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ABSTRACT

One of the most interesting brain machine interface (BMI) applications, is the control of assistive devices for re-
habilitation of neuromotor pathologies. This means that assistive devices (prostheses, orthoses, or exoskeletons)
are able to detect user motion intention, by the acquisition and interpretation of electroencephalographic (EEG)
signals. Such interpretation is based on the time, frequency or space features of the EEG signals. For this reason,
in this paper a coherence-based EEG study is proposed during locomotion that along with the graph theory allows
to establish spatio-temporal parameters that are characteristic in this study. The results show that along with the
temporal features of the signal it is possible to find spatial patterns in order to classify motion tasks of interest. In
this manner, the connectivity analysis alongside graphs provides reliable information about the spatio-temporal
characteristics of the neural activity, showing a dynamic pattern in the connectivity during locomotions tasks.
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RESUMEN

Una de las aplicaciones de las interfaces cerebro maquina (BMI, por las siglas en Inglés de brain machine interface)
que en la actualidad han tenido mucho interés es el control de dispositivos de asistencia en rehabilitacion de patolo-
gias neuromotrices. Esto es, que los dispositivos (protesis, ortesis o exoesqueletos) tengan la capacidad de ejecutar
la intencién de movimiento del usuario, a través de la interpretacion de las sefiales electroencefalograficas (EEG).
Dicha interpretacion se basa en el conocimiento de caracteristicas en diferentes dominios de la senal EEG i.e., el
dominio del tiempo, de la frecuencia o del espacio. Por tal motivo, en este trabajo proponemos un estudio sobre la
coherencia de las sefiales EEG durante actividades de locomocién que, por medio de la teoria de grafos, nos permita
establecer parametros espacio-temporales caracteristicos de las actividades motrices propuestas. Los resultados
muestran que, ademas de las caracteristicas temporales de la sefal, es posible encontrar patrones espaciales que
ayuden a clasificar las tareas motrices de interés. Esto es, el analisis de conectividad complementado con sus grafos
asociados proporciona informacion confiable sobre las caracteristicas espacio-temporales de la actividad neural,
reflejando la dinamica de sus ajustes en correspondencia con distintos niveles de conectividad durante la marcha.

PALABRAS CLAVE: Coherencia, extraccién de caracteristicas, grafos, procesamiento de EEG.

e R
Correspondencia Fecha de recepcion:

DESTINATARIO: Ricardo A. Salido-Ruiz 15 de octubre de 2016
INSTITUCION: Departamento de Ciencias

Computacionales, CUCEI, Universidad de Guadalajara Fechade aceptaci()n:
DIRECCION: Blvd. Marcelino Garcia Barragan #1421, 23 de diciembre de 2016
Ciudad Universitaria, C.P. 44430, Guadalajara, Jal.,

México

CORREO ELECTRONICO: drsalidoruiz@gmail.com




237 REVISTA MEXICANA DE INGENIERiIA BIOMEDICA | Vol. 38 | No. 1| ENERO - ABRIL 2017

INTRODUCTION

The main goal of brain machine interfaces (BMIs) is to
provide a technological device in order to improve com-
munication between brain and environment. According to
the pathway of the neural information, BMIs are divided in
efferent, afferent and bidirectional ™. The first ones use
neural information to decode motor intent, the extracted
data is used afterwards to command an artificial actuator
&1, A efferent BMIs sense physical quantities from the envi-
ronment and use such information to induce a stimulation
in the brain (e.g. electrical microstimulation) B4,
Bidirectional BMIs are able to decode motor intention and
encode sensory information to exchange it with the brain
in a closed loop approach . Nowadays BMIs are used in a
wide variety of applications, from entertainment ©7 to
therapeutics 9. In the field of therapeutic applications,
BMISs are assistive devices that enable patients with severe
motor impairments to control external actuators such as
prostheses, orthoses or exoskeletons [°!,

