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RESUMEN
Se presenta un algoritmo para la selección del grupo de electrodos
relacionados con la imaginación de movimiento. El algoritmo utiliza
la técnica de agrupamiento llamada k−means para formar grupos
de sensores y selecciona el grupo que corresponde a la actividad
correlacionada más alta. Para evaluar la selección de electrodos, se
calcula el indice de clasificación aplicando la descomposición proyectiva
llamada patrones espaciales comunes y un discriminante lineal en
una prueba de una sola época para identificar la imaginación del
movimiento de mano izquierda vs pie derecho. Esta propuesta reduce
significativamente el número de electrodos de 118 a 35, además de
mejorar el índice de clasificación.

Palabras clave: EEG, k-means, patrones espaciales comunes,
correlación, selección, electrodos

ABSTRACT

We present an algorithm for electrodes selection associated with motor
imagery activity. The algorithm uses a clustering technique called k-
means to form groups of sensors and selects the group corresponding
to the highest correlation activity. Then, we evaluate the selected
electrodes computing the classification index using the projective
decomposition called common spatial patterns and a linear discriminant
method in a left hand vs right foot motor imagery classification task.
This approach significantly reduces the number of electrodes from 118
to 35 while improving the classification accuracy index.

Keywords: EEG, k-means, common spatial patterns, correlation,
selection, electrodes.



INTRODUCCIÓN

La clasificación de las ondas cerebrales
que provienen de electroencefalógrafos tienen
diferentes aplicaciones, por ejemplo la
detección temprana de enfermedades como el
Alzheimer, la epilepsia y los trastornos del
sueño [?]. Otro ejemplo son las interfaces
cerebro-computadora (BCI por sus siglas en
inglés), que permiten a las personas con
inmovilización física interactuar con diferentes
componentes electro-mecánicos como sillas de
ruedas y con aplicaciones de comunicación
asistidas por computadora [?, ?].

La clasificación de las señales de un
Electroencefalograma (EEG) relacionadas
con el movimiento de extremidades,
tradicionalmente se realiza promediando la
información de varios experimentos para
mejorar la calidad de la señal [?, ?],
posteriormente se calculan características
invariantes que se utilizan en algoritmos
de aprendizaje automático como redes
neuronales, árboles de decisión, discriminantes
lineales y no lineales, entre otros [?].
Recientemente en [?] se ha propuesto un
método llamado Patrones Espaciales Comunes
(CSP) que utiliza la información de todos
los canales de un EEG proyectándola en un
espacio de dimensión menor, maximizando
las diferencias entre los eventos que permiten
obtener una clasificación precisa utilizando
discriminantes lineales [?].

La selección de los electrodos directamente
relacionados con actividades específicas,
como el movimiento de las manos, es
importante porque simplifica la colocación de
sensores especialmente en personas con alguna
discapacidad que llevan consigo los sensores
por largos periodos de tiempo [?]. En [?] se
propone seleccionar electrodos mediante el uso
de distancias de Riemann entre las matrices de
covarianza de clases específicas. En [?], para la
selección de electrodos se utiliza información
mutua entre los datos de los sensores y las
etiquetas de los eventos.

En este trabajo se presenta un algoritmo
para seleccionar el grupo de electrodos
relacionados con la imaginación del
movimiento. Posteriormente se muestra que
al integrar este algoritmo al método CSP y
utilizando un clasificador lineal, al reducir el
número de electrodos se mejora el índice de
clasificación.

La organización del trabajo es la siguiente:
En la sección II se describen los datos
experimentales y los métodos en los que se
basa la propuesta (métrica de correlación, k-
means, CSP y discriminante lineal), además
se explica el criterio de selección del grupo
de electrodos que están ligados a la actividad
motora. En la sección III se discuten los
resultados experimentales y finalmente en la
sección IV se presentan las conclusiones.

En la Figura ?? se muestra el flujo
de información del algoritmo de pre-
procesamiento propuesto y su integración al
clasificador de eventos de época única, basado
en el método CSP y un discriminante lineal.

Los datos iniciales son una matriz de datos
que representa las señales provenientes de
118 electrodos de un EEG. Esta información
se agrupa mediante el algoritmo k-means
utilizando la métrica de correlación. En cada
grupo se mide la correlación intra-grupo y
posteriormente se selecciona el grupo cuya
correlación es mayor, reduciendo la cantidad de
información procesada de 118 a 35 electrodos.
Finalmente, las señales de los electrodos de
este grupo son los datos de entrada a la etapa
de clasificación de imaginación del movimiento
mano izquierda vs pie derecho. Para esta etapa
de clasificación primero se aplica el método
CSP para proyectar los datos en un espacio
de dimensión menor donde las clases son
más fácilmente separables y posteriormente se
aplica un discriminante lineal para distinguir
los eventos de imaginación motora.



