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Resumen

Se presenta una metodologia para resolver problemas tipicos de transferencia de masa y reaccion en ingenieria de
las reacciones quimicas en términos de funciones de Green. La idea fundamental consiste en invertir analiticamente
un operador diferencial a partir de la solucién de un problema de valor a la frontera asociado al problema original
de transporte y reaccion. La variable dependiente queda expresada en funcion de la solucioén de dicho problema
asociado que es la funcion de Green. Entre las ventajas que presenta esta metodologia son el suavizado de los
errores de redondeo asi como la incorporacion en forma exacta de las condiciones de frontera. Un requisito
indispensable para la aplicacion de la metodologia es que el operador diferencial sea autoadjunto. Para ilustrar la
habilidad del método, se estudian problemas de difusion y reacciéon en una particula catalitica involucrando
cinéticas tanto lineales como no lineales; ademas se analiza el efecto de las resistencias externas a la transferencia
de masa y se discute la aplicacion a problemas de transporte no isotérmico, convectivo, en estrado transitorio y
multicomponentes. Las predicciones se comparan con las que resultan de la solucion numérica mediante diferencias
finitas. El andlisis se lleva a cabo en términos de parametros tanto numéricos (tiempo de computo, tamafo de
malla) como de transporte (modulo de Thiele, nimero de Biot).

Palabras clave: transporte de masa y reaccion, funcion de Green, diferencias finitas, métodos numéricos.
Abstract

A methodology to solve typical problems of mass transfer and chemical reaction engineering in terms of Green’s
functions is presented. The fundamental idea consists on analytically inverting a differential operator by means of
the solution of a boundary value problem associated to the original transport and reaction problem. The dependent
variable is expressed then as function of the solution of such associated problem, which is the Green’s function.
Among the advantages that this methodology presents are the smoothing of round-off errors as well as the exact
incorporation of boundary conditions. A mandatory requirement for the application of this methodology is that the
differential operator must me self-adjoint. To illustrate the potential of the method, diffusion and reaction problems
are studied in a catalytic particle involving both linear and non-linear reaction kinetics; in addition, the effect of the
external mass transfer resistances is analyzed and the application to non-isothermal, convective, transient and
multicomponent problems is discussed. The predictions are compared with those resulting from the numeric
solution using finite differences. The analysis is carried out in terms of both numeric (computer time, mesh size)
and transport (Thiele modulus, Biot number) parameters.

Keywords: mass transport and reaction, Green’s function, finite differences, numeric methods.

1. Introduccion

En las ultimas décadas, las necesidades de
solucion de problemas de valor a la frontera y de
valor inicial en operaciones de diseflo, analisis,
optimizacion y control han llevado al desarrollo de
algoritmos comerciales basados en esquemas
numéricos de diferenciacion  (por  ejemplo,
colocacion ortogonal, diferencias finitas y elemento
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finito). La ventaja que ofrecen estos métodos es el
transformar una ecuacion diferencial en un sistema
finito de ecuaciones algebraicas, el cual resulta mas
sencillo de manejar que la ecuacion original. Por
ejemplo, considere la siguiente ecuacion diferencial
ordinaria
2
=1,
dx
sujeta a las siguientes condiciones de frontera,

vx e (0,1) (1)
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En x=O,E=0 )
dx
En x=1,c=c, 3)

donde c, es un valor constante y conocido. En los

métodos numéricos arriba mencionados, se requiere
satisfacer las ecs. (1)-(3) en un niimero finito (n) de
nodos computacionales (i = 1,...,n), es decir

dc
ol =0 4
d*c :
Wi =f(x), Vi=2..,n-1 %)
c(x,)=c, (6)

En el método de diferencias finitas, el lado
izquierdo de la Ec. (5) se expresa, a partir de
expansiones en series de Taylor, como sigue

2
ol _Gu-2to o] ()
dx”|, ( Ax)
donde se ha preferido la nomenclatura simplificada c;
= ¢(Xj). De la misma forma, el lado izquierdo de la
Ec. (4) puede escribirse como
dc c,—C
. +0(Ax) 8)
Si bien las ecs. (7) y (8 son una
representacion exacta de la segunda y primera
derivada de c con respecto a X, respectivamente; para
poder trabajar con ellas es necesario despreciar los
términos de orden O[(AX)*] y O(AX). De esta forma,
sustituyendo las ecs. (7) y (8) en las ecs. 4) y (5) y
rearreglando las ecuaciones resultantes se obtiene el
siguiente sistema de ecuaciones algebraicas

Ci —2C +C;

—¢,+¢, =0 )
¢, —2¢ +C., =(Ax)" f, ,¥i=2,..,n—1 (10)
G =G, an

El cual puede resolverse usando métodos
clasicos de inversion de matrices. Sin embargo, este
tipo de métodos de aproximacion no pueden
facilmente detener la propagacion de los errores de
aproximacion, lo que reduce la exactitud de las
soluciones numéricas. Ademas, si las condiciones de
frontera no son del tipo Dirichlet, se suelen
involucrar aproximaciones con un orden de error
mayor que el usado en la ecuacion diferencial, como
se mostré6 arriba. Esto puede traer como
consecuencia inestabilidades en las soluciones; para
compensar este efecto, se suelen usar mallas
computacionales refinadas o de tamaio variable. Lo
cual puede resultar mas costoso en términos de
tiempo de cOémputo y no siempre garantiza la
convergencia del método.

En este trabajo se lleva a cabo la solucion de
problemas de valor a la frontera cominmente
encontrados en ingenieria de las reacciones quimicas
en términos de funciones de Green. La idea
fundamental de esta metodologia consiste en invertir

284

(analiticamente) un operador diferencial autoadjunto
que permite expresar la solucion como una ecuacion
integral donde las condiciones de frontera (ya sean
de Dirichlet, Neumann o Cauchy) se incorporan de
manera exacta. En la Seccion 2 se expone
detalladamente esta metodologia.

