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Abstract
The problem of monitoring in a common class of partially known bioreactor models is addressed. A reduced

order observer namely differential algebraic estimator is proposed. The biomass is estimated by means of substrate
concentration measurements. The estimation methodology is based on a suitable change of variable which
allows generating artificial variables to infer the remaining mass concentrations constructing a differential-algebraic
structure. The proposed methodology is applied to a class of Haldane unstructured kinetic model with success.
Stability analysis in a Lyapunov sense for the estimation error is performed. Some remarks about the convergence
characteristics of the proposed estimator are given and numerical simulations show its satisfactory performance.
Finally, for comparison purposes, a high gain observer is presented: the convergence is possible only when the
model is perfectly known.

Keywords: differential-algebraic estimator, state variable estimation, continuous bioreactor, Haldane kinetics.

Resumen
En el presente trabajo se considera el problema del monitoreo de una clase de biorreactores con modelos

parcialmente conocidos. Se propone un tipo de observador de orden reducido denominado estimador diferencial
algebraico. La metodologı́a de estimación se basa en un cambio de variables que permite generar variables
artificiales para inferir las concentraciones no medibles. La metodologı́a propuesta es aplicada a un modelo cinético
no estructurado de Haldane con éxito. Se efectúa un análisis de Lyapunov para demostrar la estabilidad de la
metodologı́a considerada. Algunos comentarios sobre las caracterı́sticas de la convergencia del estimador son
proporcionados y simulaciones numéricas muestran un desempeño satisfactorio. Finalmente, con propósitos de
comparación, un observador de alta ganancia se presenta en donde su convergencia se garantiza solo cuando se
conoce perfectamente el modelo del sistema bajo estudio.

Palabras clave: estimator algebraico-diferencial, estimación de variables de estado, biorreactor continuo, cinética
de Haldane.
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1 Introduction

Operating a bioreactor is not a simple task, as
during a bioreacting process, variables such as
concentrations are generally determined by off-line
laboratory analysis, making this set of variables
of limited use for control purposes and on-line
monitoring. However, these variables can be on-line
estimated using soft sensors.

Over the last few years, the importance of
on-line monitoring of biotechnological processes
has increased. A first step to efficient bioreactor
operation is the adequate implementation of online
measurements of essential variables such as substrate
and biomass concentrations. Advantages of
continuous monitoring of key variables include
gaining knowledge about the state of the process and
the possibility of detecting and isolating abnormal
process developments at early stages. This reduces
process costs, contributes to process safety and helps
in trouble-shooting and process accommodation. The
main problem in fermentation monitoring and control
is the fact that process variables usually cannot be
measured on-line. Monitoring and controlling these
processes can therefore be difficult because only
indirect measurements are available online, while
calculated values may be rather uncertain. This can
be due to uncertainty with respect to the equations
used, measurement errors or both. For automatic
control this may have serious consequences, especially
as the actual variables of interest often cannot be
directly controlled and related variables are controlled
instead. In fermentation processes, on-line and off-
line measurements are the main source of information
about the state of the process. In combination with
model-based calculations, they are used to produce
estimations for monitoring purposes as well as for
automatic and manual process control (Bastin and
Dochain, 1990), (Masoud, 1997).

Observation schemes are widely used for
reconstructing states of dynamical systems (Aguilar-
López et al., 2006). Most of the contributions
are related to asymptotic observers for monitoring,
fault detections and control issues whereas the
real necessities of industrial plants are related to
a fast response of the monitoring and regulation
methodologies.

Special attention was given to filtering techniques,
namely extended Kalman filter, adaptive observers,
and artificial neural networks (ANN), (Dávila and
Fridman, 2005), (Hu and Wang, 2002), (Levant,
2001), however for these techniques the right tuning

of the estimators gains is difficult. It is shown that
software based state estimation is a powerful technique
that can be successfully used to enhance automatic
control performance of biological systems as well as
in system monitoring and on-line optimization.

