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Abstract

Epilepsy is a progressive and disabling disease if not diagnosed early; for this reason, it has been the subject of research,
specially in cases with idiopathic etiology. Approximately between 1 and 2% of the world population have epilepsy. In Mexi-
co the prevalence is from 10 to 20 patients per 1000 inhabitants. Lately, the scientific community has been trying to create,
adapt, and use biomolecular tools to study its pathophysiology so that, hopefully, in a near future we are able to intervene in
the natural history of this disease. The aim of this work is to cite evidence about some of the molecular biology techniques

in order to support and encourage investment in neurogenomical research; as a necessary tool in the study of epilepsy.

Key words: Epilepsy. Biomolecular Tools. Neurogenomics.

Introduction

The International League Against Epilepsy (ILAE)
defines an epileptic seizure as the occurrence of signs
and/or symptoms due to an excessive synchronous or
asynchronous abnormal neuronal activity, and epilepsy
as a disease characterized by the long-term predispo-
sition to generate epileptic seizures, as well as, by the
neurobiological, cognitive, psychological, and social
consequences of this condition'.

In the world, there are >50 million people suffering
from epilepsy, of which 80% live in developing coun-
tries with a prevalence of 7-14 per 1000 inhabitants,
unlike the developed countries with a proportion of
4-10 per 1000 habitants?.

In Mexico, a prevalence of 10-20 per 1000 habitants
has been found; therefore, it can be estimated that there
are approximately 1-2 million Mexicans affected®.
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Etiologically, epilepsy can be classified into the fol-
lowing groups: symptomatic or secondary (where there
is a known cause, such as tumor, neuroinfection, and
congenital brain malformation), idiopathic (when genet-
ic factors are suspected, inherited, or de novo, etc.),
and cryptogenic (type of epilepsy in which it cannot be
associated to a certain cause)*. Around 20-30% of ep-
ilepsies are caused by acquired conditions and 70-80%
are related to one or more genetic factors®.

Epilepsy is considered a public health problem, due
to its high morbidity and psychosocial repercussions
(stigmatization or rejection) and economic (unemploy-
ment, pharmacological, and hospitalization expenses);
therefore, it should be a reason for interest, investment,
and research to understand the disease and provide
the best care to this sector of the population. Consid-
ering the proportion of epilepsy related to genetic fac-
tors, 5 it is crucial to know the clinical, physiological,
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Figure 1. Variations in the genome of a single base. Variants of a single nucleotide within a DNA sequence can be
classified as SNP> 1% or as a point mutation <1% according to their frequency in the study population.

and genomic tools used in the diagnosis in this type of
patients.

Since the publication in 1951 in JAMA by the epilep-
tologist William G. Lennox, it was possible to confirm
the importance of the genetic causes in some types of
epilepsy, observed in their studies in twins®. Later, Wat-
son and Crick (1953) propose the helical structure,
antiparallel, and complementary to DNAY, researchers
have used these principles for the development of mo-
lecular technology to understand and analyze the
genetic material of all kinds of organisms, including
humans, interest in the study of inheritance and genes,
using genomics (a discipline that deals with the study
of genomes, genes, and their functions, as well as re-
lated biotechnological techniques)®.

Advances in genomic technology are providing tools
for the study of genetic factors that may be involved
with different types of epilepsy. Some of the main types
of studies used in epilepsy research are described be-
low: full genome-wide association studies (GWAS), se-
quencing, next-generation sequencing (NGS), se-
quencing of whole genome (whole genome sequencing/
[WGS]), complete exome sequencing (whole exome
sequencing/[WES]), chromosomal microarrays (RNA
and DNA microarrays) by comparative genomic hybrid-
ization (CGH) to detect copy number variations (CNVs),
insertions and deletions, single-nucleotide polymor-
phisms (SNPs), or point mutations, (Fig. 1).

Full Genome Association Studies (GWAS)

In genetic epidemiology, a complete genome asso-
ciation study (GWA) uses high-throughput technologies
to analyze hundreds of thousands of SNPs (SNPs,
generally referring to a single-base variant in the hu-
man genome) and relates them to measurable traits,

as well as with various clinical conditions. These are
studies designed to identify common genetic variants
between two or more populations that contribute to a
risk of disease®.