Como lo ejemplifican Mishra y col. (1991),
las aplicaciones de las funciones de Green pueden ir
desde la ingenieria quimica hasta la dinamica
cuantica. En ingenieria quimica, el uso de las
funciones de Green puede remontarse al trabajo de
Amundson y Schilson (1961), quienes estudiaron el
transporte  difusivo de masa en wuna esfera
considerando una reaccién de primer orden. Més
tarde Denn y Aris (1965a, b y ¢) resolvieron sistemas
de optimizacién a partir de funciones de Green,
mostrando que esta metodologia lleva a esquemas
iterativos que reducen el trabajo computacional.
Kesten (1969) aplicod esta metodologia para predecir
perfiles de concentracion para la descomposicion de
amoniaco en una particula catalitica esférica. Por su
parte, Dixit y Tavlarides (1982) fueron los primeros
en usar esquemas de iteracion Newtoniana para
resolver las ecuaciones no-lineales resultantes del
problema de difusion y reaccion en una esfera y en
un cilindro infinito. Posteriormente Mukkavilli y col.
(1987a y b) estudiaron la transferencia de masa
bidimensional con reaccion de primer orden en un
cilindro imponiendo condiciones de frontera tipo
Dirichlet y Cauchy. Resolvieron los problemas de
valor a la frontera para calcular la funciéon de Green
mediante expansiones de funciones propias y
propusieren una funciéon de Green modificada para
acelerar la convergencia de la serie en dos o6rdenes de
magnitud. Adicionalmente, Mishra y col. (1994),
estudiaron el problema de transporte difusivo-
convectivo de masa en la combustion de flama de
CO/H,/0, a partir de funciones de Green.

El efecto estabilizador que proporciona la
solucion mediante funciones de Green fue
aprovechado por Axelsson y Gololobov (2003),
quienes  propusieron combinar métodos de
diferenciacion centrada con el método de funciones
de Green para problemas de difusidn-conveccion,
alcanzando convergencias de segundo orden. Mas
aun, Alvarez-Ramirez y col. (2007) recientemente
mostraron que al aplicar el método de funciones de
Green en puntos discretos, es posible recuperar las
formulas de diferencias finitas involucrando un
factor de correccion en las condiciones de frontera
que mejora el funcionamiento del método de
diferencias finitas. Ademas, dado que el método de
diferencias finitas es un caso particular del método
de elemento finito, es posible concebir a las
funciones de Green como funciones de peso que son
la base de los métodos de aproximacion de residuos
ponderados (Galerkin, Elemento finito, Elemento a
la frontera, entre otros). A su vez, esto permite
extender la aplicacion de la metodologia aqui
propuesta a dominios que involucren geometrias
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complicadas, lo cual probablemente traiga como
consecuencia el uso de funciones de Green mas
complicadas que las aqui usadas.

El trabajo estd organizado como sigue: en la
Seccion 2, se exponen las ideas clave sobre la
solucién de problemas de valor a la frontera a partir
de funciones de Green. En la Seccion 3, se presentan
algunos ejemplos de aplicacion de la metodologia.
Estos ejemplos tratan sobre el transporte de masa
considerando cinéticas de reaccion tanto lineales
como no lineales, ademas se analiza el efecto de
incorporar 0o no resistencias externas a la
transferencia de masa. Los problemas se estudian en
coordenadas rectangulares y curvilineas y se
comparan con las correspondientes soluciones
analiticas (cuando es posible) y numéricas mediante
diferencias finitas. El andlisis se centra en la
influencia de parametros macroscopicos, como son el
nimero de Biot y el moddulo de Thiele, en la
velocidad de convergencia de la solucion. Ademas,
se explica la aplicacion de la metodologia aqui
propuesta a problemas mas complicados como son,
transporte no isotérmico, convectivo, en estado
transitorio y en sistemas multicomponentes.

2. Metodologia.

Considere la siguiente ecuacion diferencial,

i[ X" mj =X"R(x,¢(x)),vxe(0,1) (12)
dx dx
donde ¢ es la concentracion molar del reactivo en
una particula catalitica cuya geometria esta
determinada por la variable m, de manera que m = 0
corresponde a una placa , m = 1 aun cilindroy m=2
a una esfera. Para simplificar el problema se supuso
que los cambios importantes ocurren en una sola
direccion (X). El término fuente R en el lado derecho
de la Ec. (12) se refiere a la velocidad de consumo de
reactivo, la cual es, en general una funcion dada de c.
La ecuacion diferencial (12) estd sujeta a las
condiciones de frontera (2) y (3), siendo C el valor
de la concentracion en la superficie externa de la
particula, la cual se supone conocida.

Asociado a este problema de valor a la
frontera, se propone el siguiente (ver Apéndice)

i( X" M] =5(%,—x),Vxe(0,1) (13)

dx dx
dG
Enx=o, LX) (14)
dx
Enx=1,G(X,%,)=0 (15)

En la Ec. (13), G(X,Xo) es la funcion de Green

y d(Xo—X) es la funcion delta de Dirac, definida
como

0, X # X

S(X, —X)=5(x=%,)=1 0 16

(% =%)=8(x=%) {w,xzxo (16)

