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Coherence analysis of EEG in locomotion using graphs
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ABSTRACT
One of the most interesting brain machine interface (BMI) applications, is the control of assistive devices for re-
habilitation of neuromotor pathologies. This means that assistive devices (prostheses, orthoses, or exoskeletons) 
are able to detect user motion intention, by the acquisition and interpretation of electroencephalographic (EEG) 
signals. Such interpretation is based on the time, frequency or space features of the EEG signals. For this reason, 
in this paper a coherence-based EEG study is proposed during locomotion that along with the graph theory allows 
to establish spatio-temporal parameters that are characteristic in this study. The results show that along with the 
temporal features of the signal it is possible to find spatial patterns in order to classify motion tasks of interest. In 
this manner, the connectivity analysis alongside graphs provides reliable information about the spatio-temporal 
characteristics of the neural activity, showing a dynamic pattern in the connectivity during locomotions tasks.
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RESUMEN
Una de las aplicaciones de las interfaces cerebro máquina (BMI, por las siglas en Inglés de brain machine interface) 
que en la actualidad han tenido mucho interés es el control de dispositivos de asistencia en rehabilitación de patolo-
gías neuromotrices. Esto es, que los dispositivos (prótesis, órtesis o exoesqueletos) tengan la capacidad de ejecutar 
la intención de movimiento del usuario, a través de la interpretación de las señales electroencefalográficas (EEG). 
Dicha interpretación se basa en el conocimiento de características en diferentes dominios de la señal EEG i.e., el 
dominio del tiempo, de la frecuencia o del espacio. Por tal motivo, en este trabajo proponemos un estudio sobre la 
coherencia de las señales EEG durante actividades de locomoción que, por medio de la teoría de grafos, nos permita 
establecer parámetros espacio-temporales característicos de las actividades motrices propuestas. Los resultados 
muestran que, además de las características temporales de la señal, es posible encontrar patrones espaciales que 
ayuden a clasificar las tareas motrices de interés. Esto es, el análisis de conectividad complementado con sus grafos 
asociados proporciona información confiable sobre las características espacio-temporales de la actividad neural, 
reflejando la dinámica de sus ajustes en correspondencia con distintos niveles de conectividad durante la marcha.

PALABRAS CLAVE: Coherencia, extracción de características, grafos, procesamiento de EEG.
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INTRODUCTION
The main goal of brain machine interfaces (BMIs) is to 

provide a technological device in order to improve com-
munication between brain and environment. According to 
the pathway of the neural information, BMIs are divided in 
efferent, afferent and bidirectional [1]. The first ones use 
neural information to decode motor intent, the extracted 
data is used afterwards to command an artificial actuator 
[2]. A efferent BMIs sense physical quantities from the envi-
ronment and use such information to induce a stimulation 
in the brain (e.g. electrical microstimulation) [3,4]. 
Bidirectional BMIs are able to decode motor intention and 
encode sensory information to exchange it with the brain 
in a closed loop approach [5]. Nowadays BMIs are used in a 
wide variety of applications, from entertainment [6,7] to 
therapeutics [8,9]. In the field of therapeutic applications, 
BMIs are assistive devices that enable patients with severe 
motor impairments to control external actuators such as 
prostheses, orthoses or exoskeletons [10].

The restoration of locomotion in patients with lower-limb 
impairments using BCIs is a scientific and technological 
challenge. Currently one of the paradigms is to provide 
lower limb wearable robots for physical movement assis-
tance and rehabilitation such as disabled people can 
recover their locomotion capabilities [11,12]. According to 
the efferent BMIs, the main idea is that the assistive device 
could be able to interpret the motion intention of the 
patient and carried it out. The understanding of the neural 
activity during human locomotion is the key for the inter-
pretation of voluntary motion which has been widely 
studied in recent years. Two approaches have been pro-
posed: (i) classification of time and/or frequency features 
from electroencephalographic (EEG) recordings [13,14], and 
(ii) decoding of kinematic variables from the lower limbs 
from time-variant EEG frequency features [15-17]. Both 
schemes have been used to interpret EEG data mainly 
during well-controlled walking protocols [18-21].

