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Abstract

Epilepsy is a progressive and disabling disease if not diagnosed early; for this reason, it has been the subject of research, 
specially in cases with idiopathic etiology. Approximately between 1 and 2% of the world population have epilepsy. In Mexi-
co the prevalence is from 10 to 20 patients per 1000 inhabitants. Lately, the scientific community has been trying to create, 
adapt, and use biomolecular tools to study its pathophysiology so that, hopefully, in a near future we are able to intervene in 
the natural history of this disease. The aim of this work is to cite evidence about some of the molecular biology techniques 
in order to support and encourage investment in neurogenomical research; as a necessary tool in the study of epilepsy.
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Introduction

The International League Against Epilepsy (ILAE) 
defines an epileptic seizure as the occurrence of signs 
and/or symptoms due to an excessive synchronous or 
asynchronous abnormal neuronal activity, and epilepsy 
as a disease characterized by the long-term predispo-
sition to generate epileptic seizures, as well as, by the 
neurobiological, cognitive, psychological, and social 
consequences of this condition1.

In the world, there are >50 million people suffering 
from epilepsy, of which 80% live in developing coun-
tries with a prevalence of 7-14 per 1000 inhabitants, 
unlike the developed countries with a proportion of 
4-10 per 1000 habitants2.

In Mexico, a prevalence of 10-20 per 1000 habitants 
has been found; therefore, it can be estimated that there 
are approximately 1-2 million Mexicans affected3.

Etiologically, epilepsy can be classified into the fol-
lowing groups: symptomatic or secondary (where there 
is a known cause, such as tumor, neuroinfection, and 
congenital brain malformation), idiopathic (when genet-
ic factors are suspected, inherited, or de novo, etc.), 
and cryptogenic (type of epilepsy in which it cannot be 
associated to a certain cause)4. Around 20-30% of ep-
ilepsies are caused by acquired conditions and 70-80% 
are related to one or more genetic factors5.

Epilepsy is considered a public health problem, due 
to its high morbidity and psychosocial repercussions 
(stigmatization or rejection) and economic (unemploy-
ment, pharmacological, and hospitalization expenses); 
therefore, it should be a reason for interest, investment, 
and research to understand the disease and provide 
the best care to this sector of the population. Consid-
ering the proportion of epilepsy related to genetic fac-
tors, 5 it is crucial to know the clinical, physiological, 
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and genomic tools used in the diagnosis in this type of 
patients.

Since the publication in 1951 in JAMA by the epilep-
tologist William G. Lennox, it was possible to confirm 
the importance of the genetic causes in some types of 
epilepsy, observed in their studies in twins6. Later, Wat-
son and Crick (1953) propose the helical structure, 
antiparallel, and complementary to DNA7, researchers 
have used these principles for the development of mo-
lecular technology to understand and analyze the 
genetic material of all kinds of organisms, including 
humans, interest in the study of inheritance and genes, 
using genomics (a discipline that deals with the study 
of genomes, genes, and their functions, as well as re-
lated biotechnological techniques)8.

Advances in genomic technology are providing tools 
for the study of genetic factors that may be involved 
with different types of epilepsy. Some of the main types 
of studies used in epilepsy research are described be-
low: full genome-wide association studies (GWAS), se-
quencing, next-generation sequencing (NGS), se-
quencing of whole genome (whole genome sequencing/
[WGS]), complete exome sequencing (whole exome 
sequencing/[WES]), chromosomal microarrays (RNA 
and DNA microarrays) by comparative genomic hybrid-
ization (CGH) to detect copy number variations (CNVs), 
insertions and deletions, single-nucleotide polymor-
phisms (SNPs), or point mutations, (Fig. 1).

Full Genome Association Studies (GWAS)

In genetic epidemiology, a complete genome asso-
ciation study (GWA) uses high-throughput technologies 
to analyze hundreds of thousands of SNPs (SNPs, 
generally referring to a single-base variant in the hu-
man genome) and relates them to measurable traits, 

as well as with various clinical conditions. These are 
studies designed to identify common genetic variants 
between two or more populations that contribute to a 
risk of disease9.