As an example, in 2014, the ILAE published a me-
ta-analysis of 12 cohorts where they performed a com-
plete genome association on 8696 patients with epilepsy
and 26,157 controls. They found association of risk in the
loci 2g24.3 (p=8.71x10-10) that involves the gene SC-
N1A and in the loci 4p15.1 (p=5 44x10-9) that involves
the PCDH7 gene in patients with focal and generalized
epilepsy. For patients with generalized epilepsy at the
2p16.1 loci (p=9.99x10-9), which implicate the VRK2 or
FANCL genes, they could not determine an SNP with
statistical significance related to focal epilepsy™®. Feens-
tra et al'" studied through GWA children with febrile
seizures as an adverse effect after the administration of
the triple viral vaccine (rubella, measles, and mumps),
children who did not have febrile seizures after the vac-
cine and finally children without a history of febrile sei-
zures as controls. They found two risk loci related to
febrile seizures after vaccination rs273259 (p=5.9x10-12
and p=1.2x10-9) involving the gene IFI44L and rs1318653
(p=9.6x10-11 and p=1.6x10-9) that involves the CD46
gene, with p values against the controls and against
children who did not have febrile seizures after the vac-
cine, respectively. On the other hand, they found four risk
loci for febrile seizures, in general, two were in known
genes related to epilepsy (SCN1A and SCN2A).

Copy Number Variations (CNVs)

CNVs are defined as a DNA segment equal to or
>1 kb whose number of copies is variable (duplicated
or deleted) when compared to a reference genome

(Fig. 2).
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Figure 2. Copy number variations (CNVs). Variation in the number of copies, by loss (deletion) or gain (duplication) of
a DNA segment greater than one kilobase with respect to a reference genome.

CNVs are an important source of normal genetic
variation (in a frequency >1%), but some may partici-
pate as risk factors or causes of disease®'?. CNVs can
be detected with DNA microarrays by means of CGH,
array CGH, (Fig. 3)

Some rare CNVs (frequency <1%) involve genes
from known diseases and may be related to 5-10% in
cases of childhood epilepsy'™'. Helbig et al. reported
the role of CNVs in patients with epilepsy, finding 88
rare CNVs in 71 patients (31.8%) >100 kb related to
the disease™.

In general, research in generalized and focal epilepsy
has identified recurrent microdeletions in up to 3% of

patients with idiopathic generalized epilepsy and 1%
focal epilepsy. The microdeletions in the chromosomal
regions 15q13.3 and 16p13.11 are the most frequently
identified variants'®17,

Next Generation Sequencing (NGS)

DNA sequencing refers to the determination of the
order of the nucleotides of a given sequence, from
some base pairs (bp) to the sequence of complete ge-
nomes. The NGS, also called mass sequencing in par-
allel, means that millions of small DNA fragments
(around 100 bp) can be sequenced at the same time'®.
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Figure 3. Next-generation sequencing (NGS) determines the order of the nucleotides of a specific sequence. It can
be used to determine only the coding part of a sequence (exome) or the whole sequence (genome).

At present, two types of sequencing are performed
for the study of epilepsy: complete genome sequencing
and complete exome sequencing (Fig. 3).

Complete Genome Sequencing (WGS)

It refers to the determination of the order of the
nucleotides of the whole genome (both the coding
and non-coding sequences) which covers around
3000 million bp™.

Complete Exome Sequencing (WES)

This technique allows exploring 180,000 exons or
coding regions (more or less 30 million bp), which cor-
responds to approximately 1% of the human genome?,
it is estimated that 85% of the variations related to he-
reditary diseases are found in the exome'®.

Helbig et al. evaluated the performance of exome se-
quencing as a diagnostic method in patients with epilepsy,
finding 38.2% positive results compared to controls with
p=0.004 value, concluding that this technique is a useful di-
agnostic tool, especially in severe epilepsy of early onset?'.

In the past 10 years, the advancement of complete
genome sequencing or exome techniques has allowed
the identification of new genes and genetic variants in-
volved in family epilepsies, severe epilepsies, and epi-
leptic encephalopathies, which has had an important
impact in the diagnosis of this disease. The current rate
in the diagnosis of epilepsy by NGS ranges from 20% to
30% and specifically with WES is approximately 25%22.