In this paper we consider the growth rate partially
known. Following this idea, the necessity to adapt
an observation scheme to the available knowledge
of the growth rate immediately arises. The main
contribution in this work is to show a state estimator
which is a simplified version of the methodology
given by (Lemesle and Gouzé, 2005) where a
simple linear change of variable given in a natural
manner allows to develop a differential-algebraic state
estimator. Results show an adequate performance
of the considered methodology. The technique is
not the same as (Alvarez-Ramirez et al., 1999)
since we do not have derivators. The proposed
estimation methodology is applied to a kind of
unstructured kinetic model: the Haldane model, which
is considered for biological process with substrate
inhibition. The above mentioned kinetic model is
applied to a class of continuous stirred bioreactors.

In what follows, the statement of the problem
is presented; an observability condition is given in
the differential-algebraic setting. In section 3, the
bounded error estimator is designed. Section 4 shows a
high gain observer as a comparison with the proposed
methodology. Finally, we give some concluding
remarks.

2 Problem statement

2.1 The model

Consider the following nonlinear system

ẋ = f (x, u)

y = h (x)
(1)

where, x ∈ Rn, u ∈ Rm, m ≤ n, y ∈ Rp.
Let us recall the classical observer definition. An

observer for system (1) is a dynamical system ˙̂x =

f̂ (x̂, u, y), whose task is state estimation. Usually
is required at least that ‖x̂ − x‖ → 0 as t → ∞.
Although in some cases, exponentially convergence is
also required (Gauthier et al., 1992).
Definition 1: an estimator is said to be bounded if the
estimation error (‖x̂ − x‖) belongs to an open ball with
radius proportional to some value that depends on its
estimation error.

314 www.rmiq.org



J. L. Mata-Machuca et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 10, No. 2 (2011) 313-320

In all paper, we will consider a class of bioreactor
model. The simplified Haldane model taken from
(Vargas et al., 2000), is described by

dS
dt

= D (S in − S ) − µ (S )
X

YS /X
+ kdX (2a)

dX
dt

= −DX + µ (S ) X − kdX (2b)

where µ (S ) = µmaxS
/(
δ + S + S 2

/
ϕ
)

is the specific
growth rate and µmax is the maximum growth rate.

We assume that µ(S ) is partially known, which
is common in biology (Gouzé and Lemesle, 2001).
Generally, µ(S ) is between two bounds meaning that
we know a function µ̂(S ) such that |µ (S ) − µ̂ (S )| < a,
where a ∈ R+, and µ (0) = µ̂(0) = 0. We introduce
an important lemma about lower bounded properties
of µ(S ).
Lema 1 (Hadj-Sadok, 1999): there exists a constant
ε ∈ R, such that S (0) > ε implies S (t) > ε for all t.
Thus, for any smooth function µ(S ), µ (S (t)) > µ (ε)
for all t.

From lemma 1, we could always choose ε such that
µ̂ (S (t)) > µ̂ (ε) = r, where r ∈ R+.

The state variables S , X are the substrate and
biomass concentrations, respectively, D = q/V is the
dilution rate with V the volume of the bioreactor and
q the constant flow passing through the bioreactor,
S in is the input substrate concentration, YS/X is the
corresponding yield coefficient. Let us notice that the
inputs D = u and S in are fixed. Moreover, we assume
that the measured output is,

y = S (3)

2.2 Algebraic Observability Condition
(AOC)

Before proposing the bounded error estimator, a
definition concerning on algebraic observability
condition is given, for more details see (Diop and
Martı́nez-Guerra, 2001).
Definition 2: consider the system described by (1),
where x =

(
x1 x2 . . . xn

)T
. A state xi, i =

{1, 2, · · · , n}, is said to be algebraically observable
with respect to {u, y} if it satisfies a differential
polynomial in terms of u, y and some of their time
derivatives, i.e., P (xi, u, u̇, . . . , y, ẏ, . . .) = 0, i =

{1, 2, · · · , n}.
Replacing y = S into Eq. (2a), the

algebraic observability condition for Haldane model is

calculated as follows,

ẏ − u (S in − y) +

(
µmaxϕ y

δϕ + ϕ y + y2

1
YS /X

− kd

)
X = 0 (4)

From Eq. (4), it is clear that the state variable X
satisfies the AOC thus, X is algebraically observable.

3 Bounded error estimator

3.1 Estimator design

In what follows, the corresponding estimated
concentration is denoted by ,̂ and we assume that
S is measured exactly, i.e., S = Ŝ . Then, we only
reconstruct the biomass variable X.

