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ABSTRACT
Hearing loss result from genetic causes, complications at birth, certain infectious diseases, chronic ear infections,
noise exposure, demographic characteristics (age, sex, race, education, and study site) and cardiovascular factors
(smoking status, hypertension, diabetes and stroke). In this study, we propose a new mathematical model formu-
lated by ordinary differential equations (ODEs) that takes into account the some causes of hearing loss. The analysis
of the model is investigated. In addition, numerical simulations are presented in order to validate our theoretical
results.
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RESUMEN
La pérdida de audicion se debe a causas genéticas, complicaciones en el nacimiento, enfermedades infecciosas,
otitis cronica, exposicion al ruido, caracteristicas demograficas (edad, sexo, raza, educacion y sitio de estudio) y
factores cardiovasculares (estado de fumar, hipertension, diabetes y accidente vascular cerebral). En este estudio,
proponemos un nuevo modelo matematico formulado por ecuaciones diferenciales ordinarias (ODE) que toma en
cuenta las causas de la pérdida de la audicion. El analisis del modelo se estudia. Ademas, se presentan simulaciones
numeéricas para validar nuestros resultados teoricos.
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INTRODUCTION

Hearing loss may result from genetic causes, complica-
tions at birth, certain infectious diseases, chronic ear
infections, the use of particular drugs, exposure to
excessive noise and aging, which is represent a major
global health problem. According to the World Health
Organization (WHO), about 360 million people world-
wide have disabling hearing loss, and 32 million of these
are children ™. There are many infections and conta-
gious diseases related to hearing loss such as mumps.
Mumps is an enveloped, single-stranded RNA virus
belonging to the family paramyxoviridae and causes an
acute infectious disease mainly in children and young
adults 2. Mumps is transmitted through infected respi-
ratory secretions and is highly contagious 3. The most
common clinical manifestations of infection include a
u-like illness and bilateral swelling of the parotid glands.
Mumps infection occasionally induces the potential for
complications such as pancreatitis, orchitis, ophoritis,
aseptic meningitis, encephalitis and sensorineural hear-
ing loss. Hearing loss due to mumps is thought to be
unilateral and profound with rapid onset .,

On the other hand, one of the most social factor of
hearing loss is noise exposure (eg, through personal
music players). This is a major cause of hearing loss
worldwide 5! In addition, the characteristic pathologi-
cal feature of noise-induced hearing loss is the loss of
auditory sensory cells in the cochlea. Because these
hair cells cannot regenerate in mammals, no remission
can occur, prevention of noise-induced hearing loss is
the only option to preserve hearing .

Abnormalities or damage in the structure inside the
inner ear can result by many diseases that can load to
the hearing loss. An example of such a disease is the
Alport syndrome ! and Meniere’s disease . For these
raisons, many mathematical models have been pro-
posed to model the function and the dysfunction of the
inner ear by using partial differential equation (PDEs)
89,10, 111 The epidemiological models in the beginning
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has started by Graunt '? then described by Kermack and
Mckendric 3! by considering the total population into
three classes namely susceptible (S) individuals, infected
(I) individuals and recovered (R) individuals which is
known to us as SIR epidemic model !+ 15 1°1, Today, this
SIR epidemic model is very important in analysis of
many diseases. Referring to the simplest version of the
most classical epidemiological model for directly-trans-
mitted infectious diseases 17 18: 19,20, 21,221 ' 5 wel] as, the
social and epidemiological factors of hearing loss exist-
ing in the biological studies and in the literature [23-24. 251,
we proposed a new mathematical model by using (ODEs)
that describe the time dependence of the dynamics of
hearing loss by considering the contagion factor is the
mumps virus and the social factor is the exposure to
noise. This model is described by the following system:

dH—A H— [BL + ¢]H

dt K BL+elH,

dL

Fri [BL+e]H — (u+y)L, (6))
dR_ " "

ac = YL— R,

The population is divided into three epidemiological
classes that are: H(t) is the number of susceptible indi-
viduals at time t (normal hearing), L(t) is the number
of infected individuals at time t (loss of hearing), and
R(t) is the number of removed individuals at time t
(recovered hearing). Further 4 is the recruitment rate
of the population, u is the natural death rate of the
population, g is the transmission rate due to social
contagion of hearing loss (mumps), ¢ is the non-conta-
gion risk of hearing loss due to noise exposure and y is
the recovery rate of the infective individuals.