Candidate Genes Related to Epilepsy

Some of the major genes involved in generalized
epilepsy are described below:

SCN1A codes for the alpha-1 subunit of the volt-
age-dependent sodium channel. The transmembrane
alpha subunit forms the central pore of the channel.
This ion channel is critical for the generation and prop-
agation of action potentials. The channel responds to
the voltage difference across the cell membrane to
create a pore that allows sodium ions to pass through
the membrane. The influx of sodium creates an action
potential, which is critical for signaling within the brain.
Mutations of loss of function cause a reduction of
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sodium currents and alteration of the signaling of the
hippocampal GABAergic interneurons. Allelic variants
of this gene are associated with generalized epilepsy
with febrile seizures and epileptic encephalopathy. In
70-90% of cases, Dravet syndrome is caused by a
de novo mutation in SCN1A, which often leads to a
non-functional protein2324,

SCN2A encodes the alpha-Il subunit of the volt-
age-dependent sodium channel and is found in the
initial segment of the axon, nonsense mutations are
observed in patients with epileptic encephalopathies
where their expression is reduced on the cell surface,
resulting in a net loss of function. This mutation is re-
lated to four different phenotypes such as benign
neonatal and infantile epilepsy, autism and intellectual
disability, infantile spasms, and early-onset epileptic
encephalopathies including Ohtahara syndrome and
severe neonatal epilepsy. All phenotypes within the
SCN2A spectrum include cognitive disturbances, sei-
zures, and movement disorders®324,

CACNA1A codes for the alpha-1 subunit of volt-
age-dependent calcium channels and mediates the
entry of calcium ions into excitable cells; it is also
included calcium-dependent processes including mus-
cle contraction, hormone release, and neurotransmit-
ter release. Mutations in this gene are related to epi-
sodic ataxias, spinocerebellar degeneration, and
familial hemiplegic migraine, generalized epilepsies
such as absences or Dravet syndrome, and tonic
paroxysms2324,

Regarding focal epilepsy, the main candidate genes
are described below:

GRIN2A encodes the alpha-2 subunit of the glutamate
receptor N-methyl-D-aspartate, it is involved in long-term
potentiation, an activity-dependent increase in the effi-
ciency of synaptic transmission; the interruption of this
gene is associated with the disorder of focal rolandic
epilepsy, atypical benign partial epilepsy, Landau-Kleff-
ner syndrome, and some learning disorders?32,

DEPDC5 codes for a member of the IML1 family of
proteins involved in G-protein signaling pathways
(mTORCH1) and regulates cell growth by detecting nu-
trient availability; inhibition of mTOR can cause cortical
dysplasia at variable sites. Mutations in this gene have
been related to focal epilepsy of variable foci, nocturnal
frontal lobe dominant epilepsy, and temporal mesial
lobe family epilepsy?®24,

LGI1 gene codes for a member of the superfamily of
proteins rich in leucine (glioma rich in inactivated leu-
cine), can regulate the activity of voltage-dependent
potassium channels, and is involved in the regulation

of neuronal growth and cell survival. This gene is rear-
ranged as the result of translocations in glioblastoma
cell lines. Mutations in this gene are related to lateral
temporal epilepsy?32.

The discovery of mutations in specific genes (encod-
ers for ion channels expressed in brain neurons, neu-
rotransmitter receptors, or molecules with assumed
functions in intercellular communication) has allowed
to corroborate the suspicions that the physiopatholog-
ical bases of this disease seem to be related with al-
terations in the electrical type processes, especially
those that cause alterations in the stability of the
membranes?%25,

The table summarizes some of the candidate genes
related to epilepsy, discovered by sequencing, association
studies, DNA microarrays, etc. (Supplementary Table 1).

One of the main goals in the molecular research of
epilepsy is to provide personalized treatment, and some
data are beginning to emerge that this may be possible,
in 2014, the abnormal gain of the function of the KCNQ1
gene that codes for member 1 of the Q subfamily of
potassium channels dependent on filtration and reverts
with quinidine?’. On the other hand, personalized ther-
apy with memantine or topiramate was also proposed
in two patients with early-onset epileptic encephalopa-
thy with mutation in the GRIN2A gene®.

It is important to take into account the genetic factors
related to the disease when deciding the treatment of
the patient, especially if the treatment is a surgical pro-
cedure. Skjei et al. published a series of cases in which
they describe the clinical and histopathological charac-
teristics in six patients with refractory epilepsy and
mutations in the SCN1A gene undergoing focal cortical
resection. In all cases, patients were refractory to the
surgical procedure; it was observed mild diffuse mal-
formations of cortical development in four of six pa-
tients concluding that cortical resection may not be
effective in patients with this mutation and with the
neuropathological changes mentioned®.