The restoration of locomotion in patients with lower-limb
impairments using BCIs is a scientific and technological
challenge. Currently one of the paradigms is to provide
lower limb wearable robots for physical movement assis-
tance and rehabilitation such as disabled people can
recover their locomotion capabilities 112, According to
the efferent BMIs, the main idea is that the assistive device
could be able to interpret the motion intention of the
patient and carried it out. The understanding of the neural
activity during human locomotion is the key for the inter-
pretation of voluntary motion which has been widely
studied in recent years. Two approaches have been pro-
posed: (i) classification of time and/or frequency features
from electroencephalographic (EEG) recordings 34, and
(ii) decoding of kinematic variables from the lower limbs
from time-variant EEG frequency features 57, Both
schemes have been used to interpret EEG data mainly
during well-controlled walking protocols 821,

Although time and frequency features of EEG have pro-
vided useful information to understand neural activity,

current advances in Neuroscience have pointed out that
human locomotion involves a highly complex neural con-
trol in various locations of the central nervous system,
including the planing and initiation in supraespinal areas
(cortex, basal ganglia, midbrain and hindbrain) as well as
timings and patterns of locomotor movements at spinal
cord ?2, At this point emerges the interest in knowing the
spatial behavior of the neural activity. This has two main
purposes, to obtain information about the user motion
intention and, allowing in this way that assistive devices
can reproduce more precisely the human movement. In
order to deal with spatial analysis of the neural activity in
locomotion, in this work it is proposed a study of the neu-
ral connectivity during locomotion, including speed
changes, in order to seek spatial patterns and their evolu-
tion that allows us to classify motion tasks.

Here, connectivity is studied through the coherence
analysis, because is a widely used methodology in differ-
ent fields of Neuroscience 2325, when functional connec-
tivity between regions of the brain must be evaluated, and
it can be useful to identify neuroanatomical and neuro-
physiological factors in EEG signals ?°. Also, the connec-
tivity dynamics during locomotion is evaluated via the
graphs associated to the respective coherence matrices.
The paper is organized as follows. The experimental pro-
tocol along with the connectivity analysis is described in
Methodology section. textcolorblueNext, connectivity
results and their statistical analysis are presented in the
Results section. Finally, in the last section a brief discus-
sion and the main conclusions of this work are presented.

METHODOLOGY

Experimental Control
A set of locomotion tasks were performed with three
healthy research subjects, that did not present neuro-
motor pathologies in their lower limbs. All partici-
pants gave their consent before the experiment. The
experiment consisted in a controlled walk on a tread-
mill (XTERRA® trail racer 3.0) at two different veloci-
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ties. The treadmill is set at velocity 1 (V,) and the sub-
ject start to walk; at this velocity (3 mph) the subjects
should feel comfortable. After a minute in V, the tread-
mill velocity is changed to V, (5 mph). The transition
time (T,) where an acceleration occurs is the time
interval between V, and V,. After a minute in V, the
treadmill velocity changes back to V,. The transition
time (T,) where a deceleration occurs is the time
between V, and V,. Finally, the subject remains walk-
ing in V, for a minute. After that, the treadmill is
stopped and the EEG acquisition is turned off after 15
second in idle state. This procedure was repeated ten
times for each subject under examination, considering
comfortable resting periods between trials.

The acquisition of the EEG signals was carried out by
the B-Alert® X10 from Advanced Brain Monitoring,
Inc. The system has nine electrodes according to the
international 10-20 system (Fz, F3, F4, Cz, C3, C4, POz,
P3 and P4), and its sampling frequency is 256 Hz. The
signal pre-processing (low and high frequencies noise
filtering, and artifacts) was carried out by the inner
filters of the acquisition system.