As an example, in 2014, the ILAE published a me-
ta-analysis of 12 cohorts where they performed a com-
plete genome association on 8696 patients with epilepsy 
and 26,157 controls. They found association of risk in the 
loci 2q24.3 (p=8.71×10−10) that involves the gene SC-
N1A and in the loci 4p15.1 (p=5 44×10−9) that involves 
the PCDH7 gene in patients with focal and generalized 
epilepsy. For patients with generalized epilepsy at the 
2p16.1 loci (p=9.99×10−9), which implicate the VRK2 or 
FANCL genes, they could not determine an SNP with 
statistical significance related to focal epilepsy10. Feens-
tra et  al.11 studied through GWA children with febrile 
seizures as an adverse effect after the administration of 
the triple viral vaccine (rubella, measles, and mumps), 
children who did not have febrile seizures after the vac-
cine and finally children without a history of febrile sei-
zures as controls. They found two risk loci related to 
febrile seizures after vaccination rs273259 (p=5.9×10−12 
and p=1.2×10−9) involving the gene IFI44L and rs1318653 
(p=9.6×10−11 and p=1.6×10−9) that involves the CD46 
gene, with p values against the controls and against 
children who did not have febrile seizures after the vac-
cine, respectively. On the other hand, they found four risk 
loci for febrile seizures, in general, two were in known 
genes related to epilepsy (SCN1A and SCN2A).

Copy Number Variations (CNVs)

CNVs are defined as a DNA segment equal to or 
>1 kb whose number of copies is variable (duplicated 
or deleted) when compared to a reference genome 
(Fig. 2).

Figure 1. Variations in the genome of a single base. Variants of a single nucleotide within a DNA sequence can be 
classified as SNP> 1% or as a point mutation <1% according to their frequency in the study population.
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CNVs are an important source of normal genetic 
variation (in a frequency >1%), but some may partici-
pate as risk factors or causes of disease5,12. CNVs can 
be detected with DNA microarrays by means of CGH, 
array CGH, (Fig. 3)

Some rare CNVs (frequency <1%) involve genes 
from known diseases and may be related to 5-10% in 
cases of childhood epilepsy13,14. Helbig et al. reported 
the role of CNVs in patients with epilepsy, finding 88 
rare CNVs in 71  patients (31.8%) >100  kb related to 
the disease15.

In general, research in generalized and focal epilepsy 
has identified recurrent microdeletions in up to 3% of 

patients with idiopathic generalized epilepsy and 1% 
focal epilepsy. The microdeletions in the chromosomal 
regions 15q13.3 and 16p13.11 are the most frequently 
identified variants16,17.

Next Generation Sequencing (NGS)

DNA sequencing refers to the determination of the 
order of the nucleotides of a given sequence, from 
some base pairs (bp) to the sequence of complete ge-
nomes. The NGS, also called mass sequencing in par-
allel, means that millions of small DNA fragments 
(around 100 bp) can be sequenced at the same time18.

Figure 2. Copy number variations (CNVs). Variation in the number of copies, by loss (deletion) or gain (duplication) of 
a DNA segment greater than one kilobase with respect to a reference genome.
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At present, two types of sequencing are performed 
for the study of epilepsy: complete genome sequencing 
and complete exome sequencing (Fig. 3).

Complete Genome Sequencing (WGS)

It refers to the determination of the order of the 
nucleotides of the whole genome (both the coding 
and  non-coding sequences) which covers around 
3000 million bp19.

Complete Exome Sequencing (WES)

This technique allows exploring 180,000 exons or 
coding regions (more or less 30 million bp), which cor-
responds to approximately 1% of the human genome20, 
it is estimated that 85% of the variations related to he-
reditary diseases are found in the exome18.

Helbig et  al. evaluated the performance of exome  se-
quencing as a diagnostic method in patients with epilepsy, 
finding 38.2% positive results compared to controls with 
p=0.004 value, concluding that this technique is a useful di-
agnostic tool, especially in severe epilepsy of early onset21.

In the past 10  years, the advancement of complete 
genome sequencing or exome techniques has allowed 
the identification of new genes and genetic variants in-
volved in family epilepsies, severe epilepsies, and epi-
leptic encephalopathies, which has had an important 
impact in the diagnosis of this disease. The current rate 
in the diagnosis of epilepsy by NGS ranges from 20% to 
30% and specifically with WES is approximately 25%22.