New approaches for the treatment of epilepsy are
under development, experimental research based on
viral vectors, genetic opto tools involving the use of light
at wavelengths of 280-570 nm, to control the activity of
ion channels in rhodopsin and halorhodopsin in hippo-
campal neurons, dentate gyrus, and cerebellum, which
activate or inhibit a neuron and even several conglom-
erates of neuronal networks that allow a control of
neuronal electrical activity and cell graft techniques in
animal models; all of them are new techniques used for
a future to prevent the disease or to provide the best
treatment to this type of patients3%3'.
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Conclusion

Epilepsy is considered a disease of complex inheri-
tance, the main difficulties associated with the study of
complex diseases are incomplete penetrance, genetic
heterogeneity, and polygenic (or multifactorial) inheri-
tance®. Therefore, it is not yet clear what is the role of
inheritance and other genetic factors in epileptogene-
sis. There is currently a project called Phenotype/Epi-
lepsy Genotype EPGP: the Epilepsy Phenome/Genome
Project; it is a large-scale project involving 27 centers
in the United States, Australia, Argentina and Canada
with the aims of analyzing the detailed phenotype of
patients, determining the genotype and discovering
new genes. Genetics and genomics in epilepsy is an
open field of research that has had a great break in the
last 15 years, which has solved many of the cases that
were previously classified as of unknown cause, how-
ever, there is still a long way to go.
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Supplementary Table 1. Epilepsy related genes

I S Py S S S S = S

ipo ecnica
ALG13 Asparagine-linked glycosylation 13, S. Xq23 SNP - LYS94GLU EETI, EI WES De Ligt et al., 2012
cerevisiae, homolog of - ASN107SER Dimassi et al., 20162
glycosyltransferase Allen et al., 20132
28 domain-containing 1 Michaud et al., 2014*

Mogller, 2015°
Timal et al., 20125

ARHGEF9 Rho guanine nucleotide exchange factor Xq11 SNP - GLY55ALA EIEE Array CGH Harvey et al., 2004’
9 (Collybistin) - GLN2TER Lesca et al., 20118
Lesca et al., 2015°
Shimojima et al., 20110

ARX Aristaless-related homeobox, X-Linked Xp21.3 Dup - 24-BP DUP, NT428 EEIT CGH Bruyere et al., 1999"
Del - PRO353LEU WES Claes et al., 19972
SNP - 1,517-BP DEL mRNA (ratas, Poeta Feinberg and Leahy,
- 33-BP DUP et al.) 1977
- 1-BP DEL, 1465G HPM Fullston et al., 2010
- 27-BP DUP, NT430 Giordano et al., 2010'°
- TYR27TER (c. 81C-G/p.Y27X) Kato et al., 2004'
- LEU5S35GLN (c. 1604T > A) Kato et al., 2007"7

Lesca, 2015°

Poeta et al., 2013
Proud et al., 1992'¢
Stremme et al., 20022
Strgmme et al., 19992
Turner et al., 20022

CACNA1A Subunidad alpha-1-a de canal P/Q de 19p13.13 SNP - ARG1820TER Aus, EGI WES Chan et al., 20082
calcio dependiente de voltaje DES Chioza et al., 2001
Holtmann et al., 2002%
Jouvenceau et al., 2001%
Kors et al., 2004

CACNA1H Calcium channel, voltage-dependent, T 16p13.3 SNP - PHE161LEU Aus, EGI DES Chen et al., 2003%
type, alpha 1H subunit - GLU282LYS SSCA Heron et al., 20072
- VAL831MET Khosravani et al., 200430
- GLY773ASP Khosravani et al., 2005°'
- ARG788CYS Vitko et al., 2005%
- PRO618LEU
- ALA876THR
CACNA2D1  Calcium channel, voltage-dependent. 7q11-g21 Del - 1.5-MB deletion 7g21.11-g21.12  ESG GWEF Array CGH Mefford et al., 2011%
alpha2/delta subunit 1 - 2.72-MB del en 7¢21.11 Vergult et al., 2015%
CDKL5 Cyclin-dependent kinase-like 5 Xp22.13 Del - 1-BP DEL, 183T EEIT, EI, EMT WES Archer et al., 2006%
SNP - [VSAS13, G-A, -1 GWEF Array CGH Elia et al., 20083
- CYS152PHE Bartnik et al., 2011%
- 4-BP DEL, 166GAAA Elia et al., 2008%
- 2-BP DEL, 2636CT Erez et al., 2009%
- ARG175SER Mgller, 2015°
- GLN834TER Mefford et al., 20113
- VSBAS, G-T, -1 Kalscheuer et al., 2003%
- ALA4QVAL Nectoux et al., 2006
- ILE72THR Nemos et al., 2009*'
- THR288ILE Rademacher et al., 20114
- CYS291TYR Rosas-Vargas et al.,
- 2-BP INS, 903GA 2008%
- ARG178PRO Russo et al., 2009*