Consider the Haldane’s model given by system (2),
and make the change of variable

z = X + k S (5)

where k ∈ R is fixed.
The dynamics of z is

ż = −

[
D + kd − k kd +

(
k

YS /X
− 1

)
µ (S )

]
z+

+ (1 − k) k kdS +

(
k

YS /X
− 1

)
k µ (S ) S + k D S in

(6)

Proposition 1: if we choose the estimator’s gain such
that YS/X < k 6 1 + D/kd and |µ (S ) − µ̂ (S )| < a,
a ∈ R+. Then, the system (7) is a bounded error
estimator of (6).

˙̂z = −

[
D + kd − k kd +

(
k

YS /X
− 1

)
µ̂ (S )

]
ẑ+

+ (1 − k) k kdS +

(
k

YS /X
− 1

)
k µ̂ (S ) S + k D S in

(7)

For the proof, define the estimation error,

e = z − ẑ (8)

Then, using eqs. (6) and (7) the estimation error
dynamic is obtained as

ė = −

[
D + kd − k kd +

(
k

YS /X
− 1

)
µ̂ (S )

]
e+

+

(
k

YS /X
− 1

) [
µ (S ) − µ̂ (S )

]
k S −

(
k

YS /X
− 1

) [
µ (S ) − µ̂ (S )

]
z

(9)
To analyze the stability of Eq. (9) we consider the
following Lyapunov function candidate

V =
1
2

e2 (10)
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The time derivative of Eq. (10) is

V̇ = e ė (11)

Replacing (9) into (11) yields

V̇ = −

[
D + kd − k kd +

(
k

YS /X
− 1

)
µ̂ (S )

]
e2+

+

(
k

YS /X
− 1

) [
µ (S ) − µ̂ (S )

]
k S e −

(
k

YS /X
− 1

)
[
µ (S ) − µ̂ (S )

]
z e

(12)
Equation (12) is written alternatively as

V̇ = −

[
D + kd − k kd +

(
k

YS /X
− 1

)
µ̂ (S )

]
e2−

−

(
k

YS /X
− 1

) [
µ (S ) − µ̂ (S )

]
X e

(13)

Now, from lemma 1 and taking into account that
YS/X < k 6 1 + D/kd, |µ (S ) − µ̂ (S )| < a, and X is
bounded, Eq. (13) leads to,

V̇ 6 −
[
D + kd − kkd +

(
k

YS /X
− 1

)
r
]

e2

+

(
k

YS /X
− 1

)
aXmax |e| = −λ e2 + w | e |

where,

λ = D + kd − kkd +

(
k

YS /X
− 1

)
r

and

w =

(
k

YS /X
− 1

)
aXmax

The right-hand side of the foregoing inequality is not
negative since near the origin, the positive linear term
w | e | dominates the negative quadratic term −λe2.
However, V̇ is negative outside the set { | e | 6 w/λ}.
Let c, ε be some upper bounds for V (e). With c >

w2
/
2λ2, solutions starting in the set {V (e) 6 c} will

remain therein for all time because V̇ is negative on
the boundary V = c. Hence, the solutions of Eq.
(9) are uniformly bounded (Khalil, 2002). Moreover,
if

(
w2

/
2λ2

)
< ε < c, then V̇ will be negative in

the set {ε 6 V 6 c}, which shows that, in this set V
will decrease monotonically until the solutions enters
the set {V 6 ε}. From that time on, the solution
cannot leave the set {V 6 ε} since V̇ is negative on
the boundary V = ε. According to (Khalil, 2002),
the solution is uniformly ultimately bounded with the

ultimate bound | e | 6
√

2ε. For instance, defining c
and ε as follows

c =

(
k

YS /X

aXmax

λ

)2

, ε =

(
k

aXmax

λ

)2

the ultimate bound is, | e | 6
√

2 k aXmax
λ

.
Corollary 1: if the growth rate is perfectly known, i.e.,
µ (S ) = µ̂ (S ), and we choose the estimator’s gain such
that YS/X < k 6 1 + D/kd. Then, the system (14) is an
asymptotic estimator of (6).