Although time and frequency features of EEG have pro-
vided useful information to understand neural activity, 

current advances in Neuroscience have pointed out that 
human locomotion involves a highly complex neural con-
trol in various locations of the central nervous system, 
including the planing and initiation in supraespinal areas 
(cortex, basal ganglia, midbrain and hindbrain) as well as 
timings and patterns of locomotor movements at spinal 
cord [22]. At this point emerges the interest in knowing the 
spatial behavior of the neural activity. This has two main 
purposes, to obtain information about the user motion 
intention and, allowing in this way that assistive devices 
can reproduce more precisely the human movement. In 
order to deal with spatial analysis of the neural activity in 
locomotion, in this work it is proposed a study of the neu-
ral connectivity during locomotion, including speed 
changes, in order to seek spatial patterns and their evolu-
tion that allows us to classify motion tasks.

Here, connectivity is studied through the coherence 
analysis, because is a widely used methodology in differ-
ent fields of Neuroscience [23-25], when functional connec-
tivity between regions of the brain must be evaluated, and 
it can be useful to identify neuroanatomical and neuro-
physiological factors in EEG signals [26]. Also, the connec-
tivity dynamics during locomotion is evaluated via the 
graphs associated to the respective coherence matrices. 
The paper is organized as follows. The experimental pro-
tocol along with the connectivity analysis is described in 
Methodology section. textcolorblueNext, connectivity 
results and their statistical analysis are presented in the 
Results section. Finally, in the last section a brief discus-
sion and the main conclusions of this work are presented.

METHODOLOGY

Experimental Control
 A set of locomotion tasks were performed with three 

healthy research subjects, that did not present neuro-
motor pathologies in their lower limbs. All partici-
pants gave their consent before the experiment. The 
experiment consisted in a controlled walk on a tread-
mill (XTERRA® trail racer 3.0) at two different veloci-
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ties. The treadmill is set at velocity 1 (V1) and the sub-
ject start to walk; at this velocity (3 mph) the subjects 
should feel comfortable. After a minute in V1 the tread-
mill velocity is changed to V2 (5 mph). The transition 
time (T1) where an acceleration occurs is the time 
interval between V1 and V2. After a minute in V2 the 
treadmill velocity changes back to V1. The transition 
time (T2) where a deceleration occurs is the time 
between V2 and V1. Finally, the subject remains walk-
ing in V1 for a minute. After that, the treadmill is 
stopped and the EEG acquisition is turned off after 15 
second in idle state. This procedure was repeated ten 
times for each subject under examination, considering 
comfortable resting periods between trials.

The acquisition of the EEG signals was carried out by 
the B-Alert® X10 from Advanced Brain Monitoring, 
Inc. The system has nine electrodes according to the 
international 10-20 system (Fz, F3, F4, Cz, C3, C4, POz, 
P3 and P4), and its sampling frequency is 256 Hz. The 
signal pre-processing (low and high frequencies noise 
filtering, and artifacts) was carried out by the inner 
filters of the acquisition system.

Figure 1 shows the electrode distribution of the EEG 
equipment, according to the International 10-20 elec-
trode placement system (left), and the research sub-
ject wearing the equipment (right). In order to study 
the neural connectivity, the spectral content of the 
EEG recordings at each electrode are analyzed. 
According to literature, changes in the α (8-13 Hz) and 
β (13-30 Hz) bands of neural activity have been 
observed during motion tasks [27]. Both bands were 
filtered using 5-order Chebyshev band-pass filters that 
were implemented in Matlab®.