Saletti et al., 2009
Scala et al., 2005
Tao et al., 2004

Van Esch et al., 2007*
Weaving et al., 2004

CHD2 Chromodomain helicase DNA-binding 15926.1 Del - 1-BP DEL, 1809G Sindrome de Dravet, WES, Targeted Carvill et al., 2013,%
protein 2 SNP  GLU1412GLYFSTER64 Lennox-Gastaut y sequencing Chenier et al., 2014%'
- ARG121TER Doose. (Fotosensible) Galizia et al., 2015%
GLY491VALFSTER13 EMA, Aus Liu et al., 2015%
ARG1644LYSFSTER22 Lund et al., 2014%
- TRP548ARG Rauch et al., 2012%
- TRP1657TER Suls et al., 2013%
- IVS15AS, A-C, -2 Thomas et al., 2015
- ARG466TER Trivisano et al., 2015%
CHRNA7 Cholinergic receptor, nicotinic, alpha 7 15¢13.3 Del EGG GWAS Dibbens et al., 2009%°
CGH Helbig et al., 20095
Mefford et al., 2011%
CNTNAP2 Contactin-associated protein-like 2 7935 Del 1-BP DEL, 3709G EF con regresion. GWEF array CGH Mefford et al., 20113
Sindrome Epilepsia Targeted sequencing  Pefagarikan et al., 20115
Focal-Displasia Strauss et al., 2006°2
Cortical
CSTB Cystatin-B 219223 Del - IVS1, G-C, -1 Epilepsia mioclonica Complete Alakurtti et al., 2005%
SNP - ARG68TER progresiva (Sindrome sequencing of the Bespalova et al., 1997%
- (CCCCcGCCeeGeG) n de gene de Haan et al., 2004%
EXPANSION, Unverricht-Lundborg) Di Giaimo et al., 200256
-12-MER EXPANSION, Lafreniére et al., 1997%
-PROMOTER REGION Lalioti et al., 1997
- GLY4ARG Mazarib et al., 2001%°
- 2-BP DEL, 2404TC Pennacchio et al., 19967
- GLN71PRO Virtaneva et al., 19977
DEPDC5 Dominio DEP 5 22q12.3 Del - TYR7TTER EFFFM, ELFNAD, WES, Baulac et al., 201572
SNP - ARG555TER ELTMF Direct sequencing Berkovic et al., 200473
- 3-BP DEL, 488TGT Callenbach et al., 2003*
- TRP1369TER Dibbens et al., 20137
- 1-BP DEL, 1122A Ishida et al., 20137
- ARG239TER Klein et al., 20147
- ARG328TER Martin et al., 20147
- ARG1087TER Picard et al., 20007°
- ARG487TER Picard et al., 20148
- ARG843TER Scheffer et al., 20148
- THR864MET Scheffer et al., 199882
- GLN140TER Xiong et al.,19998
DMRT2, Doublesex- and Mab-3-related 9p24.3 Del El Array - CGH Epi4K Consortium and
DMRT3 transcription factor 2 and factor 3 Epilepsy Phenome/
Genome Project, 2015%
DNM1 Dynamin 1 9g34.11 SNP  ALA177PRO EEIT (Lennox-Gastaut), ~ WES Magller, 201%
LYS206ASN El Boumil et al., 2010%
GLY359ALA Deciphering
130982480C-T Developmental Disorders
130984491A-T Study, 2015%