˙̂z = −

[
D + kd − k kd +

(
k

YS /X
− 1

)
µ (S )

]
ẑ+

+ (1 − k) k kdS +

(
k

YS /X
− 1

)
k µ (S ) S + k D S in

(14)
Indeed, the dynamics of the error in this case is

ė = −

[
D + kd − k kd +

(
k

YS /X
− 1

)
µ (S )

]
e

and the corresponding time derivative of Lyapunov
function candidate (10) is

V̇ = −

[
D + kd − k kd +

(
k

YS /X
− 1

)
µ (S )

]
e2 < 0

Moreover, X can be reconstructed considering

X̂ = ẑ − k S (15)

3.2 Numerical simulations

For all simulations in this paper we take S in = 50, D =

0.1, YS/X = 0.9, kd = 0.01 and the initial conditions
S (0) = 60, X(0) = 40, X̂ (0) = 30, ẑ (0) = 90, with
appropriate units, these values are taken from Vargas
et al., (2000). The estimator’s gain is k = 1. The
growth rates are chosen as

µ (S ) =
S

140 + S + S 2
/
81.25

and

µ̂ (S ) =
0.8 S

140 + S + S 2
/
81.25

when the model is well known for the asymptotic
estimator and when the model is partially known
for the bounded error estimator, respectively. The
simulations results were carried out with the help of
Matlab 7.1 Software with Simulink 6.3 as the toolbox.
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The performance index of the corresponding
estimation process is calculated as (Martı́nez-Guerra,
et al., 2000)

J =
1

t + 0.001

t∫
0

‖e (τ)‖2dτ (16)

where e(t) is the corresponding state estimation error
(the difference between the actual observed signal and
its estimate).

First, in Fig. 1 we show the simulation results
for the bounded error estimator given by proposition
1, and the corresponding results for the asymptotic
estimator given by corollary 1 (without any noise in
the system output). Furthermore, in Fig. 2 is shown
the effect of noise in the estimation process. A white
noise is added in the measurement (σ = 0.1, ±10%
around the current value of the measured output)
this is considering the corresponding measurement
error of the corresponding sensor and/or experimental
measurement technique. We can observe that the
bounded error estimator is robust against noisy
measurement. Finally, in Fig. 3 is illustrated the
performance index given by (16) for the corresponding
estimation process. It should be noted that the
quadratic estimation error (performance index) is
bounded on average and has a tendency to decrease.

 
 

 

The performance index of the corresponding estimation process is calculated as (Martínez-1 

Guerra, {\it et al.}, 2000) 2 

 3 

             


t

de
t

J
0

2

001.0

1                                                        (16) 4 

where  te  is the corresponding state estimation error (the difference between the actual 5 

observed signal and its estimate). 6 

First, in Fig. 1 we show the simulation results for  the bounded error estimator given by 7 

proposition 1, and the corresponding results for the asymptotic estimator given by corollary 1 8 

(without any noise in the system output).  Furthermore, in Fig. 2 is shown the effect of noise in 9 

the estimation process. A white noise is added in the measurement ( 1.0 , %10  around the 10 

current value of the measured output) this is considering the corresponding measurement error of 11 

the corresponding sensor and/or experimental measurement technique. We can observe that the 12 

bounded error estimator is robust against noisy measurement. Finally, in Fig. 3 is illustrated the 13 

performance index given by (16) for the corresponding estimation process. It should be noted that 14 

the quadratic estimation error (performance index) is bounded on average and has a tendency to 15 

decrease. 16 

 17 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

time

S
 u

 b
 s

 t 
r 
a
 t 

e

            18 

  0 10 20 30 40 50 60
0

10

20

30

40

50

60

time

B
 i 
o
 m

 a
 s

 s

 

 

X real
asymptotic estimator
bounded error estimator

 19 

Figure 1. State Variables. 20 

 21 

Fig. 1. State Variables.