Fz

F3 F4

C3 Cz Ca

POz

FIGURE 1: The neural activity is recorded with the B-Alert®
X10 from Advanced Brain Monitoring, Inc. The electrode
distribution is according to the International Standard
10-20 system.
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Figure 1 shows the electrode distribution of the EEG
equipment, according to the International 10-20 elec-
trode placement system (left), and the research sub-
ject wearing the equipment (right). In order to study
the neural connectivity, the spectral content of the
EEG recordings at each electrode are analyzed.
According to literature, changes in the o (8-13 Hz) and
B (13-30 Hz) bands of neural activity have been
observed during motion tasks [27]. Both bands were
filtered using 5-order Chebyshev band-pass filters that
were implemented in Matlab®,

Coherence is a frequency function that measures the
statistical interrelation of two signals through several
coefficients in the frequency domain. Coherence coef-
ficients are normalized between 0 and 1 [26,28]. In
order to determine connectivity between electrodes
the spectral coherence was calculated in frequency
domain o, defined by:

o Sxy (W)
’YXY(w) - SXX ((U)Syy(td)’

(1)

where S,, and S, , define the auto-spectra densities of
the X and Y time series, S, , defines the cross-spectrum

density of both signals.

The result of Equation (1) is a set of coherence values
in a frequency interval. When the coherence between
electrodes is calculated, it is possible to group such
sets in a symmetric matrix of dimension nxn, where n
is the number of electrodes. In this case, the average
coherence value is obtained among the range of the
Nyquist frequency (f/2), where f, is the sample fre-
quency:

c 9 fs
=7 w:17xy(w)- (2)
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In this manner, a symmetric matrix C of dimension n
x n is obtained, where C coefficients determine the
electrodes’s interrelations. However, from C the most
important is know how relevant is the relation of each
electrode respect to others. This is obtained by the
average of the columns of C, i.e., ¢ where their ele-
ments are given by:

1 n

Ci = > cijy (3)

where ¢, is a weighted vector that determines the rel-
ative importance of the electrode in the interconnec-
tion, thus it represents the average connectivity degree
between electrodes and c; are the elements of C.

In order to analyze the statistical data of the connec-
tivity, an intra-subject one-way ANOVA was carried
out by Minitab ® 17. The analysis was organized as fol-
lows: the connectivity coefficient of the n electrodes
per subject, three velocities (V,, V, and V) and two
transition (T, and T, ) stages that were repeated 10
times by each subject. The null hypothesis considers

1

that the five stages means are equal, while in the alter-
native hypothesis considers that at least one mean is
different from the others. The significance level are set
at a = 0.05. The same assumptions made for meas are
considered to analyze the variance of variables among
the trials.

Graphs

The coherence is analyzed in pairs of electrodes, this
is, the coherence value represents the connection
weight between them. Therefore, the matrix C can be
represented by a connectivity graph. According to the
Graph Theory, a graph G is an ordered triad (V, E, ¥)
which consist of a not empty set V of vertices, an E set
of edges, and an incidence function ¥ : E — V . For
each edge the following condition holds: ¥ associates
the edge e to a pair of vertices of V, ¥(e) = u, v [29]. In
this work the adjacent matrix of a graph G with a set of
vertices V (electrodes) is the square matrix C = C(G) of
dimension n x n. Each element ¢, of this matrix ranges
in[0.5, 1] if v, v, belongs to E, elsewhere zero. Matrix C
is symmetric with the null diagonal. The grade of ver-
tex v,is d(v), and it is defined as the number of ;20,5
in each row (or column).
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FIGURE 2: Frequency spectrum of a neural signal. The a (8-13 Hz) and # (13-30 Hz) bands provides information

about the neural activity during motion activities?”.
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The one-way ANOVA results (F and p values) for the three
research subjects are the following: Subject 1 (F = 11.31,p
= 0.000), Subject 2 (F = 9.84, p = 0.000) and Subject 3 (F =
16.47, p = 0.000). This implies that significant differences
(inside the 95 % Confidence Interval) were found among
the means of velocity (V,, V, and V,) and transition stages
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(T, and T,) at each subject. The statistical parameters of
the coherence in o-band are summarized in Table 1,
whereas Table 2 shows the statistical parameters of coher-
ence in B-band. In both tables, the number of samples is
defined as the average connectivity degree computed
from data of o and B bands for each motion task.