METODOLOGÍA

Materiales

Los datos experimentales se obtuvieron de
Fraunhofer FIRST, Intelligent Data Analysis
Group y Campus Benjamin Franklin of
the Charité - University Medicine Berlin,

Figura 1: Flujo de información del algoritmo
propuesto.

Department of Neurology, Neurophysics Group
(Gabriel Curio) [?]. La señal consiste de 118
canales de EEG obtenidos de un sujeto sano
comodamente sentado en una silla en un cuarto
con iluminación tenue, mientras imagina el
movimiento de mano izquierda y pie derecho.
En cada experimento se presenta en la pantalla
una indicación visual durante 3.5 segundos
para cada actividad motora seguido de un
periodo de reposo aleatorios de al menos 2
segundos. Estas señales contienen etiquetas
que corresponden a cada evento de imaginación
de movimiento realizado en el experimento.
Los artefactos provocados por movimientos
involuntarios se eliminaron previamente de
forma manual analizando visualmente la señal
para excluir los segementos contaminados.

Métodos

Diversas métricas se han utilizado en el
análisis de señales EEG para detectar regiones

de la corteza cerebral con actividad funcional
similar, como la correlación en el dominio
del tiempo; mientras que en el dominio de
la frecuencia, la coherencia y el índice de
retardo de fase han sido de las más utilizadas.
Sin embargo, como se demuestra en [?], la
coherencia es asintóticamente equivalente a la
correlación entre pares de señales filtradas.

En este trabajo utilizamos la correlación
debido a que su cálculo utiliza menos recursos
de cómputo. La correlación se utiliza en el
algoritmo k-means para identificar el grupo de
sensores relacionados con la actividad motora
en un espacio en donde las diferencias entre los
eventos no son fácilmente distingibles. Por esta
razón, posteriormente se utiliza el algoritmo
CSP para obtener una nueva representación
de la información [?] , donde los eventos de
movimiento mano izquierda vs pie derecho son
fácilmente separables.

Coeficiente de Correlación

Sea D = {x1,x2, . . . ,xm} el conjunto
de vectores en Rn, donde m es el número
de electrodos y xi = (xi1, xi2, . . . , xin). El
coeficiente de correlación provee una medida
de similaridad entre las variables xi y x′i, está
definido como:

R(i, i′) =

n∑
j=1

(xij − µi)(xi′j − µi′)√√√√ n∑
j=1

(xij − µi)2

√√√√ n∑
j=1

(xi′j − µi′)2

(1)
donde µi y µi′ son las medias de los vectores
de datos xi y x′i respectivamente y sus valores
están en el intervalo [−1, 1].

Algoritmo k-means

El algoritmo k-means [?, ?] es uno de
los algoritmos de agrupamiento más utilizados
diseñado para agrupar datos numéricos, donde
cada agrupamiento contiene un centro llamado
centroide.



Definición 1. Sea O un conjunto de m
objetos, D = {x1,x2, . . . ,xm} el conjunto de
vectores en Rn de características de los objetos.
Si G1, G2, . . . , Gk son k grupos disjuntos de O
definimos el centroide del grupo i como

µ(Gi) = 1
|Gi|

∑
j∈Gi

xj (2)

El procedimiento básico de k-means se
resume a continuación:

1. Inicializar la matriz de centroides. M =
[µ(G1), . . . , µ(Gk)]

2. Asignar a cada objeto de O el grupo más
cercano Gl (con respecto a una métrica
d de Rn), es decir para j = 1, · · · ,m

oj ∈ Gl, si d(xj , µ(Gl)) ≤ d(xj , µ(Gi))
∀ i = 1, . . . , k (3)

3. Calcular la nueva matriz de centroides
aplicando (??) a la nueva partición

4. Repetir los pasos 2 y 3 hasta que no haya
algún cambio en cada grupo.

Algunas propiedades y variantes del
algoritmo k-means se discuten en [?] y [?].

Patrones Espaciales Comunes

El método CSP (por sus siglas en Inglés
Commom Spatial Pattern) proyecta las señales
originales multicanal en un espacio alternativo
mediante una matriz de proyección W , la cual
maximiza la separación espacial de los datos
para dos eventos contenidos en las señales
originales.

