e−Pex. 
De esta forma, la Ec. (46) puede rearreglarse como 
sigue  

( ) ( )( ) ( )
dd , , 0,1

d d
Pex Pexc x

e e R x c x x
x x

− −⎛ ⎞
= ∀ ∈⎜ ⎟

⎝ ⎠
 (49) 

y el problema de valor a la frontera para la función 
de Green es por tanto, 

( ) ( ) ( )0
0

d ,d , 0,1
d d

Pex G x x
e x x x

x x
δ−⎛ ⎞

= − ∀ ∈⎜ ⎟
⎝ ⎠

 (50) 

 ( )0En  0, , 0x G x x= =  (51) 

 
( )0d ,

En  1, 0
d

G x x
x

x
= =  (52) 

Evidentemente, este problema de valor a la 
frontera difiere de los manejados hasta el momento 
en este trabajo. Sin embargo, siguiendo el método de 
solución presentado en el Apéndice, se llega a la 
siguiente expresión, 

 ( )
( )
( )0

1
0

0 1
0

1 ,
,

1 ,

Pex

Pex

Pe e x x
G x x

Pe e x x

−

−

⎧ − <⎪= ⎨
− >⎪⎩

 (53) 

Note que, en el límite cuando 0Pe →  
(proceso dominantemente difusivo), la ecuación 
anterior se reduce a 



F. J. Valdés-Parada y col. / Revista Mexicana de Ingeniería Química Vol. 6, No. 3 (2007) 283-294 

 291

 ( )
* * *

* * 0
0 * * *

0 0

1,
,

1,
x x x

G x x
x x x

⎧ − >⎪= ⎨
− <⎪⎩

 (54) 

La cual es idéntica a la Ec. (A.12). En la Ec. 
(54), * 1x x= −  y *

0 01x x= − . A partir de la Ec. (53) 
y de la fórmula de Green (Ec. (21)), se obtiene que la 
solución del problema de valor a la frontera descrito 
por las ecs. (46)-(48), está dada por  

( ) ( )( ) ( )0
1

0 0 0 00
, , dPex

enc x c e R x c x G x x x−⎡ ⎤= + ⎣ ⎦∫  (55) 

Con la cual se pueden obtener los 
correspondientes perfiles de concentración usando 
programas similares a los usados para resolver los 
ejemplos 1 y 2. 

 
- Transporte en estado no estacionario. Considere el 
siguiente problema de valor inicial y a la frontera, 
constituido por la ecuación diferencial parcial 

( )( ) ( )0,11 , , ,
0

m
m

xc cx R x t c x
t x xx t

∀ ∈∂ ∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂ ∂ ∀ >⎝ ⎠
 (56) 

Sujeta a las siguientes condiciones iniciales y de 
frontera 
 ( )0Cuando 0,t c c x= = , [ ]0,1x∀ ∈  (57) 

 dEn 0, 0, 0
d
cx t
x

= = ∀ >  (58) 

 En 1, , 0sx c c t= = ∀ >  (59) 
donde c0 es el valor de la concentración en todo el 
dominio al inicio y es, en general, función de la 
posición. La solución de este problema usando 
funciones de Green, puede llevarse a cabo de más de 
una manera; como lo muestra Haberman (2004) una 
alternativa consiste en definir un operador diferencial 

espacio-temporal 1 m
mL x

t x xx
∂ ∂ ∂⎛ ⎞≡ − ⎜ ⎟∂ ∂ ∂⎝ ⎠

, lo que da 

lugar a funciones modificadas de Green dependientes 
de x y de t. El inconveniente de este esquema de 
solución es que las funciones de Green se expresan 
como series infinitas espacio-temporales, lo cual 
puede afectar al tiempo de cómputo, sobretodo para 
intervalos de tiempo donde se requiera una cantidad 
considerable de términos en las series. Por ello, se ha 
preferido presentar en este trabajo una alternativa 
que conserva la sencillez analítica de las funciones 
de Green hasta el momento obtenidas. Para esto, se 
introduce la siguiente función, 