Dhindsa et al., 20157
EuroEPINOMICS-RES
Consortium et al., 201488

DOCK7 Dedicator for cytokinesis 7 1p31.3 Del - 1-BP DEL, 2510A EEIT WES Perrault et al., 20148
SNP - ARG1237TER
- SER328TER
- GLU2078TER
GABRA1 Gamma-aminobutyric acid (GABA) A 5q34 SNP - ALA322ASP EEIT, EMJ, Aus Array - CGH Carvill et al., 2014%
receptor, alpha 1 Del - 1-BP DEL, 975C WES Cossette et al., 2002
Ins - GLY251SER Ding et al., 2010%
- ARG112GLN Epi4K Consortium and
- LYS306THR Epilepsy Phenome/
- 25-BP INS Genome Project, 2015%
- ASP219ASN Lachance-Touchette

et al., 2011%
Maljevik et al., 2006%

GABRB3 Gamma-aminobutyric acid A receptor, 15911 SNP - PRO11SER El, TCG, T, atonicas, Array - CGH Epi4K Consortium and
beta 3 - SER15PHE Aus WES Epilepsy Phenome/
- GLY32ARG Genome Project, 2015%

Tanaka et al., 2008%
Urak et al., 2006%

GABRG2 Receptor GABA-A, Polipéptido gamma-2 5q34 SNP - LYS289MET EGI, CF, Aus Candidate gene Audenaert et al., 2006%
- ARG43GLN sequencing Baulac et al., 2011%
- GLN351TER Chaumont et al., 2013%
- ARG139GLY Chiu et al., 2008'®
- ARG323GLN Frugier et al., 2007'""

Harkin et al., 2002'%
Kananura et al., 2002'%
Kang et al., 2006'*
Lachance-Touchette

et al., 2011%

Sancar and Czajkowski,
2004105

Tan et al., 2007'%
Wallace et al., 2001'"

GNAO1 Guanine nucleotide-binding protein alpha 16q12.2 SNP - ILE279ASN EEIT CGH Lesca, 2015°
activating Del - ASP174GLY WES Nakamura et al., 2013'%®
- 21-BP DEL, NT572
- GLY203ARG
GRIN2A Glutamate receptor, ionotropic, N-methyl 16p13.2 SNP  GLN218TER SEA, EF WES Magller, 2015°
D-aspartate 2A IVS4DS, G-A, +1 Carvill et al., 2013'%®
ASN615LYS Endele et al., 2010'°
LEU649VAL Lesca et al., 2013
PR0O522ARG Lemke et al., 201312
MET1THR Scheffer et al., 1995'"3
THR531MET
IVS5AS, A-G, -2
ARG518HIS
PHE652VAL
ARG681TER
TYR943TER
HCN1 Hyperpolarization-activated cyclic 5p12 SNP  ASP401HIS EEIT CGH Lesca, 2015°
nucleotide-gated potassium channel 1 SER100PHE WES Nava et al., 2014
SER272PR0O
ARG297THR
HIS279TYR
HDAC4 Histone deacetylase 4 2q37.3 EEIT WES Magller, 2015°
HIP1 Huntingtin interacting Protein 1 Tq11 El Array - CGH Epi4K Consortium and

Epilepsy Phenome/
Genome Project, 2015%

KCNQ2 Potassium channel, voltage-gated, 20q13.3 SNP  TYR284CYS EEIT, ENFB CGH Lesca, 2015°
KQT-like subfamily, member 2 Ins ALA306THR WES Bassi et al., 2005'"°
Del 5-BP INS Berkovic et al., 1994116

1-BP DEL, 1846T Biervert et al., 19987
ARG214TRP Bievert and Steinlein,
ARG207TRP 199918
LYS526ASN Borgatti et al., 2004'"?
SER247TRP Dedek et al., 2003'%
10-BP DEL/1-BP INS, NT761 del Giudice et al.,
1-BP DEL, 2127T 2000'%!
ARG207GLN Heron et al., 2007'%
ARG213GLN Saitsu et al., 2012'2
MET546VAL Singh et al., 1998'%
GLY290ASP Weckhuysen et al.,
ALA265VAL 2012'%