Note que las condiciones de frontera (14) y

(15) son las versiones homogéneas de las

condiciones (2) y (3). Por otro lado, del calculo
diferencial se sabe que

d( ,du d({ ,du) dv( . du
—| X"—Vv|=v—| X" — [+—| X" — | (17)
dx dx dx dx /) dx dx

d( ,dv d( ndv) duf ,dv
—| X" —u|=u—| X" — [+—| X" — | (18)
dx dx dx dx ) dx dx

Restando a la Ec. (17) la Ec. (18) y
sustituyendo U — €y V — G se obtiene

i[xm MJG(X,XO)

dx dx

La cual en su forma general,

o p00% ()
e =

dx dx

d {p(x)[“(x)G(x,xo)

dx

se conoce como la forma diferencial de la identidad
de Lagrange (Haberman, 2004). El resultado de
integrar la identidad de Lagrange es la llamada
féormula de Green,

[t
i( M}(x)}u

dx

e2))

0

Sustituyendo los lados derechos de las
ecuaciones que conforman los problemas de valor a
la frontera para c(X) y G(X,Xo), permite expresar la
Ec. (21) como

cl) = %)

S

x=1 (22)
+J01 X"R(X,¢(x))G(x,X, )dx
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donde se empleo la siguiente propiedad de la funcion
. 1
delta de  Dirac joy(x)5(xo —-x)dx=y(x,)

(Greenberg, 1971). Por tltimo, cambiando X, — X en
cada término de la Ec. (22) da como resultado

dG (X, X,
o(x)= CEX)
0 %=1 (23)
+.[(: X'R (X5 € (%)) G (X, X, ) dX,

Note que en la ecuacion anterior se ha
impuesto que la funcion de Green sea simétrica, es
decir G(Xo, X) = G(X, Xo). De acuerdo a la Ec. (13), la
funcion de Green es la respuesta en la posicion X
debida a una fuente concentrada en X, La
consecuencia de la condicion de simetria es entonces
que la respuesta en X debida a una fuente ubicada en
Xo es la misma que la respuesta en X, debida a una
fuente concentrada localizada en X. Esta propiedad se
conoce como reciprocidad de Maxwell y no es
fisicamente obvia. Mas aun, a partir del segundo
término en el lado derecho de la Ec. (23), se tiene
que G(X, Xo) refleja la influencia del término fuente

en la Ec. (12) [XS”R(XO,C(XO))] en X, sobre la

concentracion €(X) en la posicion X. Por su parte, el
primer término en el lado derecho de la Ec. (23)
muestra el efecto de la condiciéon de frontera no-
homogénea (3) sobre el perfil de concentracion. Esto
es atractivo desde el punto de vista fisico, ya que la
estructura de la Ec. (23) permite identificar
facilmente la influencia de la fuente y las
condiciones de frontera en la solucion. Mas aun,
desde un punto de vista matematico, la estructura de
la Ec. (23) es también conveniente, ya que la
solucion se expresa como la suma de una solucion
particular que satisface las condiciones de frontera
homogéneas (segundo término) y una solucién
homogénea que satisface las condiciones de frontera
(primer término).

Por ultimo, note que si R(X,C(x)) es una

funcion no-lineal de la variable dependiente c(x), la
Ec. (23) se convierte en una ecuacion integral no-
lineal expresada en términos de la funcién de Green,
la cual se obtiene de resolver el problema lineal de
valor a la frontera dado por las ecs. (13)-(15). La
solucion de este problema se presenta en el
Apéndice; aqui solo se resumen los resultados en la
Tabla 1 para sistemas coordenados rectangulares y
curvilineos. Note que las funciones de Green son el
resultado de invertir el operador diferencial de
difusion y son, por tanto, independientes de la
expresion de velocidad de reaccion en la Ec. (12).
Ademas, a partir de los resultados de la Tabla 1, se
obtiene que la derivada en el lado derecho de la Ec.
(23) es la unidad. Para el caso en que R es una
funcion no lineal, se deben usar esquemas numéricos
de iteracion como ha sido sugerido previamente
(Denn y Aris, 1965a, b y c; Dixit y Tavlarides, 1982,
Valdés-Parada y col. 2007). De hecho, solo es
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posible obtener soluciones analiticas para cinéticas
de drdenes cero y uno. En la siguiente seccion se
analizan ejemplos usando cinéticas de primer orden y
de tipo Langmuir-Hinshelwood, los resultados se
comparan con los obtenidos con el método de
diferencias finitas.

Tabla 1. Funciones de Green para el operador de

difusion.
Geometria (M) Funcién de Green
Rectangular X, =1, X< X,
I
( ) 0 X—1, X> X,
Cilindrica 1Il(X ) X< X
0 /> 0
(m=1) G(X’Xo):{ln(x) X> X
> 0
Esférica 1-x"' x<x
m=2 G(x,%)= oo
(m=2) (%) {l—xl,x>x0

Desde un punto de vista practico, la condicion
de frontera (3) es dificilmente 1til, ya que la
concentracion del reactivo en la superficie de la
particula no es, en general, conocida a priori. En la
mayoria de las aplicaciones, existen resistencias a la
transferencia de masa en la superficie (Aris, 1975),
por lo que la condicion de frontera estd dada por

d .
Enx:l,—d—izBl(c(l)—cf) 24)

donde Bi es el nimero de Biot y ¢ es el valor de la
concentracion en la fase fluida externa. Esta tltima
puede calcularse a partir de las ecuaciones
gobernantes del sistema de reaccion, por ejemplo un
reactor continuo tipo tanque agitado o bien un lecho
empacado. Para los propositos de este trabajo, se ha
preferido suponer que ¢t es conocida, dejando para
trabajos posteriores el analisis de la influencia de los
parametros del sistema de reaccion en la solucion a
partir de funciones de Green. La condicion de
frontera asociada para el problema de valor a la
frontera de la funcion de Green es la siguiente

dG(1
Enx:l,-+xo)=sie(1,xo) (25)
X

Siguiendo el procedimiento presentado en el
Apéndice, se calcularon las funciones de Green
presentadas en la Tabla 2 para m = 0, 1 y 2. Note
que, en este caso, las funciones de Green dependen
del niimero de Biot. De hecho, si se toma el limite
cuando Bi — oo, en los resultados de la segunda
columna de la Tabla 2 se recuperan los resultados de
la Tabla 1. Mas atn, si se denotan a los resultados de
la Tabla 1 como G;(X, X¢), todos los resultados en la
Tabla 2 (Gy(X, X)), pueden resumirse mediante la
siguiente expresion

G, (X, %) =G, (x,%)—-Bi" (26)

Es decir, para obtener los resultados de la
Tabla 2, se debe substraer a cada resultado de la
Tabla lel inverso del numero de Biot. Por lo que
para valores bajos de Bi (Bi<1), la respuesta
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debida al término de reacciéon quimica se retrasa con
respecto a la respuesta que se obtendria si no
existieran resistencias externas (Bi — o0), lo cual es
el comportamiento esperado.