Sea Xi ∈ Rm×k un segmento de la señal
de un EEG correspondiente al i-ésimo de
N ensayos de imaginación de movimiento,
donde m es el número de electrodos, k
el número de muestras en el tiempo para
Xi; con yi ∈ {+1,−1} denotamos la
etiqueta correspondiente (mano izquierda o pie

derecho) a cada Xi . Además, sea Σ+ ∈ Rm×m

y Σ− ∈ Rm×m las estimaciones de las matrices
de covarianza de la señal EEG filtrada con un
filtro pasa banda, luego:

Σ(c) = 1
|Sc|

∑
i∈Sc

XiX
T
i (c ∈ {+,−})

donde Sc (c ∈ {+,−}) es el conjunto de
índices correspondientes al entrenamiento para
cada condición y |Sc| denota el tamaño del
conjunto Sc. La expresión anterior obtiene una
estimación combinada de la covarianza para
cada condición, de aquí que el análisis CSP esta
dado por la diagonalización simultánea de las
dos matrices de covarianza, esto es:

W T Σ(+)W = Λ(+),

W T Σ(−)W = Λ(−), (Λc diagonal)(4)

Esto se puede lograr resolviendo el
problema generalizado de eigenvalores
correspondiente.

Σ(+)wj = λΣ(−)wj (5)

La Ec. (??) se satisface en W , la cual
consiste de eigenvectores generalizados wj (j =
1, . . . ,m) de la Ec. (??) [?].

Clasificación de eventos EEG

En esta sección se describe el proceso
de clasificación de las señales basado en el
discriminante lineal y en el uso de la matriz de
proyección que se obtiene mediante el método
CSP.

Definición 2. Un clasificador se define como
una función f que predice las etiquetas de
entrenamiento {+1,−1} de Xi mediante:

f
(
Xi; {wj}Jj=1, {βj}Jj=0

)
=

J∑
j=1

βj log
(
wT

j XiX
T
i wj

)
+ β0 (6)



El clasificador representado en (??)
proyecta la señal mediante J filtros
espaciales (número de eigenvectores utilizados)
{wj}Jj=1 ∈ Rm×k, toma el logaritmo de
las potencias de la señal proyectada
y realiza la combinación lineal de las
características J dimensionales con los
umbrales βj determinados mediante el
análisis del discriminante lineal. El valor
de f es un número real cuyo signo es la
clase correspondiente a la imaginación de
movimiento de mano izquierda o pie derecho;
ver [?] para consultar los detalles del método.

RESULTADOS y DISCUSÓN

Existen regiones del cerebro relacionadas
con actividades funcionales específicas como
la actividad motora que se ubica en la
región central, además se sabe que en
tareas complejas varias regiones del cerebro
se relacionan [?]. Sin embargo, la mayoría
de las variantes del algoritmo CSP utilizan
configuraciones densas de electrodos.

En este trabajo se identifica el grupo de
electrodos relacionados con la actividad de
imaginación motora usando el algoritmo k-
means en una tarea de clasificación de los
eventos de movimiento mano izquierda vs pie
derecho combinando el algoritmo CSP con el
algoritmo disciminante lineal de Fisher. Este
enfoque reduce significativamente el número de
electrodos mejorando el indice de clasificación.

Montajes Manuales

Inicialmente se utilizaron tres montajes
manuales para tener un marco de comparación
con los resultados que se obtienen al
automatizar la selección de electrodos con
k-means. En este trabajo consideramos 3
configuraciones de electrodos: el estándar 10-
20 extendido de 118 electrodos, el estándar
10-20 de 20 electrodos y una distribución de
electrodos en el área central de 21 electrodos.

La Figura ?? muestra los tres montajes
manuales.

Para estimar el rendimiento del
clasificador, los datos disponibles se dividieron
en conjuntos de entrenamiento y prueba.

Figura 2: Configuraciones de electrodos
estudiadas.

Los datos de entrenamiento se utilizan
para obtener los parámetros del clasificador
y posteriormente se utilizan para evaluar la
capacidad de generalización del clasificador
en el conjunto de datos de prueba calculando
el índice de error. Para cada configuración
el experimento se repite veinte veces con
particiones de datos diferentes obtenidas
aleatoriamente siguiendo la técnica de
validación cruzada. Los resultados de la
evaluación se presentan a continuación.

Dos parámetros que influyen en el
rendimiento del método CSP son, la ventana
de tiempo que limita la cantidad de datos
utilizados por ensayo después de que se
presenta la indicación visual para imaginar



el movimiento y el número de eigenvectores
empleados para proyectar la información
original a un espacio de dimensión menor que
mejora la separación entre los dos eventos de
imaginación motora.

La tabla ?? muestra los errores de
clasificación para las tres configuraciones
manuales con sus desviaciones estándar
respectivas. Observe que la mejor
configuración es la correspondiente al estándar
10-20 extendido de 118 electrodos con un
índice de clasificación del 88.4% seguida por
la configuración central de 21 electrodos que
alcanza el 88.27% de clasificación. Mientras
que la configuración del 10-20 únicamente
alcanza 86.98%.