Coherence is a frequency function that measures the 
statistical interrelation of two signals through several 
coefficients in the frequency domain. Coherence coef-
ficients are normalized between 0 and 1 [26,28]. In 
order to determine connectivity between electrodes 
the spectral coherence was calculated in frequency 
domain ω, defined by:

FIGURE 1: The neural activity is recorded with the B-Alert® 
X10 from Advanced Brain Monitoring, Inc. The electrode 

distribution is according to the International Standard 
10-20 system.

where SXX and SY Y define the auto-spectra densities of 
the X and Y time series, SXY defines the cross-spectrum 
density of both signals.

The result of Equation (1) is a set of coherence values 
in a frequency interval. When the coherence between 
electrodes is calculated, it is possible to group such 
sets in a symmetric matrix of dimension n×n, where n 
is the number of electrodes. In this case, the average 
coherence value is obtained among the range of the 
Nyquist frequency (fs/2), where fs is the sample fre-
quency:



REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA | Vol. 38 | No. 1 | ENERO - ABRIL 2017239

In this manner, a symmetric matrix C of dimension n 
× n is obtained, where C coefficients determine the 
electrodes’s interrelations. However, from C the most 
important is know how relevant is the relation of each 
electrode respect to others. This is obtained by the 
average of the columns of C, i.e., c where their ele-
ments are given by:

where ci is a weighted vector that determines the rel-
ative importance of the electrode in the interconnec-
tion, thus it represents the average connectivity degree 
between electrodes and cij are the elements of C.

In order to analyze the statistical data of the connec-
tivity, an intra-subject one-way ANOVA was carried 
out by Minitab R 17. The analysis was organized as fol-
lows: the connectivity coefficient of the n electrodes 
per subject, three velocities (V1, V2 and V1) and two 
transition (T1 and T2 ) stages that were repeated 10 
times by each subject. The null hypothesis considers 

that the five stages means are equal, while in the alter-
native hypothesis considers that at least one mean is 
different from the others. The significance level are set 
at α = 0.05. The same assumptions made for meas are 
considered to analyze the variance of variables among 
the trials.

Graphs
The coherence is analyzed in pairs of electrodes, this 

is, the coherence value represents the connection 
weight between them. Therefore, the matrix C can be 
represented by a connectivity graph. According to the 
Graph Theory, a graph G is an ordered triad (V, E, Ψ) 
which consist of a not empty set V of vertices, an E set 
of edges, and an incidence function Ψ : E −→ V . For 
each edge the following condition holds: Ψ associates 
the edge e to a pair of vertices of V , Ψ(e) = u, v [29]. In 
this work the adjacent matrix of a graph G with a set of 
vertices V (electrodes) is the square matrix C = C(G) of 
dimension n × n. Each element cij of this matrix ranges 
in [0.5, 1] if vi, vj belongs to E, elsewhere zero. Matrix C 
is symmetric with the null diagonal. The grade of ver-
tex vi is d(vi), and it is defined as the number of cij ≥ 0,5 
in each row (or column).

FIGURE 2: Frequency spectrum of a neural signal. The α (8-13 Hz) and β (13-30 Hz) bands provides information 
about the neural activity during motion activities [27].



Quiroz et al. Coherence analysis of EEG in locomotion using graphs 240

The one-way ANOVA results (F and p values) for the three 
research subjects are the following: Subject 1 (F = 11.31, p 
≈ 0.000), Subject 2 (F = 9.84, p ≈ 0.000) and Subject 3 (F = 
16.47, p ≈ 0.000). This implies that significant differences 
(inside the 95 % Confidence Interval) were found among 
the means of velocity (V1, V2 and V1) and transition stages 

(T1 and T2) at each subject. The statistical parameters of 
the coherence in α-band are summarized in Table 1, 
whereas Table 2 shows the statistical parameters of coher-
ence in β-band. In both tables, the number of samples is 
defined as the average connectivity degree computed 
from data of α and β bands for each motion task.