 
 

 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

time

S
 u

 b
 s

 t 
r 
a
 t 

e

       
0 10 20 30 40 50 60

0

10

20

30

40

50

60

time

B
 i 
o
 m

 a
 s

 s

 

X real
asymptotic estimator
bounded error estimator

 1 

Figure 2. State Variables (with noise in the system output).  2 

 3 

 4 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

time

J

 

asymptotic estimator
bounded error estimator

    5 

    (a) 6 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

time

J

 

asymptotic estimator
bounded error estimator

 7 

                                                (b) 8 

Figure 3.  Quadratic estimation error. (a) Without any noise, (b) with white noise; in the system 9 

output. 10 

 11 

4. A NOTE ON FULL-ORDER OBSERVERS: THE HIGH GAIN OBSERVER 12 

A.  Observer design 13 

Consider that system (1) satisfies the AOC. In this case to estimate the state-space vector $x$, 14 

we can suggest a nonlinear high gain observer (Gauthier {\it et al.}, 1992), (Martínez-Guerra {\it 15 

et al.}, 2000) with the following structure, 16 

 17 

   xCyKuxfx ˆ,ˆˆ                                                                  (17) 18 

 
 

 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

time

S
 u

 b
 s

 t 
r 
a
 t 

e

       
0 10 20 30 40 50 60

0

10

20

30

40

50

60

time
B
 i 
o
 m

 a
 s

 s

 

X real
asymptotic estimator
bounded error estimator

 1 

Figure 2. State Variables (with noise in the system output).  2 

 3 

 4 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

time

J

 

asymptotic estimator
bounded error estimator

    5 

    (a) 6 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

time

J

 

asymptotic estimator
bounded error estimator

 7 

                                                (b) 8 

Figure 3.  Quadratic estimation error. (a) Without any noise, (b) with white noise; in the system 9 

output. 10 

 11 

4. A NOTE ON FULL-ORDER OBSERVERS: THE HIGH GAIN OBSERVER 12 

A.  Observer design 13 

Consider that system (1) satisfies the AOC. In this case to estimate the state-space vector $x$, 14 

we can suggest a nonlinear high gain observer (Gauthier {\it et al.}, 1992), (Martínez-Guerra {\it 15 

et al.}, 2000) with the following structure, 16 

 17 

   xCyKuxfx ˆ,ˆˆ                                                                  (17) 18 

Fig. 2. State Variables (with noise in the system
output).

 
 

 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

time

S
 u

 b
 s

 t 
r 
a
 t 

e

       
0 10 20 30 40 50 60

0

10

20

30

40

50

60

time

B
 i 
o
 m

 a
 s

 s

 

X real
asymptotic estimator
bounded error estimator

 1 

Figure 2. State Variables (with noise in the system output).  2 

 3 

 4 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

time

J

 

asymptotic estimator
bounded error estimator

    5 

    (a) 6 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

time

J

 

asymptotic estimator
bounded error estimator

 7 

                                                (b) 8 

Figure 3.  Quadratic estimation error. (a) Without any noise, (b) with white noise; in the system 9 

output. 10 

 11 

4. A NOTE ON FULL-ORDER OBSERVERS: THE HIGH GAIN OBSERVER 12 

A.  Observer design 13 

Consider that system (1) satisfies the AOC. In this case to estimate the state-space vector $x$, 14 

we can suggest a nonlinear high gain observer (Gauthier {\it et al.}, 1992), (Martínez-Guerra {\it 15 

et al.}, 2000) with the following structure, 16 

 17 

   xCyKuxfx ˆ,ˆˆ                                                                  (17) 18 

a)

 
 

 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

time

S
 u

 b
 s

 t 
r 
a
 t 

e

       
0 10 20 30 40 50 60

0

10

20

30

40

50

60

time

B
 i 
o
 m

 a
 s

 s

 

X real
asymptotic estimator
bounded error estimator

 1 

Figure 2. State Variables (with noise in the system output).  2 

 3 

 4 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

time

J

 

asymptotic estimator
bounded error estimator

    5 

    (a) 6 

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

time

J

 

asymptotic estimator
bounded error estimator

 7 

                                                (b) 8 

Figure 3.  Quadratic estimation error. (a) Without any noise, (b) with white noise; in the system 9 

output. 10 

 11 

4. A NOTE ON FULL-ORDER OBSERVERS: THE HIGH GAIN OBSERVER 12 

A.  Observer design 13 

Consider that system (1) satisfies the AOC. In this case to estimate the state-space vector $x$, 14 

we can suggest a nonlinear high gain observer (Gauthier {\it et al.}, 1992), (Martínez-Guerra {\it 15 

et al.}, 2000) with the following structure, 16 

 17 

   xCyKuxfx ˆ,ˆˆ                                                                  (17) 18 

b)