Dado que las condiciones de frontera (24) y
(25) no son del tipo Dirichlet, la estructura de la
solucion debe modificarse. A partir de la formula de
Green (Ec. (21)), no es muy complicado llegar al
resultado deseado

1
c(x)= J.O[X(TR(XO,C(XO))G(X,Xo):|dX0
-BiG(1,x,)c;

De nuevo, puede demostrarse que en limite
cuando Bi — oo, se recupera el resultado para el caso
en que no hay resistencias externas a la transferencia
de masa (Ec. (23)). En la siguiente seccion se

presenta la evaluacion y discusion de estas
soluciones.

@7

Tabla 2. Funciones de Green para el operador de
difusion considerando resistencias externas a la
transferencia de masa.
Geometria (M) Funcién de Green

Rectangular x —1-Bi™", x<x
- G(x,x,)=4"° ’ 0
(m=0) (%) {x—l—Bil,x>x0
Cilindrica In(x,)—Bi™", x<x
— G(x,x, )= 0 ’ ’
(m=1) ( 0) {1n(x)_Bi1,x>X0

Esférica

(m=2) G(X’Xo):{

-1 -1

1-x, —Bi™, x<X,
-1 -1

1-x" =Bi,x>X,

3. Resultados y Discusion

En esta seccion se muestra la habilidad del
método de solucion basado en funciones de Green a
partir de algunos ejemplos tipicos de transferencia de
masa y reaccion. Como se menciono anteriormente,
el método aqui planteado involucra un proceso
iterativo para predecir los perfiles de concentracion.
En la literatura se han usado métodos de Newton o
bien de punto fijo (Picard) para llevar a cabo esta
operacién; en otro trabajo hemos reportado
detalladamente la implementacion de estas técnicas
para la solucion de las ecuaciones integrales
resultantes de esta metodologia (Valdés-Parada y
col., 2007).

Ejemplo 1. Consideremos el transporte isotérmico de
masa por difusion en estado estacionario con cinética
de primer orden en una particula catalitica,

d{ nde(x)) .,
&[x TJ_X ®’c(x),vxe(0,1) (28)

sujeta a las condiciones de frontera (2) y (3). De
acuerdo a los desarrollos de la Seccion 2, la solucion
de este problema de valor a la frontera es

c(x)=c, +J.;[X[TCDZC(XO)G (%, xo)]dxo (29)

donde G(X, Xo) estda dada en la Tabla 1. Como
parametro de comparacion, se ha escogido el factor
de efectividad 7 de la particula, el cual se define
como

LIX(TR(XU,C(XO))dXO
77:

j{: x'R(1,c(1))dx, (30)
_ (m+D) E X'R (%, (%, ) dx,

R(1e(1)

Dado que, en este caso, R(XO,C(XO)) =d’c(X,), se

pueden obtener expresiones analiticas para 7 (Aris,
1975),

-0 ~ tanh (D) 31
="

_ _2 (o)

m=1 77_q>|0(<1>) (32)

_ 3 r 1

m=2 n_qb{tanh((b) cp} 33)

La solucion numérica de este problema se
llevé a cabo usando diferencias finitas centradas para
el operador de difusion. Las predicciones del factor
de efectividad para determinados valores del modulo
de Thiele se muestran en la Fig. 1 como funcién del
nimero de nodos empleados en la malla
computacional. Para mantener claridad en la
presentacion, solo se muestran los resultados
correspondientes a una placa 'y a una esfera(m=0y
2). Respecto a los resultados de la Fig. 1, se
presentan los siguientes comentarios
a) Las discrepancias entre las predicciones
obtenidas usando diferencias finitas y funciones
de Green son mas evidentes en coordenadas
cartesianas que en esféricas. En ambas
geometrias, las mayores desviaciones se
presentan para valores bajos del modulo de
Thiele (® < 1.0) y mallas computacionales
pequenas, es decir, usando menos de diez nodos.

b) El hecho que la metodologia aqui planteada
ofrezca mejores resultados para valores bajos del
modulo de Thiele es de esperarse, ya que en este
caso el transporte difusivo domina sobre el
consumo por reaccion quimica. Dado que la
funcion de Green es el resultado de invertir el
operador de difusion, las predicciones a partir de
esta metodologia, reproducen en este caso los
resultados de la solucion analitica exacta al usar
pocos nodos computacionales. Y como
consecuencia, para valores elevados del modulo
de Thiele, las mejoras con respecto a diferencias
finitas son menos evidentes.

¢) La solucion a partir de funciones de Green
provee, en general, resultados aceptables para un
amplio rango de valores del modulo de Thiele.
De hecho, note que el wusar mallas
computacionales  con  cincuenta  nodos
computacionales es suficiente para obtener
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errores de aproximacion reducidos (del orden de
1% respecto a la solucion exacta), lo cual es
aceptable a menudo en aplicaciones practicas.
En este ejemplo se ha estudiado el efecto de la
reaccion quimica y el tamafio de malla en la solucion
a partir de funciones de Green. En el siguiente
ejemplo se estudiara el efecto de considerar las
resistencias externas a la transferencia de masa.