Candidate Genes Related to Epilepsy

Some of the major genes involved in generalized 
epilepsy are described below:

SCN1A codes for the alpha-1 subunit of the volt-
age-dependent sodium channel. The transmembrane 
alpha subunit forms the central pore of the channel. 
This ion channel is critical for the generation and prop-
agation of action potentials. The channel responds to 
the voltage difference across the cell membrane to 
create a pore that allows sodium ions to pass through 
the membrane. The influx of sodium creates an action 
potential, which is critical for signaling within the brain. 
Mutations of loss of function cause a reduction of 

Figure 3. Next-generation sequencing (NGS) determines the order of the nucleotides of a specific sequence. It can 
be used to determine only the coding part of a sequence (exome) or the whole sequence (genome).
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sodium currents and alteration of the signaling of the 
hippocampal GABAergic interneurons. Allelic variants 
of this gene are associated with generalized epilepsy 
with febrile seizures and epileptic encephalopathy. In 
70-90% of cases, Dravet syndrome is caused by a 
de  novo mutation in SCN1A, which often leads to a 
non-functional protein23,24.

SCN2A encodes the alpha-II subunit of the volt-
age-dependent sodium channel and is found in the 
initial segment of the axon, nonsense mutations are 
observed in patients with epileptic encephalopathies 
where their expression is reduced on the cell surface, 
resulting in a net loss of function. This mutation is re-
lated to four different phenotypes such as benign 
neonatal and infantile epilepsy, autism and intellectual 
disability, infantile spasms, and early-onset epileptic 
encephalopathies including Ohtahara syndrome and 
severe neonatal epilepsy. All phenotypes within the 
SCN2A spectrum include cognitive disturbances, sei-
zures, and movement disorders23,24.

CACNA1A codes for the alpha-1 subunit of volt-
age-dependent calcium channels and mediates the 
entry of calcium ions into excitable cells; it is also 
included calcium-dependent processes including mus-
cle contraction, hormone release, and neurotransmit-
ter release. Mutations in this gene are related to epi-
sodic ataxias, spinocerebellar degeneration, and 
familial hemiplegic migraine, generalized epilepsies 
such as absences or Dravet syndrome, and tonic 
paroxysms23,24.

Regarding focal epilepsy, the main candidate genes 
are described below:

GRIN2A encodes the alpha-2 subunit of the glutamate 
receptor N-methyl-D-aspartate, it is involved in long-term 
potentiation, an activity-dependent increase in the effi-
ciency of synaptic transmission; the interruption of this 
gene is associated with the disorder of focal rolandic 
epilepsy, atypical benign partial epilepsy, Landau-Kleff-
ner syndrome, and some learning disorders23,24.

DEPDC5 codes for a member of the IML1 family of 
proteins involved in G-protein signaling pathways 
(mTORC1) and regulates cell growth by detecting nu-
trient availability; inhibition of mTOR can cause cortical 
dysplasia at variable sites. Mutations in this gene have 
been related to focal epilepsy of variable foci, nocturnal 
frontal lobe dominant epilepsy, and temporal mesial 
lobe family epilepsy23,24.

LGI1 gene codes for a member of the superfamily of 
proteins rich in leucine (glioma rich in inactivated leu-
cine), can regulate the activity of voltage-dependent 
potassium channels, and is involved in the regulation 

of neuronal growth and cell survival. This gene is rear-
ranged as the result of translocations in glioblastoma 
cell lines. Mutations in this gene are related to lateral 
temporal epilepsy23,24.

The discovery of mutations in specific genes (encod-
ers for ion channels expressed in brain neurons, neu-
rotransmitter receptors, or molecules with assumed 
functions in intercellular communication) has allowed 
to corroborate the suspicions that the physiopatholog-
ical bases of this disease seem to be related with al-
terations in the electrical type processes, especially 
those that cause alterations in the stability of the 
membranes25,26.

The table summarizes some of the candidate genes 
related to epilepsy, discovered by sequencing, association 
studies, DNA microarrays, etc. (Supplementary Table 1).

One of the main goals in the molecular research of 
epilepsy is to provide personalized treatment, and some 
data are beginning to emerge that this may be possible, 
in 2014, the abnormal gain of the function of the KCNQ1 
gene that codes for member 1 of the Q subfamily of 
potassium channels dependent on filtration and reverts 
with quinidine27. On the other hand, personalized ther-
apy with memantine or topiramate was also proposed 
in two patients with early-onset epileptic encephalopa-
thy with mutation in the GRIN2A gene28.