The rest of paper is organized as follows. In the next
section, positivity and boundedness of solutions are
studied. In Section 3, the basic reproduction number is
derived, also the local and the global asymptotic sta-
bility of the equilibria are analyzed. The numerical
results are given in Section 4. Lastly, we give a conclu-
sion of our results in Section 5.



241 REVISTA MEXICANA DE INGENIERIA BIOMEDICA | Vol. 39 | No. 3 | SEPTIEMBRE - DICIEMBRE 2018

Positivity and boundedness of solutions
In this section, we will establish the positivity and
boundedness of solutions of model (1), which proves
that our model is well posed.

PROPOSITION 2.1. All solutions starting from
non-negative initial conditions exist for all t > 0 and
remain bounded and non-negative.

PROOF. For the positivity, we show that any solution
starting in non-negative orthant, R* = {( H, L, R) € R*:
H=0, L=0, R=0}. In fact, (H(), L (), R(t)) € R?,and we have:

dH
g_t|H=0 =4
L
El[,:o = &H, (2)
dR
ElR:O yL

This proves the positivity of solutions. Now, we prove
that the solutions are bounded. We defined T(t)= H(t)+L(t)
By non-negativity of the solution, it follows that;

ar(t)
T A—pH = (u+y)L
dr
d(tt) < A—u(H+L)

Then

A A
tlim sup T(t) < " + (H(0) + L(0))e ™™ < "

From the last equation (1) and since L is bounded, we
deduce that R is bounded. This completes the proof.

Stability analysis of hearing loss model

Local stability of endemic
equilibrium point for € > 0
The following theorem presents the existence and
uniqueness of endemic equilibrium if R > 1.

THEOREM 3.1. System (1) has a unique equilibrium
point E’, which is locally asymptotically stable.

PROOF. By equalizing to zero the rights members of
the system (1), we find one endemic point that exists
for above model:

Eg = (He, L Re)

Where
. 24(u +y)
A+ (Wb R +VA
L*zﬁ/l—(8+#)(y+#)+\/3
£ 2B(u+v)
. BA— (e + W)y +p) +VA
=Y 2up(u+7v)
With

A= (BA— (e + Wy + )" + 4BeA(y + )

The Jacobian matrix of the system (1) is given by:

—u—(BL+e) —BH 0
J=<ﬁL+e BH — (v + 1) 0) 3)
0 14 —u

The characteristic equation of the endemic equilib-
rium point is given by;

(h=DA*+CA+C) =0 4)

Note that coefficient

{ Ci=¢+y+pL.—BH: +2u
C, = ey +PByLy + p? + ep+yu + BLep — BHip

are both positive if

BA

Ro= e > b
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From the Routh-Hurwitz theorem given in ¢, all

roots of equation (5) have negative real parts.
Consequently E "islocally asymptotically stable when-
everR > 1.

Global stability of endemic
equilibrium point for > 0
The following theorem discusses the global stability
of the endemic equilibrium.

THEOREM 3.2. The endemic equilibrium E" of the
system (1) is globally asymptotically stable.

PROOF. Consider the following Lyapunov functional;

W) = 1 ¢(H(t)> m(m)

(5)

Where ¢(x)=x-1-In(x) x€ R*. Obviously, ¢: R*—>R*
attains its global minimum; at x =1 and ¢(1)= 0.

To simplify the presentation, we shall use the follow-
ing notation: H= H(t) and L= L(t).