Fig. 3. Quadratic estimation error. (a) Without any
noise, (b) with white noise; in the system output.

www.rmiq.org 317



J. L. Mata-Machuca et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 10, No. 2 (2011) 313-320

4 A note on full-order observers:
The high gain observer

4.1 Observer design

Consider that system (1) satisfies the AOC. In this case
to estimate the state-space vector x, we can suggest a
nonlinear high gain observer (Gauthier et al., 1992),
(Martı́nez-Guerra et al., 2000) with the following
structure,

˙̂x = f (x̂, u) + K (y −Cx̂) , x̂ ∈ Rn , x̂0 = x̂ (t0)
(17)

where the observer’s gain matrix is given by,

K = S −1
θ CT , S θ =

(
1

θi+ j−1 S i j

)
i, j=1,...,n

and the positive parameter θ determines the desired
convergence velocity. Moreover, S θ > 0, S θ = S T

θ

should be a solution of the algebraic equation,

S θ

(
E +

θ

2
I
)
+

(
ET +

θ

2
I
)

S θ = CT C, E =

(
0 In−1,n−1
0 0

)
As shown by (Gauthier et al., 1992), (Martı́nez Guerra
and de Leon-Morales, 1996), under certain technical
a assumptions (Lipschitz conditions for nonlinear
functions under consideration) this nonlinear observer
has an arbitrary exponential decay for any initial
conditions. We obtain the following high order
observer for the system (2) applying the observation
scheme (17),

˙̂S = D
(
S in − Ŝ

)
−

µmaxŜ

δ + Ŝ + Ŝ 2
/
ϕ

X̂
YS/X

+kd X̂−2θ
(
Ŝ − y

)
˙̂X = −DX̂ +

µmaxŜ

δ + Ŝ + Ŝ 2
/
ϕ

X̂ − kd X̂−

−
1

−µmaxŜ + YS /X

(
δ + Ŝ + Ŝ 2

ϕ

)
kd2θ

µmaxX̂
(
δ − S 2

/
ϕ
)(

δ + Ŝ + Ŝ 2
/
ϕ
) +

+ θ2YS/X

(
δ + Ŝ + Ŝ 2

/
ϕ
) } (

Ŝ − y
)

4.2 Simulations

In the same way, we show two simulations: when the
model is well known and when the model is partially
known. The initial conditions for the observer are

Ŝ (0) = 40, X̂ (0) = 30, with appropriate units. The
estimator’s gain is θ = 2. The simulations results of
high gain observer are presented in figs. 4 and 5. In
Fig. 4, without any noise in the system output, when
the model is perfectly known the rate of convergence
is fast, on the other hand, when the model is partially
known the observer does not reconstruct the state
variables. In Fig. 5, we studied the effect of noise
in the measurement (white noise with σ = 0.1, ±5%
around the current value of the measured output), we
can see that the high gain observer is very sensitive
to the noise in the system output. Fig. 6 shows
the performance index. It should be noted that this
observer only reconstruct the state variables when the
model is well known.
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Conclusions

In this paper we have presented a bounded error
estimator for bioprocess with unstructured growth
models. We have proven the stability of the
corresponding estimation error in a Lyapunov sense.
By means of a linear change of variable given in a
natural manner and with some algebraic manipulations
have been constructed the state estimator, which
converges to the current states of the reference model
given. We have demonstrated that the bounded error
estimator under consideration provides good enough
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Fig. 6. Quadratic estimation error. (a) Without any
noise, (b) with white noise; in the system output.

state-space estimates which were bounded on average,
besides the proposed state estimator does not depend
of a particular set of initial conditions or specific
model structure. Moreover, we have constructed
a high gain observer in which the convergence is
fast only if the model is well known, but does not
exists convergence if the model is partially known.
Finally, we have presented some simulations to
illustrate the effectiveness of the suggested approach,
which shows some robustness properties against noisy
measurements.
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