 ( )( ) ( )( ), , , ,m cF x t c x x R x t c x
t

∂⎡ ⎤= +⎢ ⎥∂⎣ ⎦
 (60) 

que permite expresar a la Ec. (56) como sigue 

( )( ) ( )0,1
, , ,

0
m xcx F x t c x

x x t
∀ ∈∂ ∂⎛ ⎞ =⎜ ⎟∂ ∂ ∀ >⎝ ⎠

 (61) 

la cual es análoga a la Ec. (12), por lo que la solución 
está dada por  

 
( ) ( )

( )( ) ( )
0

0

0 1

1

0 0 0 00

d ,
d

, , , d

s
x

G x x
c x c

x

F x t c x G x x x

=

=

+∫
 (62) 

O bien, ya que la función de Green 
corresponde a la reportada en la Tabla 1, la ecuación 
anterior se expresa, al sustituir la Ec. (60), como 
sigue 

 

( ) ( ) ( )

( )( ) ( )

1 0
0 0 00

1

0 0 0 0 00

, d

, , , d

m

m

s

c x
c x x G x x x

t

x R x t c x G x x x

c

∂⎡ ⎤
= ⎢ ⎥∂⎣ ⎦

⎡ ⎤+ ⎣ ⎦
+

∫

∫  (63) 

Debido a que la rutina de solución involucra 
un proceso iterativo, el incluir la derivada temporal 
de la concentración en la Ec. (63) no constituye, en 
general, una complicación adicional en el método 
numérico de solución.  

 
- Sistemas multicomponentes. Consideremos por 
último, el proceso de difusión-reacción en una 
partícula catalítica, donde se involucran varias 
especies químicas (ci, i = 1,…,n), cada una 
satisfaciendo la siguiente ecuación diferencial 

( ) ( ) ( )( )

( )

1

dd , ,..., ,
d d

0,1 , 1,...,

im m
i n

c x
x x R x c x c x

x x

x i n

ν
⎛ ⎞

=⎜ ⎟
⎝ ⎠

∀ ∈ =

 (64) 

donde νi es el coeficiente estequiométrico de la 
especie i. Las ecuaciones (64) están sujetas a las 
siguientes condiciones de frontera 

 
d

En 0, 0, 1,...,
d

ic
x i n

x
= = =  (65) 

 En 1, , 1,...,i isx c c i n= = =  (66) 
En varias aplicaciones prácticas, de los n 

problemas de valor a la frontera arriba presentados, 
sólo un número m [ ]( )1,m n∈  de ellos son 
independientes. De esta forma, las Ecs. (64)-(66) 
pueden expresarse como sigue  

( ) ( ) ( )( )

( )

1

dd , ,..., ,
d d

0,1

m m
n

c x
x x R x c x c x

x x

x

ν
⎛ ⎞

=⎜ ⎟
⎝ ⎠

∀ ∈

 (67) 

 dEn 0, 0
d
cx
x

= =  (68) 

 En 1, sx c c= =  (69) 

donde ( ) [ ]1 2, ,..., T
mc x c c c=  y [ ]1 2, ,..., T

mν ν ν ν= . A 
las ecuaciones (67)-(69) se les debe agregar el 
conjunto de ecuaciones que relacionan las 
concentraciones de las especies dependientes con las 
independientes. La estructura del problema vectorial 
de valor a la frontera (67)-(69) es idéntica a la 
discutida en la Sección 2, por lo que su solución está 
dada por la siguiente ecuación vectorial algebraica 

 
( ) ( ) ( )( )

( )

1

0 0 1 0 00

0 0

, ,...,

, d

m
n

s

c x x R x c x c x

G x x x c

ν⎡= ⎣

+⎤⎦

∫  (70) 

O bien, para cada componente, 
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( ) ( ) ( )( )

( )

1

0 0 1 0 00

0 0

, ,...,

, d , 1,...,

m
j j n

s

c x x R x c x c x

G x x x c j m

ν⎡= ⎣

+ =⎤⎦

∫  (71) 

En otras palabras, el resultado es ahora un 
sistema de ecuaciones integrales acopladas no 
lineales, el cual puede resolverse mediante métodos 
iterativos de inversión de matrices. Cabe mencionar 
que en la Ec. (71), G(x, x0) está dada en los 
resultados de la Tabla 1 ya que el problema de valor 
a la frontera asociado para la función de Green es 
idéntico al expresado en las ecs. (13)-(15).  