W(t) = H; (H(t) 1_ln(HHa>)) L (L(t) 1
In (L(t))) fe € L
LS
-5 0-5)

*

=(A—MH—[BL+S]H)(1—%)

Le
+ (1 —T)([BL +elH
-y +wi)

Note that
A=pH; + (u+y)
And
BL: + &)H; = (u+y)L;
Hence,

aw H;
dt(t) (1——)(uH + (@ +y)Ly —pH

—(BL + )H)
(1 - —) ((BL + &)H
-+

POy (1-2) s 1+ w2

- (1 —%) (BL + e)H
+ (1 —LT) (BL + H

*

—(u+y)L(1—%)

He He
SE) iz — 1) - e LGS
(BL + e)H

~ufi-

(u+y)L

(u+yL
+ @+ y)Le(-1- r
(BL + &)H;

(BL + €)H;

(u€+ y)L

e (u+y)L;

= u(1-2) oz -
+ (@ +vy)L; (—1 -
(u+vy)L

L

(BL + ¢)H;

(BL + &)H;

H;(BL + ¢)
H;
L [(qs (55) +
(w+yL
+é <H “(BL + e))

< (u+7y)L )
H;(BL + ¢)

(BL + €)H
+¢< (IH'V)L>

(BL + e)H
”"( w+pL )]

Then, we obtain the following equation:

aw (o _
dt

w12
++yle (—1 —LL*
(BL + e)H;

(u+7v)L;

in(55)
"H

(u+7y)L
H:(BL+¢) (u+vy)L;

—(u+y)L; (¢> (%)
( (u+y)L )
\uGr+o
s ((BL + s)H)]
(u+7y)L

From equation (6), we have:

)

&

-%)

H

-3)

)0
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awe H:
a - Rl —H) (1 __>
—ef(L —L;)? >

H
+ (u
e e

— (L (¢ (%) @

(p+yL
+é (H;‘(ﬁL + s))

(BL + e)H
+¢<m+yn>]

Since,

—%(H —H)?<0
—eB(L— L) _
Ly(BL+e)(BLi+ &) ~

NN (+7L HBL+ &)
—(u+y)L; [¢>(7)+¢<H;(ﬁL+e)> <(u+y)L )] =

0

We have

aw(t)
dt

Thus E " is stable, and

aw(t) _

dt 0

ifandonlyif H=H  and L=1L.

From LaSalle invariance principle ?7, we conclude
that E " is globally asymptotically stable. Since ¢(x) =
0, we have

dW(t)
dt

Stability analysis for special case e =0

dH

EZ A— |J.H - BLH

dL

5= BLH—(+L, ®
dR

a - YhTR

Notice that the system (8) has a basic reproductive
number

__BA
T u(e+y)

R,

R, represents the average number of secondary infec-
tions caused by an infective individual introduced into
a group of susceptible. By equalizing to zero the rights
members of the system (8), we find two equilibrium
points that exists for above model:

1. Disease-free equilibrium point E,

Ef = (’—: 0,0)

2. Endemic equilibrium point E'= (H*, L*, R*) where,

Loty
H _AB
L*=H(B;—H—Y)
%\(H"‘Y)
. (B;—u—v)
TR

The endemic equilibrium point exist only when

A
B;>u+y

i.e the infection rate must be greater than the death
rate of the infected individuals or R > 1.

Local stability of equilibria
The following theorems discuss the local stability of
the equilibrium point.

THEOREM 3.3.

1. If R, <1, then the disease-free equilibrium, E, is
locally asymptotically stable.

2. IfR > 1, E is unstable.

PROOF. The Jacobian matrix evaluated in the dis-
ease-free equilibrium
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A
Ef = (E ,0,0)

is given by

BA 0
" M

1ED=| Br- @t 0

0 Y —u
Whose eigenvalues are A =-u <0 and
(ﬁﬁ —y-mw<0

then R, < 1 and therefore E.is locally asymptotically
stable.

The disease-free equilibrium point is unstable if
A
(B Y- u) >0
which translate into R > 1.

Now, we focus on local stability of the endemic infec-
tion equilibrium E".

THEOREM 3.4.
1. IfR > 1, E"islocally asymptotically stable.

2. IfR <1, then the endemic equilibrium E" does not
exist.

PROOF. By substituting the endemic equilibrium
E’= (H, L', R") in the Jacobien matrix of the system (8)

y+u
“ ”
JE) BL=v—u
u 0 0
y+u
0 Y —u
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The characteristic equation of the endemic equilib-
rium point is given by

BAA A B
(—u—ﬂ)<zz+m+u<ﬁﬁ—y—u>)—0(9) (9)

Clearly when R > 1, both

6% o
wty

And
A
11 (B; -v- u) >0
then all roots of the characteristic equation have neg-

ative real parts. Consequently E" is locally asymptoti-
cally stable.