TABLE 1: Results from statistical analysis of c in a-band: mean, standard deviation and confidence

interval intra-subjects (CI).

Motion tasks | Number of samples | Mean | Standard deviation 95 %CL
Subject 1 Vi 90 3.8438 0.8514 (3.6721,4.0154)
T 90 4.2785 0.7974 (4.1068, 4.4501)
Vs 90 3.7690 0.8827 (3.5973, 3.9406)
Ty 90 4.4033 0.7636 (4.2317,4.5750)
Vi 90 3.8267 0.8426 (3.6550, 3.9983)
Subject 2 i 90 4.4834 0.6418 (4.3463, 4.6204)
T 90 4.0492 0.7346 (3.9121, 4.1862)
Va 90 4.5728 0.6377 (4.4358,4.7098)
T 90 4.1694 0.6308 (4.0324, 4.3065)
Vi 90 4.3952 0.6572 (4.2582,4.5323)
Subject 3 Vi 90 4.2568 0.7842 (4.0902, 4.4235)
T 90 4.4280 0.7987 (4.2614, 4.5946)
Va 90 3.5807 0.8662 (3.4141, 3.7473)
T 90 3.8268 0.7687 (3.6602, 3.9934)
Vi 90 4.1831 0.7998 (4.0164, 4.3497)

TABLE 2: Results from statistical analysis of c in f-band: mean, standard deviation and confidence

interval intra-subjects (CI).

Motion tasks | Number of samples | Mean | Standard deviation 95 %CI
Subject 1 Vi 90 4.7361 0.7839 (4.5777,4.8945)
T 90 4.9975 0.7760 (4.8391, 5.1559)
Va 90 4.7691 0.8005 (4.6107,4.9275)
T 90 5.1683 0.6629 (5.0099, 5.3267)
Vi 90 4.6481 0.7913 (4.4897, 4.8065)
Subject 2 Vi 90 4.1777 0.7842 (4.0076, 4.3479)
T 90 4.0126 0.8694 (3.8424,4.1827)
Vs 90 4.4906 0.8042 (4.3205, 4.6608)
Ty 90 4.1439 0.8003 (3.9737,4.3140)
1% 90 4.0700 0.8455 (3.8999, 4.2402)
Subject 3 Vi 90 4.4796 0.8673 (4.3001, 4.6590)
T 90 4.4056 0.8576 (4.2261, 4.5850)
Va 90 4.3494 0.9073 (4.1700, 4.5289)
T 90 4.3984 0.8435 (4.2189,4.5778)
i 90 4.5531 0.8542 (4.3737,4.7326)

Additional to the results presented in Tables 1 and 2, Figure
3, 4 and 5 show the average and standard deviation of the
filtered signals in the a-band (A) and p-band (B) for each of
the three research subjects. In these figures, the dark-blue
boxes include the means and variance of the average con-
nectivity degree of each of the nine electrodes ¢, (horizontal

axes) in each motion task described in the experimental
protocol. More precisely, the first light-blue box represents
velocity 1 (V)), the second light-blue box is velocity 2 (V)),
whereas the third light-blue box is the V, again. The transi-
tion between V, and V, is the first white box (T,) and the
transition between V, and V, is the second white box (T).
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FIGURE 3: Analysis of data of Subject 1. Mean and standard deviation of ¢, during the motion tasks, that is, velocities V. V,
(dark-blue boxes) and transitions T, and T, (light-blue boxes). The analysis includes « (A) and £ (B) bands.
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FIGURE 4: Analysis of data of Subject 2. mean and standard deviation of ¢, during the motion tasks, that is, velocities V,, V,
(dark-blue boxes) and transitions T, and T, (light-blue boxes). The analysis includes « (A) and £ (B) bands.
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Electrodes connectivity
A graph was construct in order to observe the connectiv-
ity dynamics between electrodes, during the motion tasks
(both, velocities and transitions). Based on the statistical
analysis of the intra-subject result, an average graph at
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each of the five motion tasks (V,, T, V.