TABLE 1: Results from statistical analysis of c in α-band: mean, standard deviation and confidence 
interval intra-subjects (CI).
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whereas Table 2 shows the statistical parameters of coherence in β-band. In both tables, the
number of samples is defined as the average connectivity degree computed from data of α and
β bands for each motion task.

Motion tasks Number of samples Mean Standard deviation 95 %CI
Subject 1 V1 90 3.8438 0.8514 (3.6721, 4.0154)

T1 90 4.2785 0.7974 (4.1068, 4.4501)
V2 90 3.7690 0.8827 (3.5973, 3.9406)
T2 90 4.4033 0.7636 (4.2317, 4.5750)
V1 90 3.8267 0.8426 (3.6550, 3.9983)

Subject 2 V1 90 4.4834 0.6418 (4.3463, 4.6204)
T1 90 4.0492 0.7346 (3.9121, 4.1862)
V2 90 4.5728 0.6377 (4.4358, 4.7098)
T2 90 4.1694 0.6308 (4.0324, 4.3065)
V1 90 4.3952 0.6572 (4.2582, 4.5323)

Subject 3 V1 90 4.2568 0.7842 (4.0902, 4.4235)
T1 90 4.4280 0.7987 (4.2614, 4.5946)
V2 90 3.5807 0.8662 (3.4141, 3.7473)
T2 90 3.8268 0.7687 (3.6602, 3.9934)
V1 90 4.1831 0.7998 (4.0164, 4.3497)

Table 1: Results from statistical analysis of c in α-band: mean, standard deviation and confidence
interval intra-subjects (CI).

Additional to the results presented in Tables 1 and 2, Figure 3, 4 and 5 show the average
and standard deviation of the filtered signals in the α-band (A) and β-band (B) for each of the
three research subjects. In these figures, the dark-blue boxes include the means and variance of
the average connectivity degree of each of the nine electrodes ci (horizontal axes) in each motion
task described in the experimental protocol. More precisely, the first light-blue box represents
velocity 1 (V1), the second light-blue box is velocity 2 (V2), whereas the third light-blue box is
the V1 again. The transition between V1 and V2 is the first white box (T1) and the transition
between V2 and V1 is the second white box (T2).

Electrodes connectivity

A graph was construct in order to observe the connectivity dynamics between electrodes,
during the motion tasks (both, velocities and transitions). Based on the statistical analysis of
the intra-subject result, an average graph at each of the five motion tasks (V1, T1, V2, T2 V1),
considering the three research subject and the ten performed trials. Figure 6 shows the topological
structure of such graphs considering α-band of the EEG signal of each electrode. On the Figure
7 the graphs of β-band are shown.

DISCUSSION

As it was presented in Figure 3.A, Figure 4.A, Figure 5.A and Tables 1 and 2, the means of
the motion tasks differ among them significantly; most precisely, means of velocity stages differ
from means of transition stages while means of the same-kind stage (velocity/transition) do not
differ in Subject 1 and 2, i.e. means are very close. A particular behavior is presented in Subject

Additional to the results presented in Tables 1 and 2, Figure 
3, 4 and 5 show the average and standard deviation of the 
filtered signals in the α-band (A) and β-band (B) for each of 
the three research subjects. In these figures, the dark-blue 
boxes include the means and variance of the average con-
nectivity degree of each of the nine electrodes ci (horizontal 

axes) in each motion task described in the experimental 
protocol. More precisely, the first light-blue box represents 
velocity 1 (V1), the second light-blue box is velocity 2 (V2), 
whereas the third light-blue box is the V1 again. The transi-
tion between V1 and V2 is the first white box (T1) and the 
transition between V2 and V1 is the second white box (T2).