Wuttke et al., 2007'%
Yang et al., 1998'%
Zimprich et al., 2006'%

KCNT1 Potassium channel, sodium-activated 9q34.4 SNP  ARG428GLN ELFNAD, EICFM WES Barcia et al., 2012'2
subfamily T, member 1 ALA934THR Derry et al., 2008™°
ARG474HIS Heron et al., 20123
ILE7T60MET Ishii et al., 201332
ARG928CYS Mgller et al., 2015°
TYR796HIS Ohba et al.,'®
ARG398GLN Vanderver et al., 20143
MET896ILE
PHE932ILE
GLY288SER
LG Leucine-rich gene, glioma inactivated 1 10923.33 SNP  GLU383ALA ELTMF Direct sequencing Chabrol et al., 2007'%
Del 1-BP DEL, 835C CNV analysis Fanciulli et al., 2012'36
IVS3AS, C-A, -3 Fertig et al., 2003'%7
CYS46ARG Kalachikov et al., 2002'3
1320C-T Morante-Redolat et al.,
PHE318CYS 2002'%°
IVS5DS, G-A, +1 Nobile et al., 2009'%
LEU232PRO Sirerol-Piquer et al.,
ARG136TRP 2006
ILE122LYS Striano et al., 2008'?
81-KB DEL
PCDH19 Protocadherin 19 Xq22.1 SNP  1-BP INS, 1091C EEIT en mujeres Microarrays, Depienne et al., 2009'
Ins VAL441GLU (Ohtahara, Dravet) Systematic Dibbens et al., 2008
Dup  GLNS5TER resequencing Hynes et al., 2010'
SER671TER
1-BP INS, 2030T
GLU48TER
5-BP DUP, NT1036
ASNB57LYS
PLCB1 Phospholipase C, beta-1 20p12.3 Del 0.5-MB DEL EEIT, CPMMI CGH Lesca, 2015°
Genome-wide scan Kurian et al., 2010

Poduri et al., 2012'%

PNKP Polynucleotide kinase 3 phosphatase 19913.33 SNP  GLU326LYS EEIT, CGH Lesca, 2015°
Dup 17-BP DUP, NT1250 Microcefalia-Crisis y Genome-wide scan Shen et al., 2010"8
Del LEU176PHE Retraso Mental
17-BP DEL
PRRT2 Proline-rich transmembrane protein 2 16p11.2 Dup 1-BP DUP, 649C CIF, CICA WES Magller, 2015°
Ins 1-BP INS, 629C Chen et al., 2011'#
SNP  SER317ASN Heron et al., 2012'%°
Del IVS2DS, G-A, +5 Lee et al., 2012"!
ARG240TER Meneret et al., 2012152
1-BP INS, 516T Ono et al., 201253
GLN163TER Pelzer et al., 20145
GLN188TER Schubert et al., 20125
1-BP DEL, 629C Striano et al., 2006'%
1-BP DEL, 291C Wang et al., 20119
GLN250TER Weber et al., 200458
1-BP DEL, 650G
RYR3 Ryanodine receptor 3 15913.3 EEIT WES Mailler, 2015°
SCN1A Sodium voltage-gated channel alpha 2q24.3 SNP  ARG1648HIS Sindrome de Dravet, WES Abou-Khalil et al., 2001'%
subunit 1 Del THR875MET CF familiares, EEIT SSCA Baulac et al., 199960
ASP188VAL Multiplex Buoni et al., 20066
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IVS5N + 5G-A Mulley et al., 2005'"
1-BP DEL, 2528G Ohmori et al., 2002'"
DEL EX21-26 Orrico et al., 2009'72
6.5-Kb DEL Petrovsky et al., 2009'7
1-BP DEL, 3608A Schlachter et al., 2009'7*
ALA1669GLU Vahedi et al., 2009'7
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SCN2A Sodium channel, voltage-gated, type Il, 2q24.3 ARG188TRP EEIT Direct sequencing, Berkovic et al., 2004'77
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SCNBA Sodium Channel, voltage-gated, type VIII, 12q13.13 SNP  ASN1768ASP EEIT WES Blanchard et al., 2015'%
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ARG1617GLN sequencing De Kobel et al., 201418
ASN1466LYS Ohba et al., 2014'%
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SLC2A1 Solute carrier family 2 (facilitated glucose 1p34.2 SNP  ARG232CYS EGI Direct sequencing, Arsov et al., 2012'¢’
transporter), member 1 ARG223PR0O PCR sequencing Striano et al., 2012'%
ARG458TRP Suls et al., 2009'8
ASN411SER
SLC25A22 Solute carrier family 25 (mitochondrial 11p15.5 SNP  PRO206LEU EEIT CGH Lesca, 2015°
carrier, glutamate) member 22 GLY236TRP WES Molinari et al., 2005'®
GLY110ARG Poduri et al., 2013''
SLC26A1 Solute carrier family 26, (anion 4p16 SEA GWEF array CGH Mefford et al., 2011%
exchanger), member 1
SLC35A2 Solute carrier family 35 (UDP-galactose Xp11.23 Del 2-BP DEL, 433TA EEIT CGH Lesca, 2015°
transporter) member 2 SNP  1-BP DEL, 972T WES Nakamura et al., 201308
SER213PHE
SPTAN1 Alpha, non-erythrocytic, spectrin 1 9q34.11 Del 3-BP DEL, 6619GAG EEIT CGH Lesca, 2015°
Dup  6-BP DUP, NT6923 Direct sequencing. Hamdan et al., 2012'%
3-BP DEL, NT6605 Nonoda et al., 2013'%
9-BP DUP, NT6908 Saitsu et al., 2010'%
STXBP1 Syntaxin-binding protein 1 9g34.11 SNP  GLY544ASP E[EE WES Magller, 2015°
CYS180TYR Carvill et al., 20141%
MET443ARG Hamdan et al., 2009'®
VAL84ASP Saitsu et al., 2008'%
ARG388TER
IVS3DS, G-A, +1
GLU283LYS
STX1B Syntaxin 1B 16p11.2 Sindromes asociados WES Magller, 2015°
con epilepsia febril
ST3GAL3 ST3 beta-galactoside 1p34.1 SNP  ALA320PRO EEIT CGH Lesca, 2015°
alpha-2,3-sialyltransferase 3 WES Edvarson et al., 2013'9
SYNGAP1 Synaptic RAS-GTPase-activating protein 1 6p21.32 SNP  PRO562LEU TRP267TER EEIT, mioclénicas, Aus ~ WES Barryer et al., 2013'%
ARG143TER Carvill et al., 2013'%
c. 321_324del Mignot et al., 2016%
c. 427C > T/p.Arg143
SZT2 Seizure threshold 2, mouse homolog 1p34.2 SNP  ARG25TER EEIT CGH Basel-Vanagaite et al.,
GLNG698TER WES 2013200
c. 1496G-T - Lesca, 2015°
TAS2RI1, Taste receptor, type 2, member 1/family 5p15 FS, focal, TCG, aA, SE Array - CGH Epi4K Consortium and
FAM173B, with sequence similarity 173, Epilepsy Phenome/
CCT5, member B/chemokine receptor Genome Project, 2015%
MTRR 5/5- methyltetrahydrofolate-homocysteine
methyltransferase reductase
TBC1D24 TBC1 domain family, member 24 16p13.3 SNP  ASP147HIS EEIT, EMIF CGH Lesca, 2015°
Del ALA509VAL Candidate gene Corbett et al., 20102
PHE251LEU sequencing Duru et al., 201022
2-BP DEL, 969GT Falace et al., 20102%
PHE229SER Guven and Tolun, 2013204
CYS156TER Milh et al., 2013%5