Tabla 1: Comparación de los montajes
manuales con los parámetros que obtienen la
mejor clasificación.
Montaje Sen-

sores

Eigen-
vectores

Tiempo
seg. Error σ

10-20 Ex. 118 26 2.5 11.59 1.01
Motor 21 8 3.0 11.72 0.11
10-20 20 4 3.5 13.02 0.13

Figura 3: Superficie de error en la clasificación
con el montaje de 118 electrodos.

Figura 4: Superficie de error para el montaje
manual de electrodos distribuidos en la parte
central.

Como se puede observar en la tabla ?? los
montajes 10-20 extendido y central tienen los
mejores índices de clasificación, sin embargo la
configuración central tiene sólo 21 electrodos,
casi 100 electrodos menos que la configuración
10-20 extendida.

Selección Automática de Electrodos

Como la distribución de electrodos tiene un
efecto importante en el índice de clasificación
en la imaginación del movimiento, se evaluó
el uso del algoritmo k-means para la selección
automática de electrodos relacionados a la
imaginación motora. Cuando el algoritmo k-
means obtiene un mínimo local se selecciona el
grupo de electrodos en el cual la suma de las
correlaciones entre la señal promedio y todas
las señales del grupo es mayor.

Posteriormente se utiliza este grupo de
electrodos como entrada en el algoritmo CSP
para obtener el número de eigenvectores y la
ventana de tiempo que mejor clasifica a los
datos etiquetados.

La tabla ?? muestra los errores de
clasificación de la actividad motora cuando el
algoritmo k-means obtiene desde cinco hasta
diez grupos de electrodos. Observe que cuando
se forman ocho y nueve grupos, el desempeño



del algoritmo de clasificación es mejor, incluso
superando los resultados que se obtienen al
usar los 118 electrodos de la configuración 10-
20 extendida (ver tabla ??).

La figura ?? muestra como se agrupan
los electrodos al utilizar el algoritmo k-means
para obtener ocho y nueve grupos. Además,
presenta el grupo con la suma de correlación
intragrupo más alta. Observe que en el grupo
seleccionado los electrodos se distribuyen en la
parte pre-frontal y central de la corteza craneal
con un sesgo a la derecha.

Como se ha descrito en [?] la corteza
contralateral motora primaria no es la única
región del cerebro involucrada en el control
motor. Dependiendo de la tarea motora
específica, las áreas activas en los hemisferios
contra-e ipsilateral son las áreas, pre-motoras,
pariental, subcortical y del cerebelo.

La figura ?? muestra la superficie de error
de clasificación cuando se utiliza únicamente
el grupo de electrodos más correlacionados (35
electrodos) de los nueve grupos obtenidos con
el algoritmo k-means.

Tabla 2: Indice de error de clasificación de
imaginación motora al seleccionar el grupo de
electrodos con mayor correlación.
k-
means

Sen-
sores

Eigen-
vectores

Tiempo
seg. Error σ

10 29 7 4.5 14.77 0.44
9 35 4 3.0 10.19 0.16
8 36 4 3.0 10.33 0.16
7 34 4 4.5 11.50 0.15
6 48 10 4.0 11.99 0.44
5 46 10 4.0 11.07 0.69

Figura 5: Arriba, de izquierda a derecha, se
muestran los 8 y 9 grupos obtenidos con
el algoritmo k-means. Abajo, el grupo de
electrodos más correlacionados.

Figura 6: Superficie de error para el grupo de
electrodos más correlacionados a partir de 9
grupos.

Con esta configuración se obtiene el menor
error de todas las configuraciones estudiadas
en este trabajo.



Conclusiones

En este trabajo, se ha mostrado
cuantitativamente que es posible seleccionar
el conjunto de electrodos correlacionados con
los eventos de imaginación motora mano
izquierda y pie derecho utilizando el algoritmo
k-means. Además, se muestra que los índices
de clasificación mejoran al disminuir el número
de electrodos (de 118 a 35) al seleccionar el
grupo con el índice de correlación más alto.
La identificación automática de un conjunto
de electrodos relacionados con una actividad
mental es importante porque puede mejorar la
usabilidad de dispositivos BCI en personas con
alguna discapacidad, al utilizar menos canales
en el proceso de entrenamiento y evaluación
del clasificador.

Estudiar la dinámica de grupos de sensores
en tareas colaborativas como el problema de
coordinación ojo-mano y mejorar la selección
de electrodos es parte del trabajo futuro.
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