Ejemplo 2. Consideremos ahora el transporte
difusivo de masa con reaccion quimica no lineal en
una particula catalitica con y sin resistencias externas
a la transferencia de masa. En particular, se usara una
expresion tipo Langmuir-Hinshelwood para la
cinética de reaccion. La ecuacién diferencial
gobernante es

d dec(x)

dX( dx j (1 7)2(:() (34)

xm2 L) O o 01, >0
oty

Sujeta a las siguientes condiciones de frontera

dc(x)
dx

Sin resistencias externas a la transferencia de masa ;

Enx=1,c¢c(x)=c, (36)

Con resistencias externas a la transferencia de masa

d .
Enx:l,—&czBl(c(l)—cf) 37

Enx=0, (35)

La solucion del problema es, de acuerdo a los
desarrollos de la Seccion 2,

1+7) c(x
c(x)= .[01 X" P? (1+7) c(%) 02)G

(1+7¢(x,))

+C¢

donde G(X, Xo) esta dada en las tablas 1 y 2 si se usa
la condicion de frontera (36) o (37), respectivamente.
De hecho, ya que la condicion de frontera (36) es el
resultado de tomar el limite cuando Bi — oo en la Ec.
(37), las funciones de Green reportadas en la Tabla 2

pueden usarse para obtener los resultados de la Tabla
1 al hacer Bi — oo.

(%%, ) |dX, %)

1.032 0.987
0.97
1.024
- 0.96-]
= 1,016 m=2 = 095 m=2
Ee) = B
© X 4 [
=] 1.008 \ S 094 — —0 o .
= 1.000 O=—Bererpefon o =
5 5 0932
& 09974 2L
® 0794
3 09972 0 3 0
£ 0.9970 ~_ a) § o7, b)
© (35
L 0.9968 s ey L 077 .
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Fig. 1. Factor de efectividad vs. nimero de nodos para R(x,¢(x))=®’c(x) ya)®=0.1,b) ®=1.0,¢c) ®=50,

d) ®=10.0 mediante diferencias finitas (— o —), funciones de Green (—© —) y usando la soluciéon exacta

(—)-
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Tabla 3: Tiempo de computo para la solucion del Ejemplo 2, sin resistencias a la transferencia de masa, como
funcion de @ param =0, 1 y 2 usando diferencias finitas y funciones de Green.

Modulo de Tiempo de computo (x 107 seg)
Thiele Coordenadas rectangulares | Coordenadas cilindricas | Coordenadas esféricas
(D) FG DF FG DF FG DF
0.1 0.73 37.30 0.25 0.73 0.48 391
0.5 0.23 142.00 0.23 2.69 0.48 391
1.0 0.48 106.00 0.23 5.38 0.23 3.66
2.0 1.47 8.55 0.73 2.94 0.50 5.61
3.0 1.47 1.95 0.73 1.45 1.47 341
4.0 1.22 0.73 0.48 1.72 1.45 4.16
5.0 1.22 0.48 2.67 1.22 1.47 2.69
6.0 1.47 0.48 2.45 1.95 1.47 391
7.0 1.47 0.48 2.44 0.73 1.47 1.47
8.0 1.45 0.25 2.44 1.22 1.47 1.22
9.0 5.61 0.48 2.44 0.48 1.47 0.97
10.0 5.63 0.25 3.17 0.23 1.70 0.73
FG = Funciones de Green; DF= Diferencias finitas.
0.17 1 0.235
0.164 [u] 0.2304 O
Q 0.225
_Z 0.154 _: 0.220
S 014 S 0.2151
Z % 0.210
% 0.134 a) % 02051 2
8 0.124 % 0.200 4
5 ] © 5 0.195- b)
g ot \BEB_B ______ S 0190] E\]
LL 0.10 —0-8-B=8=8—8=8 L . o,
0185 TT—o0— 0188055
0.09 T T ) 0.180 T T 1
4 10 100 200 4 10 100 200

NUmero de nodos

NUmero de nodos

Fig. 2. Factor de efectividad vs. nimero de nodos para una cinética no lineal con ® =5 y a)Bi=0.1, b) Bi=10
usando diferencias finitas (— 0 — ) y funciones de Green (— o —).

Como se menciond anteriormente, el objetivo
de este ejemplo es analizar ele efecto del nimero de
Biot y el tiempo de computo en los célculos usando
funciones de Green. Como lo muestra la Ec. (26), el
tomar en cuenta las resistencias a la transferencia de
masa se traduce en restar el inverso del nimero de
Biot a los resultados de la Tabla 1, por lo que el
programa de computadora desarrollado para llevar a
cabo los calculos del Ejemplo 1 tuvo que modificarse
solo en este aspecto. Sin embargo, para calcular el
tiempo de computo, se desarrolld una rutina donde se
resuelve el problema usando una cantidad variable de
nodos hasta lograr independencia de este parametro
numérico. Esta operacion se repitio 800 veces para
posteriormente calcular el promedio de los tiempos
de computo de cada corrida. Mediante esta rutina, se
obtuvieron los resultados de la Tabla 3. Los cuales
vienen de resolver el problema de valor a la frontera
dado por las ecuaciones (34)-(36), es decir, sin
considerar resistencias externas a la transferencia de
masa en una placa, un cilindro y una esfera. Por
conveniencia, se fijo y=1 en la Ec. (34), aunque se

obtendrian resultados similares para otros valores de
¥.