Global stability of equilibria
In this section, we establish the global stability of the
equilibria. Firstly, we have the following

THEOREM 3.5. The disease-free equilibrium E, is
globally asymptotically stable when R < 1.

PROOF. Consider the following Lyapunov functional
Vi (¢) = Hy (Hif) +L

Where

A

and calculating the time derivative of V (t) along the
positive solution of system (8), we get;

Vl(t)zH(i—%>+L
=(1—%)(A—uH—ﬁHL)+ﬁHL—(#+V)L

=(1- %)(A — uH) + BH L= (1 + )L
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Where A= qu, we have;

v, H
d—tl(t) =u(1—ﬁf) (Hy — H) + (Ro — DL

Since R, < 1, we have

av,
a <o

Thus, the disease-free equilibrium Efis stable, and

avy ey
dt(t)_o

ifand onlyif H = Hfand L(R,-1)=0. We discuss two cases:
» IfR <1,thenL=0.

» IfR =1.From H = H,and the first equation of
the system (8), we have
dH _ dH;

E_WZA_MHf_ﬁHfLZO

Then pH,L = 0, Hence L = 0.

From LaSalle invariance principle ?7, we conclude
that E_ is globally asymptotically stable.

Note that the disease-free equilibrium E, is unstable
whenR > 1.

Now, we establish a set of conditions which are suffi-
cient for the global stability of the endemic equilib-
rium E*,

THEOREM 3.6. The endemic equilibrium E* of the
system (8) is globally asymptotically stable.

PROOF. See the proof of theorem 3.2, and we replace
¢ by zero, we conclude that E* is globally asymptoti-
cally stable.

NUMERICAL SIMULATIONS
In this section, we show the numerical simulations
and the graphs of system (1) to illustrate the different
result obtained for each of the two cases ¢ >0and ¢ =
0 previously analyzed.
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FIGURE 1. Normal hearing (a) and loss of
hearing (b) individuals as function of time
in the case of £ =0,0025 and R >1.

We choose the following data set of system (1) as fol-
lows: A= 0.5, u= 0.1 and y= 1/17. By using the values of
A, pu, yand e= 0.0025 > 0 8, we find = 0.1433 for R, >
1 already defined for mumps disease 9. Therefore,
according to Theorem 3.2, the system (1) has a unique
endemic equilibrium which is globally asymptotically
stable. So, the solution of system (1) is persistent in
population and converge to E = (1,1008; 2,4450), this
results are illustrated in Figure 1. Now, we choose = 0
which means the hearing loss result only from mumps
diseases. So, the system (1) has a disease free equilib-
rium E= (5,0) which is globally asymptotically stable
when R < 1, then the disease dies out. Numerical sim-
ulations illustrated our results (see Figure 2). For R =
4.4 > 1, the endemic E* is globally asymptotically sta-
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ble which satisfy Theorem 3.6, (see Figure 3). In figure
4, we use different values of ¢ > 0 and we find the
solution of system (1), in this case, we observe that
when we increase the value of ¢ the number of normal
hearing individuals decrease and the numbers of hear-
ing loss increase.

CONCLUSIONS

In this paper, we have presented a mathematical
model of hearing loss based on a nonlinear system of
differential equations. We analysis the hearing loss
resulting from two factors, the first factor is contagious
due to Mumps disease and the second is social caused
by exposure to noise. By analysis the model, we have
proved the existence, positivity and the boundedness
of solutions of the problem, which implies that the
model is well posed. We have shown in the case of e = 0
that the disease free equilibrium is globally asymptoti-
cally stable if the basic reproductive number R < 1 and
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the endemic point is globally asymptotically stable
when R, > 1. In the case of hearing loss with the both
factors mumps and noise ¢ > 0 the system has a unique
endemic point exists and is globally asymptotically

stable, which means that the disease persists in the
population. In addition, the simulation of this model
provides that the number of individuals with hearing
loss increase when we introduce the risk factor noise.
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