TABLE 2: Results from statistical analysis of c in β-band: mean, standard deviation and confidence 
interval intra-subjects (CI).
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Motion tasks Number of samples Mean Standard deviation 95 %CI
Subject 1 V1 90 4.7361 0.7839 (4.5777, 4.8945)

T1 90 4.9975 0.7760 (4.8391, 5.1559)
V2 90 4.7691 0.8005 (4.6107, 4.9275)
T2 90 5.1683 0.6629 (5.0099, 5.3267)
V1 90 4.6481 0.7913 (4.4897, 4.8065)

Subject 2 V1 90 4.1777 0.7842 (4.0076, 4.3479)
T1 90 4.0126 0.8694 (3.8424, 4.1827)
V2 90 4.4906 0.8042 (4.3205, 4.6608)
T2 90 4.1439 0.8003 (3.9737, 4.3140)
V1 90 4.0700 0.8455 (3.8999, 4.2402)

Subject 3 V1 90 4.4796 0.8673 (4.3001, 4.6590)
T1 90 4.4056 0.8576 (4.2261, 4.5850)
V2 90 4.3494 0.9073 (4.1700, 4.5289)
T2 90 4.3984 0.8435 (4.2189, 4.5778)
V1 90 4.5531 0.8542 (4.3737, 4.7326)

Table 2: Results from statistical analysis of c in β-band: mean, standard deviation and confidence
interval intra-subjects (CI).

3, where also significant differences between means of the same stage are present i.e. V2 mean
differs from both inicial V1 and final V1 means while T1 mean differs from T2 mean.

In general, an increment in the neural activity is reported (by the suppression of activity in
α and β bands) over the cortical sensorimotor areas, which correspond to the lower limb control
areas during locomotion, in comparison to imagery locomotion. On the other hand, there is a
suppression of the α and β bands in the premotor and sensorimotor areas during locomotion,
contrary to resting state such as it was previously reported in [18,20].

From the statistics of the coherence analysis, it can be shown that the α-band (Figure 3.A,
Figure 4.A and Figure 5.A) provides more information than the β-band (Figure 3.B, Figure 4.B
and Figure 5.B) regarding connectivity dynamics in each of the motion tasks. Figures 3-5 show
that the electrode Cz is the most reliable in all the activities, preserving its behavior between
the three research subjects. To identify a reliable electrode gives the possibility of use its data
as command control in BMIs applications. Regarding the spatial analysis of the connectivity,
Figures 6 and 7 show that during the transitions the connectivity between electrodes tends
to increase, while the connectivity during speed periods decreases. Moreover, the topology of
V1 is preserved independently disregarding which transition occurred. Although during V2 the
connection pattern holds, the connectivity grade increases in both bands (see Figure 6 and 7).
These results are in concordance with the literature regarding EEG features during locomotion,
but the graph dynamics shows the neural connectivity changes.

CONCLUSION

The use of the neural information from EEG signals is useful in BMIs application to interpret
user motion intention. In this work it is shown that, along the frequency features of the signal, it
is possible to find spatial patterns to classify locomotion tasks. In this manner, the connectivity
analysis alongside graphs provides reliable information about the spatio-temporal characteristics
in the neural activity, where dynamical evolution of the pattern during locomotions tasks is shown
(see Figure 6 and 7). For BMIs applications it is important to find patterns that hold between
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FIGURE 3: Analysis of data of Subject 1. Mean and standard deviation of ci during the motion tasks, that is, velocities V1, V2 
(dark-blue boxes) and transitions T1 and T2 (light-blue boxes). The analysis includes α (A) and β (B) bands.
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FIGURE 4: Analysis of data of Subject 2. mean and standard deviation of ci during the motion tasks, that is, velocities V1, V2 
(dark-blue boxes) and transitions T1 and T2 (light-blue boxes). The analysis includes α (A) and β (B) bands.
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FIGURE 5: Analysis of data of Subject 3. mean and standard deviation of ci during the motion tasks, that is, velocities V1, V2 
(dark-blue boxes) and transitions T1 and T2 (light-blue boxes). The analysis includes α (A) and β (B) bands.
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FIGURE 6: Connectivity graphs of the motion tasks for the average date of the three research subjects in α-band.