De los resultados de la Tabla 3, se puede
concluir que la solucion del problema involucrando
funciones de Green requiere un tiempo de computo
significativamente menor que el de la solucion
mediante diferencias finitas para valores bajos del
moddulo de Thiele (@ <2 ). Para valores mayores de
@, tanto diferencias finitas como la solucidén usando
funciones de Green requieren aproximadamente el
mismo tiempo de computo. Esto se atribuye, al igual
que en el ejemplo anterior, al efecto dominante de la
velocidad de reaccion sobre el mecanismo de
difusion; de manera que las ventajas de la
metodologia aqui propuesta no son tan evidentes.

En la Fig. 2, se presentan las predicciones del
factor de efectividad usando dos valores del nimero
de Biot como funcién del tamafio de malla. En este
caso hay una diferencia fundamental entre las
formulaciones usando funciones de Green vy
diferencias finitas, en la primera el numero de Biot
se incluye en el calculo de G(X, Xo) (Ec. (26)) y la
condicion de frontera es incorporada en forma exacta
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(es decir, sin necesidad de discretizar alguna
derivada) en la solucion; mientras que en el método
de diferencias finitas este pardmetro se incluye soélo
en la expresion algebraica discretizada de la
condicion de frontera (37), la cual es una
aproximacion de segundo orden. A partir de los
desarrollos de la Seccion 2, es de esperarse que para
valores bajos del ntimero de Biot (Bi < 1), las
diferencias entre las dos metodologias de solucion
sea mas plausible, incluso para tamafios de malla del
orden de cien nodos.

En general, los resultados anteriores muestran
que, a pesar de que se debe realizar algo de trabajo
analitico para calcular las funciones de Green, este
tipo de formulacion lleva a soluciones numéricas
mas exactas usando menores tamafos de malla.
Desde un punto de vista computacional, esto ofrece
la ventaja de reducir los tiempos de computo cuando
se tienen requerimientos de soluciones masivas,
como en los ciclos de optimizacion (Denn y Aris
1965a,by c).

A su vez, esta metodologia permite explorar
problemas mas complicados como se muestra a
continuacion:

- Difusion y reaccion no isotérmica en una particula
catalitica. En este caso se deben considerar las
siguientes ecuaciones adimensionales de transporte
de masa y energia (Aris, 1975),
d( ndc M2

—| X" — |=x"®°R(c,T), vx e (0,1 39
& &)-xcarrier) 01 @9

d daT )
—| X" — |==X"B®’R(c,T), Vxe(0,1) (40
dx( dx ] g (cT) (0.1) (0
donde S es el numero de Prater. Si se imponen las
siguientes condiciones de frontera,
T
Enx=0, L _0%_o @
dx dx
Enx=1, T=1c=1 42)
se obtiene de combinar las ecs. (39) y (40) e integrar
dos veces, la siguiente relacion entre la temperatura y
la concentracion

T=1+p(1-c), vxe[0,1] (43)
Si en las ecs. (39) y (40) R(c,T)= Cexp{@] )

se tiene entonces que resolver solamente la siguiente
ecuacion diferencial

d ( " dc)
—_ X —_
dx dx
1-c
=x"d*cexp M ,VX e (O,l)
1+ p(1-c)

en la ecuacion anterior, y es el numero de Arrhenius.
De acuerdo a los desarrollos de la Seccidon 2, no es

muy complicado determinar que la solucién de este
problema esta dada por

(44)
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c(x):l+®2j‘;

Xy (X, )ex M
0¢(%) p[1+ﬂ(l—C(X0))J (45)

G(x.%,)]dx,

donde G(X, Xo) estd dada en la Tabla 1, ya que, a
pesar que el lado derecho de la Ec. (44) es distinto al
empleado en los ejemplos 1 y 2, el problema de valor
a la frontera asociado con la funcion de Green sigue
estando dado por las ecs. (13)-(15). La comparacion
de los factores de efectividad obtenidos a partir de la
Ec. (45) con los que resultan del método de
diferencias finitas se encuentra en el trabajo de
Valdés-Parada y col. (2007). Mientras que el analisis
para el caso en que el transporte difusivo se de
preferentemente en la direccion radial y el
convectivo en la axial fue presentado por Mukkavilli
y col. (1987ay b).

- Difusién y conveccion en un reactor tubular. Las
ecuaciones que gobiernan el transporte de masa en
este sistema son

de(x) pedcd_(XX): R(x.c(x)), Wxe(0,1) (46)

dx?
En x=0, ¢(X)=c,, (47)
de(x)
En x=1, =0 (48)
dx

en la Ec. (46), Pe es el numero de Péclet y en la Ec.
(47), Cen es la concentracion a la entrada del sistema
de reaccion, la cual se supone conocida. Dado que el
operador diferencial no es auto-adjunto, se debe
multiplicar ambos lados de la Ec. (46) por un factor
de integracion (o), el cual en este caso es o= e .
De esta forma, la Ec. (46) puede rearreglarse como
sigue

d —Pex dC X —Pex
&(e %}:e R(x,¢(x)), Vxe(0,1) (49)

y el problema de valor a la frontera para la funcion
de Green es por tanto,

i{epe* Mj =5(%—-x), ¥xe(0,1) (50)

dx dx
En x=0, G(x,%,)=0 (51)
En xo1, J8(5%) (52)
dx

Evidentemente, este problema de valor a la
frontera difiere de los manejados hasta el momento
en este trabajo. Sin embargo, siguiendo el método de
solucion presentado en el Apéndice, se llega a la
siguiente expresion,

() Pe' (1-e™), x< X,
G(x,%,)= (53)
Pe”! (l—epexo ) X> X,

Note que, en el limite cuando Pe —0
(proceso dominantemente difusivo), la ecuacion
anterior se reduce a
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X, — L X <X,
La cual es idéntica a la Ec. (A.12). En la Ec.
(54), X' =1-X y %, =1-X,. A partir de la Ec. (53)
y de la formula de Green (Ec. (21)), se obtiene que la

solucion del problema de valor a la frontera descrito
por las ecs. (46)-(48), esta dada por

=, +I[ e PR (%,¢(%,)) G (% %,) [dx, (55)

Con la cual se pueden obtener los
correspondientes perfiles de concentracion usando
programas similares a los usados para resolver los
ejemplos 1y 2.