Zara et al., 20002
UBE3A Ubiquitin protein ligase E3A 15911 Del EMA GWEF array CGH Mefford et al., 2011%

GWAS: Genome Wide Association Study; WES: Whole Exome Sequencing; Array-CGH: Array Comparative Genome Hybridization; NGS: Next Generation Sequencing; HPM: Highly Polymorphic Microsatellite; DES: Direct Exon Sequencing;

SSCA: Single-Stranded Conformation Analysis; EF: Epilepsia Focal; TCG: Crisis Tonico Clénicas Generalizadas; T: Crisi Tonicas; CF: Crisis Febriles; aA: Ausencias Atipicas; SE: Status Epiléptico; Aus: Ausencias; EMA: Epilepsia Mioclonica-Aténica;
SEA: Sindrome Epilepsia-Afasia; ESG: Epilepsia Sintomatica Generalizada; EMJ: Epilepsia Mioclonica Juvenil; EEIT: Encefalopatia Epiléptica Infantil Temprana; EGG: Epilepsia Generalizada Genética; El: Espasmos Infantiles;; EGI: Epilepsia
Generalizada Idiopatica; CICA: Convulsiones Infantiles y Coreo-Atetosis; EICFM: Epilepsia Infantil con Crisis Focales Migratorias; CPMMI: Crisis Parciales Malignas Migratorias de la Infancia; EMT: Epilepsia Mioclonica Tardia; EFFFM: Epilepsia
Focal Familiar de Focos Multiples; ELFNAD: Epilepsia del Lobulo Frontal Nocturna Autosomica Dominante; ELTMF: Epilepsia del Lobulo Temporal Mesial Familiar; ENFB: Epilepsia Neonatal Familiar Benigna; CIF: Crisis Infantiles Familares;
SUDEP: Suden Unexpected Death of someone with Epilepsy; EMIF: Epilepsia Mioclénica Infantil Familiar
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