Electrodes connectivity
A graph was construct in order to observe the connectiv-

ity dynamics between electrodes, during the motion tasks 
(both, velocities and transitions). Based on the statistical 
analysis of the intra-subject result, an average graph at 

each of the five motion tasks (V1, T1, V2, T2 V1), considering 
the three research subject and the ten performed trials. 
Figure 6 shows the topological structure of such graphs 
considering α-band of the EEG signal of each electrode. On 
the Figure 7 the graphs of β-band are shown.

FIGURE 7: Average connectivity graphs in the β-band during the motion tasks.
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DISCUSSION
As it was presented in Figure 3.A, Figure 4.A, Figure 5.A 

and Tables 1 and 2, the means of the motion tasks differ 
among them significantly; most precisely, means of 
velocity stages differ from means of transition stages 
while means of the same-kind stage (velocity/transition) 
do not differ in Subject 1 and 2, i.e. means are very close. 
A particular behavior is presented in Subject 3, where also 
significant differences between means of the same stage 
are present i.e. V2 mean differs from both inicial V1 and 
final V1 means while T1 mean differs from T2 mean.

In general, an increment in the neural activity is reported 
(by the suppression of activity in α and β bands) over the 
cortical sensorimotor areas, which correspond to the 
lower limb control areas during locomotion, in compari-
son to imagery locomotion. On the other hand, there is a 
suppression of the α and β bands in the premotor and 
sensorimotor areas during locomotion, contrary to rest-
ing state such as it was previously reported in [18,20].

From the statistics of the coherence analysis, it can be 
shown that the α-band (Figure 3.A, Figure 4.A and 
Figure 5.A) provides more information than the β-band 
(Figure 3.B, Figure 4.B and Figure 5.B) regarding con-
nectivity dynamics in each of the motion tasks. Figures 
3-5 show that the electrode Cz is the most reliable in all 
the activities, preserving its behavior between the three 
research subjects. To identify a reliable electrode gives 
the possibility of use its data as command control in 
BMIs applications. Regarding the spatial analysis of the 
connectivity, Figures 6 and 7 show that during the tran-
sitions the connectivity between electrodes tends to 
increase, while the connectivity during speed periods 
decreases. Moreover, the topology of V1 is preserved 
independently disregarding which transition occurred. 
Although during V2 the connection pattern holds, the 
connectivity grade increases in both bands (see Figure 6 
and 7). These results are in concordance with the litera-
ture regarding EEG features during locomotion, but the 
graph dynamics shows the neural connectivity changes.

CONCLUSION
The use of the neural information from EEG signals is 

useful in BMIs application to interpret user motion inten-
tion. In this work it is shown that, along the frequency 
features of the signal, it is possible to find spatial patterns 
to classify locomotion tasks. In this manner, the connec-
tivity analysis alongside graphs provides reliable informa-
tion about the spatio-temporal characteristics in the neural 
activity, where dynamical evolution of the pattern during 
locomotions tasks is shown (see Figure 6 and 7). For BMIs 
applications it is important to find patterns that hold 
between subjects, as it was shown in this work. The role of 
the subject differences, as well as to include more variables 
in the experimental protocol such as treadmill angle and 
more walking speeds would be of interest in future works.

In general we have observed that differences among 
motion tasks can be detected from connectivity coeff-
cients such as coherence. The connectivity patterns in 
V1, V2, T1 and T2 are spatial characteristics of the neural 
activities for these well-defined locomotion tasks, and 
they can be quantified and validated by the statistical 
analysis of the average of the connectivity degree (c) 
along the full-locomotion trail, which includes the five 
motions tasks. Thus, the results also provide the 
time-evolution of the characterized spatial patterns. 
The proposed approach provides a quantitative analysis 
to find differences among motion tasks in order to show 
that is possible to use them as inputs of a BMI system.
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