G(x*,xg)z{xi_l’ x: > xE (54)

- Transporte en estado no estacionario. Considere el
siguiente problema de valor inicial y a la frontera,
constituido por la ecuacion diferencial parcial

oc_ 1 o naoc) vxe(0,1)
o X" 6x[x 8xj R(xte(x)). vt>0 (56)

Sujeta a las siguientes condiciones iniciales y de
frontera

Cuandot=0, c=c, (X) , Vxe [0,1] (57)

Enx=0, ﬁ:o,vwo (58)
dx

Enx=1, c=c,, Vt>0 59)
donde ¢, es el valor de la concentracion en todo el
dominio al inicio y es, en general, funcion de la
posicion. La solucion de este problema usando
funciones de Green, puede llevarse a cabo de mas de
una manera; como lo muestra Haberman (2004) una
alternativa consiste en definir un operador diferencial

espacio-temporal L = ﬁ___(xm 62) , lo que da
X

lugar a funciones modificadas de Green dependientes
de x y de t. El inconveniente de este esquema de
solucion es que las funciones de Green se expresan
como series infinitas espacio-temporales, lo cual
puede afectar al tiempo de computo, sobretodo para
intervalos de tiempo donde se requiera una cantidad
considerable de términos en las series. Por ello, se ha
preferido presentar en este trabajo una alternativa
que conserva la sencillez analitica de las funciones
de Green hasta el momento obtenidas. Para esto, se
introduce la siguiente funcion,

F(xtc(x))=x" [%+ R(x,t,c(x))} (60)

que permite expresar a la Ec. (56) como sigue
vxe(0,1)

0 oc )
&(x axj F(x.t.c(x)), a0 (61)

la cual es analoga a la Ec. (12), por lo que la solucion
esta dada por

c(x)=

dG(x,%,)
dx,

¥=1 (62)

+J (%0 1.€(%,)) G (%, %, ) dx,

O bien, ya que la funcion de Green
corresponde a la reportada en la Tabla 1, la ecuacion
anterior se expresa, al sustituir la Ec. (60), como
sigue

c(x):fgxﬁ{%}G(x,xo)dxo
+_|' [ Xy 1,C (X ))]G(x,x0

S
Debldo a que la rutina de solucién involucra
un proceso iterativo, el incluir la derivada temporal
de la concentracion en la Ec. (63) no constituye, en
general, una complicacién adicional en el método
numérico de solucion.

)dx, (63)

- Sistemas multicomponentes. Consideremos por
ultimo, el proceso de difusion-reaccion en una
particula catalitica, donde se involucran varias
especies quimicas (¢, i = 1,...,n), cada una
satisfaciendo la siguiente ecuacion diferencial

i( o dCa_(X)] = X"V,R (%€, (X), €, (X))

dx dx (64)

vxe(0,1),i=1,...,n

donde v es el coeficiente estequiométrico de la
especie i. Las ecuaciones (64) estan sujetas a las
siguientes condiciones de frontera

Enx =0, iz (65
dx
Enx=1, C =C,,i=1..,n (66)

En varias aplicaciones practicas, de los n
problemas de valor a la frontera arriba presentados,

s6lo un numero m (me[l,n]) de ellos son

independientes. De esta forma, las Ecs. (64)-(66)
pueden expresarse como sigue

[ ) vr(ne (4. (),

(67)
vxe(0,1)
Enx=0, d_y (68)
dx
Enx=1, C=¢, (69)

donde C(X):[Cl,cp...,cm]T yv =[V1,V2,...,Vm]T A
las ecuaciones (67)-(69) se les debe agregar el
conjunto de ecuaciones que relacionan las
concentraciones de las especies dependientes con las
independientes. La estructura del problema vectorial
de valor a la frontera (67)-(69) es idéntica a la
discutida en la Seccion 2, por lo que su solucion esta
dada por la siguiente ecuacion vectorial algebraica

e(0)= [, DVR (%016 (6 )senCs (%))
G (X, %) ]dx, +c,

O bien, para cada componente,

(70)
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& ()= [ [XViR (.6 (% )ty (%,))

(71)
G(x.%)]dx, +¢, j=1...m

En otras palabras, el resultado es ahora un
sistema de ecuaciones integrales acopladas no
lineales, el cual puede resolverse mediante métodos
iterativos de inversion de matrices. Cabe mencionar
que en la Ec. (71), G(X, Xo) estd dada en los
resultados de la Tabla 1 ya que el problema de valor
a la frontera asociado para la funcion de Green es
idéntico al expresado en las ecs. (13)-(15).

Por ultimo, cabe mencionar que en todos los
problemas que se abordaron en este trabajo, tanto el
dominio como las fronteras no involucraron
considerar ningin tipo de discontinuidad. Si este
fuera el caso, debe tomarse en cuenta que la formula
de Green [Ec. (21)] es el resultado de integrar la
identidad de Lagrange [Ec. (20)]. De manera que si
hubiese discontinuidades, se podria descomponer el
dominio de integracion en un ntmero finito de
subdominios en los cuales los integrandos fuesen
continuos. Sin embargo, este tema sobrepasa los
objetivos de este trabajo y seran abordados en
trabajos futuros.