Por último, cabe mencionar que en todos los 
problemas que se abordaron en este trabajo, tanto el 
dominio como las fronteras no involucraron 
considerar ningún tipo de discontinuidad. Si este 
fuera el caso, debe tomarse en cuenta que la fórmula 
de Green [Ec. (21)] es el resultado de integrar la 
identidad de Lagrange [Ec. (20)]. De manera que si 
hubiese discontinuidades, se podría descomponer el 
dominio de integración en un número finito de 
subdominios en los cuales los integrandos fuesen 
continuos. Sin embargo, este tema sobrepasa los 
objetivos de este trabajo y serán abordados en 
trabajos futuros. 
 
Conclusiones 
 

En este trabajo se ha explorado la habilidad 
que tienen formulaciones integrales basadas en 
funciones de Green para proveer soluciones 
numéricas confiables de modelos de transporte de 
masa y reacción. Las simulaciones numéricas, 
ilustran que, comparado con el método clásico de 
diferencias finitas, la formulación integral ofrece 
mejores propiedades de convergencia bajo un rango 
considerable de valores de parámetros 
macroscópicos. De hecho, de acuerdo a los 
resultados de la Sección 3, se puede afirmar que con 
la metodología propuesta se obtienen predicciones 
aceptables del factor de efectividad usando, en 
general, menor número de nodos computacionales y, 
por tanto, menor tiempo de cómputo. Esto se debe 
principalmente a dos factores que son el suavizado 
de los errores de redondeado en el paso de 
integración y a la incorporación en forma exacta de 
las condiciones de frontera. Además, la estructura de 
la ecuación integral, ofrece una mejor comprensión, 
tanto física como matemática, de la solución de los 
problemas de valor a la frontera. 
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Apéndice: Cálculo de la función de Green para el 
operador de difusión 
 

En la literatura se han reportado diferentes 
métodos para calcular G(x, x0), entre las que destacan 
el método de variación de parámetros, el método de 
expansión en funciones propias así como la solución 
a partir de la función delta de Dirac (Greenberg, 
1971; Haberman, 2004). En este trabajo se ha 
preferido la solución mediante la función delta de 
Dirac, debido a que permite calcular las funciones de 
Green a partir de un problema de valor a la frontera 
en relación directa con el problema original de valor 
a la frontera. Dicho problema se presentó en la 
Sección 2 en las ecs. (12), (2) y (3). Dado que la 
función de Green representa la respuesta en la 
posición x debida a una fuente concentrada en 0x  
(lado derecho de la Ec. (12)), la ecuación diferencial 
asociada a ( )0,G x x  es 

( ) ( ) ( )0
0

d , 0,1d ,
d d 0,1, 2

m G x x x
x x x

x x m
δ

⎛ ⎞ ∀ ∈
= −⎜ ⎟

=⎝ ⎠
 (A.1) 

Cuyas condiciones de frontera son las 
versiones homogéneas de las ecs. (2) y (3) 

 ( )0d ,
en 0, 0

d
G x x

x
x

= =  (A.2) 

 ( )0en 1, , 0x G x x= =  (A.3) 
Las soluciones generales de la Ec. (A.1) para x 

≠ x0 son, dependiendo del sistema coordenado, las 
siguientes 

m = 0 ( ) 1,0 2,0 0
0

3,0 4,0 0

,
,

,
c c x x x

G x x
c c x x x

+ <⎧
= ⎨ + >⎩

 (A.4) 

m = 1 ( ) ( )
( )

1,1 2,1 0
0

3,1 4,1 0

ln ,
,

ln ,
c c x x x

G x x
c c x x x

⎧ + <⎪= ⎨ + >⎪⎩
 (A.5) 

m = 2 ( )
1

1,2 2,2 0
0 1

3,2 4,2 0

,
,

,
c c x x x

G x x
c c x x x

−

−

⎧ − <⎪= ⎨ − >⎪⎩
 (A.6) 