1’ 712 T2

T, V), considering
the three research subject and the ten performed trials.
Figure 6 shows the topological structure of such graphs
considering a-band of the EEG signal of each electrode. On
the Figure 7 the graphs of p-band are shown.
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FIGURE 6: Connectivity graphs of the motion tasks for the average date of the three research subjects in o-band.

FIGURE 7: Average connectivity graphs in the g-band during the motion tasks.
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DISCUSSION

As it was presented in Figure 3.A, Figure 4.A, Figure 5.A
and Tables 1 and 2, the means of the motion tasks differ
among them significantly; most precisely, means of
velocity stages differ from means of transition stages
while means of the same-kind stage (velocity/transition)
do not differ in Subject 1 and 2, i.e. means are very close.
A particular behavior is presented in Subject 3, where also
significant differences between means of the same stage
are present i.e. V, mean differs from both inicial V, and
final V, means while T, mean differs from T, mean.

In general, an increment in the neural activity is reported
(by the suppression of activity in o and p bands) over the
cortical sensorimotor areas, which correspond to the
lower limb control areas during locomotion, in compari-
son to imagery locomotion. On the other hand, thereis a
suppression of the o and B bands in the premotor and
sensorimotor areas during locomotion, contrary to rest-
ing state such as it was previously reported in [18,20].

From the statistics of the coherence analysis, it can be
shown that the o-band (Figure 3.A, Figure 4.A and
Figure 5.A) provides more information than the g-band
(Figure 3.B, Figure 4.B and Figure 5.B) regarding con-
nectivity dynamics in each of the motion tasks. Figures
3-5 show that the electrode C_ is the most reliable in all
the activities, preserving its behavior between the three
research subjects. To identify a reliable electrode gives
the possibility of use its data as command control in
BMIs applications. Regarding the spatial analysis of the
connectivity, Figures 6 and 7 show that during the tran-
sitions the connectivity between electrodes tends to
increase, while the connectivity during speed periods
decreases. Moreover, the topology of V, is preserved
independently disregarding which transition occurred.
Although during V, the connection pattern holds, the
connectivity grade increases in both bands (see Figure 6
and 7). These results are in concordance with the litera-
ture regarding EEG features during locomotion, but the
graph dynamics shows the neural connectivity changes.
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CONCLUSION

The use of the neural information from EEG signals is
useful in BMIs application to interpret user motion inten-
tion. In this work it is shown that, along the frequency
features of the signal, it is possible to find spatial patterns
to classify locomotion tasks. In this manner, the connec-
tivity analysis alongside graphs provides reliable informa-
tion about the spatio-temporal characteristics in the neural
activity, where dynamical evolution of the pattern during
locomotions tasks is shown (see Figure 6 and 7). For BMIs
applications it is important to find patterns that hold
between subjects, as it was shown in this work. The role of
the subject differences, as well as to include more variables
in the experimental protocol such as treadmill angle and
more walking speeds would be of interest in future works.

In general we have observed that differences among
motion tasks can be detected from connectivity coeff-
cients such as coherence. The connectivity patterns in
V,, V,, T, and T, are spatial characteristics of the neural
activities for these well-defined locomotion tasks, and
they can be quantified and validated by the statistical
analysis of the average of the connectivity degree (c)
along the full-locomotion trail, which includes the five
motions tasks. Thus, the results also provide the
time-evolution of the characterized spatial patterns.
The proposed approach provides a quantitative analysis
to find differences among motion tasks in order to show
that is possible to use them as inputs of a BMI system.
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