Conclusiones

En este trabajo se ha explorado la habilidad
que tienen formulaciones integrales basadas en
funciones de Green para proveer soluciones
numéricas confiables de modelos de transporte de
masa y reaccion. Las simulaciones numéricas,
ilustran que, comparado con el método clasico de
diferencias finitas, la formulacién integral ofrece
mejores propiedades de convergencia bajo un rango
considerable  de  valores de  pardmetros
macroscopicos. De hecho, de acuerdo a los
resultados de la Seccion 3, se puede afirmar que con
la metodologia propuesta se obtienen predicciones
aceptables del factor de efectividad usando, en
general, menor nimero de nodos computacionales y,
por tanto, menor tiempo de computo. Esto se debe
principalmente a dos factores que son el suavizado
de los errores de redondeado en el paso de
integracion y a la incorporacion en forma exacta de
las condiciones de frontera. Ademas, la estructura de
la ecuacion integral, ofrece una mejor comprension,
tanto fisica como matematica, de la solucion de los
problemas de valor a la frontera.
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Apéndice: Calculo de la funcion de Green para el
operador de difusion

En la literatura se han reportado diferentes
métodos para calcular G(X, X,), entre las que destacan
el método de variacion de parametros, el método de
expansion en funciones propias asi como la solucion
a partir de la funcion delta de Dirac (Greenberg,
1971; Haberman, 2004). En este trabajo se ha
preferido la solucion mediante la funcion delta de
Dirac, debido a que permite calcular las funciones de
Green a partir de un problema de valor a la frontera
en relacion directa con el problema original de valor
a la frontera. Dicho problema se presentd en la
Seccion 2 en las ecs. (12), (2) y (3). Dado que la
funcion de Green representa la respuesta en la
posicién X debida a una fuente concentrada en X,

(lado derecho de la Ec. (12)), la ecuacion diferencial
asociadaa G(x,X,) es

i[xmm]zg(xo_x),vxe(o’l) (Al)
dx dx m=0,1,2

Cuyas condiciones de frontera son las
versiones homogéneas de las ecs. (2) y (3)

G
enX:O,M:O (A2)
dx
enx=1, G(X,%)=0 (A3)

Las soluciones generales de la Ec. (A.1) para X
# Xo son, dependiendo del sistema coordenado, las
siguientes

M=0  G(xx)=] 0 XN x g
> Cyo+CygXs X> X, '
€y +Cy, In(X), X< X
m=1 G(xx)=4 " > " (AS)
C;y +Cy In(X), X> X,
B €y —Cp X, X< X,
m=2 G(x,xo):{C e s x (A.6)
3,2 4,2 > 0

Al aplicar a las ecs. (A.4)-(A.6), las
condiciones de frontera (A.2) y (A.3) resultan,

Cio>
m=0 G(x,xo):{C 1.0 X < X,

4,0(X_1)’ X>X, (A7

B e x<x
m=1 G(x,xo)—{% In(x), x> X, (A.8)
m=2  G(xx)= G KSR (A9)
U e, (1-x7) x> % '

Como se puede notar, para completar las
soluciones particulares, es necesario imponer dos
condiciones de frontera adicionales; la primera viene
del hecho de que el campo de concentracion debe ser
una funcién continua en todo el dominio, por lo que

Enx=x,, G(%.%)=G(x.%) (A.10)

La otra condiciéon de frontera resulta de
integrar la Ec. (A.1) desde x = x; hasta x =X,
dG(x,x, )| dG(x,x, )|

dx | . dx _
(A.11)
- L m=012
XO
Al aplicar las condiciones de frontera (A.10) y

(A.11) a las ecs. (A.7)-(A.9), se obtienen las
siguientes soluciones particulares,

-1
m=0 G(x,xo):{):f_l’::;(O (A.12)
> 0
m=1 G(x.%)= In(x,), x <, (A.13)
T In(x), x> %,

1-x", x< %, (A.14)

m=2 G(x,%)= {

En la Fig. A-1, se muestran graficas de estas
soluciones para X, = 0.5. Es de notarse el incremento
en la curvatura de la funcion de Green conforme se
incrementa el valor de m. En esta figura se incluyen
ademas los resultados obtenidos a partir de evaluar la
siguiente expresion obtenida usando el método de
expansion en funciones propias,

- _2¢n (X0)¢n (X)
n=1 ﬂv

n

-1
[=-X",X>X,

G(x,%)= ,Vm=0,1,2  (A.15)

En la ecuacion anterior ¢,(X) y A4, son las

funciones y valores propios. Las funciones propias
son ¢, (x)= cos(\//l_nx), ¢, (x)=1, (\/ﬂ_nx) y

¢n(x):sen(\/2x)/x para m 0, 1 y 2

respectivamente. Los valores propios se obtienen de
resolver las siguientes ecuaciones

m=0 cos(\/ﬂ_n)zo (A.16)
m=1 JO(\/Z):O (A.17)
m=2 sen(\/Zx)zo (A.18)

Para obtener los resultados de las graficas en
la Fig. A-1 se usaron 100 términos en la serie. Como
puede notarse, ambos métodos proporcionan los
mismos resultados, sin embargo, las ecs. (A.15)
involucran calcular los valores propios de series
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infinitas, mientras que las ecs. (A.12)-(A.14) son computo considerablemente menor para ser
funciones por secciones que requieren un tiempo de calculadas.
X X
0.0 0.2 0.4 06 0.8 1.0
0.0%0 0,2 04 0,6 08 10 0.0 L L L L )
-0.14
-0.14
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> -0.24 ><ﬁ° -0.34
o =
5 04
G 03 o
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0.4
a) 0.6 b)
-0.54 -0.7 4
X
0.0 0.2 0.4 0.6 0.8 1.0
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Fig. A-1. Funcién de Green para X, =0.5 ya)ym =0, b) m =1y c) m =2 usando el método de la delta de Dirac

(——) y expansion en funciones propias (=<« ).
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