Al aplicar a las ecs. (A.4)-(A.6), las 
condiciones de frontera (A.2) y (A.3) resultan, 

m = 0 ( ) ( )
1,0 0

0
4,0 0

,
,

1 ,
c x x

G x x
c x x x

<⎧
= ⎨ − >⎩

 (A.7) 

m = 1 ( ) ( )
1,1 0

0
4,1 0

,
,

ln ,
c x x

G x x
c x x x

<⎧
= ⎨ >⎩

 (A.8) 

m = 2 ( ) ( )
1,2 0

0 1
4,2 0

,
,

1 ,

c x x
G x x

c x x x−

<⎧⎪= ⎨ − >⎪⎩
 (A.9) 

Como se puede notar, para completar las 
soluciones particulares, es necesario imponer dos 
condiciones de frontera adicionales; la primera viene 
del hecho de que el campo de concentración debe ser 
una función continua en todo el dominio, por lo que  
 ( ) ( )0 0 0 0 0En , , ,x x G x x G x x− += =  (A.10) 

La otra condición de frontera resulta de 
integrar la Ec. (A.1) desde 0x x−=  hasta 0x x+=  

( ) ( )

0 0

0 0

0

d , d ,
d d

1 , 0,1, 2

x x x x

m

G x x G x x
x x

m
x

+ −= =

−

= =

 (A.11) 

Al aplicar las condiciones de frontera (A.10) y 
(A.11) a las ecs. (A.7)-(A.9), se obtienen las 
siguientes soluciones particulares, 

m = 0 ( ) 0 0
0

0

1,
,

1,
x x x

G x x
x x x

− <⎧
= ⎨ − >⎩

 (A.12) 

m = 1 ( ) ( )
( )

0 0
0

0

ln ,
,

ln ,
x x x

G x x
x x x

⎧ <⎪= ⎨ >⎪⎩
 (A.13) 

m = 2 ( )
1

0 0
0 1

0

1 ,
,

1 ,
x x x

G x x
x x x

−

−

⎧ − <⎪= ⎨
− >⎪⎩

 (A.14) 

En la Fig. A-1, se muestran gráficas de estas 
soluciones para x0 = 0.5. Es de notarse el incremento 
en la curvatura de la función de Green conforme se 
incrementa el valor de m. En esta figura se incluyen 
además los resultados obtenidos a partir de evaluar la 
siguiente expresión obtenida usando el método de 
expansión en funciones propias, 

( ) ( ) ( )0
0

1

2
, n n

n n

x x
G x x

φ φ
λ

∞

=

−
= ∑ , 0,1, 2m∀ =  (A.15) 

En la ecuación anterior ( )n xφ  y nλ  son las 
funciones y valores propios. Las funciones propias 
son ( ) ( )cosn nx xφ λ= , ( ) ( )0n nx J xφ λ=  y 

( ) ( )sen /n nx x xφ λ=  para m = 0, 1 y 2, 

respectivamente. Los valores propios se obtienen de 
resolver las siguientes ecuaciones 
m = 0 ( )cos 0nλ =  (A.16) 

m = 1 ( )0 0nJ λ =  (A.17) 

m = 2 ( )sen 0n xλ =  (A.18) 

Para obtener los resultados de las gráficas en 
la Fig. A-1 se usaron 100 términos en la serie. Como 
puede notarse, ambos métodos proporcionan los 
mismos resultados, sin embargo, las ecs. (A.15) 
involucran calcular los valores propios de series 
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infinitas, mientras que las ecs. (A.12)-(A.14) son 
funciones por secciones que requieren un tiempo de 

cómputo considerablemente menor para ser 
calculadas. 
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Fig. A-1. Función de Green para 0 0.5x =  y a) m = 0, b) m = 1 y c) m =2 usando el método de la delta de Dirac 

( )  y expansión en funciones propias ( )i i i i . 

 