It is important to take into account the genetic factors 
related to the disease when deciding the treatment of 
the patient, especially if the treatment is a surgical pro-
cedure. Skjei et al. published a series of cases in which 
they describe the clinical and histopathological charac-
teristics in six patients with refractory epilepsy and 
mutations in the SCN1A gene undergoing focal cortical 
resection. In all cases, patients were refractory to the 
surgical procedure; it was observed mild diffuse mal-
formations of cortical development in four of six pa-
tients concluding that cortical resection may not be 
effective in patients with this  mutation and with the 
neuropathological changes mentioned29.

New approaches for the treatment of epilepsy are 
under development, experimental research based on 
viral vectors, genetic opto tools involving the use of light 
at wavelengths of 280-570 nm, to control the activity of 
ion channels in rhodopsin and halorhodopsin in hippo-
campal neurons, dentate gyrus, and cerebellum, which 
activate or inhibit a neuron and even several conglom-
erates of neuronal networks that allow a control of 
neuronal electrical activity and cell graft techniques in 
animal models; all of them are new techniques used for 
a future to prevent the disease or to provide the best 
treatment to this type of patients30,31.

http://dx.doi.org/10.24875/HGMX.M19000001
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Conclusion

Epilepsy is considered a disease of complex inheri-
tance, the main difficulties associated with the study of 
complex diseases are incomplete penetrance, genetic 
heterogeneity, and polygenic (or multifactorial) inheri-
tance32. Therefore, it is not yet clear what is the role of 
inheritance and other genetic factors in epileptogene-
sis. There is currently a project called Phenotype/Epi-
lepsy Genotype EPGP: the Epilepsy Phenome/Genome 
Project; it is a large-scale project involving 27 centers 
in the United States, Australia, Argentina and Canada 
with the aims of analyzing the detailed phenotype of 
patients, determining the genotype and discovering 
new genes. Genetics and genomics in epilepsy is an 
open field of research that has had a great break in the 
last 15 years, which has solved many of the cases that 
were previously classified as of unknown cause, how-
ever, there is still a long way to go.
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Supplementary Table 1. Epilepsy related genes

Gen Proteina Localización Tipo Alteración Fenotipo Técnica Fuentes

ALG13 Asparagine‑linked glycosylation 13, S. 
cerevisiae, homolog of 
glycosyltransferase 
28 domain‑containing 1

Xq23 SNP ‑ LYS94GLU
‑ ASN107SER

EETI, EI WES De Ligt et al., 20121

Dimassi et al., 20162

Allen et al., 20133

Michaud et al., 20144

Møller, 20155

Timal et al., 20126

ARHGEF9 Rho guanine nucleotide exchange factor 
9 (Collybistin)

Xq11 SNP ‑ GLY55ALA
‑ GLN2TER

EIEE Array CGH Harvey et al., 20047

Lesca et al., 20118

Lesca et al., 20159

Shimojima et al., 201110

ARX Aristaless‑related homeobox, X‑Linked Xp21.3 Dup
Del
SNP

‑ 24‑BP DUP, NT428
‑ PRO353LEU
‑ 1,517‑BP DEL
‑ 33‑BP DUP
‑ 1‑BP DEL, 1465G
‑ 27‑BP DUP, NT430
‑ TYR27TER (c. 81C‑G/p.Y27X)
‑ LEU535GLN (c. 1604T > A)

EEIT CGH
WES
mRNA (ratas, Poeta 
et al.)
HPM 

Bruyere et al., 199911

Claes et al., 199712

Feinberg and Leahy, 
197713

Fullston et al., 201014

Giordano et al., 201015

Kato et al., 200416

Kato et al., 200717

Lesca, 20159

Poeta et al., 201318

Proud et al., 199219

Strømme et al., 200220

Strømme et al., 199921

Turner et al., 200222

CACNA1A Subunidad alpha‑1‑a de canal P/Q de 
calcio dependiente de voltaje

19p13.13 SNP ‑ ARG1820TER Aus, EGI WES
DES

Chan et al., 200823

Chioza et al., 200124

Holtmann et al., 200225

Jouvenceau et al., 200126

Kors et al., 200427

CACNA1H Calcium channel, voltage‑dependent, T 
type, alpha 1H subunit

16p13.3 SNP ‑ PHE161LEU
‑ GLU282LYS
‑ VAL831MET
‑ GLY773ASP
‑ ARG788CYS
‑ PRO618LEU
‑ ALA876THR

Aus, EGI DES
SSCA

Chen et al., 200328

Heron et al., 200729

Khosravani et al., 200430

Khosravani et al., 200531

Vitko et al., 200532

CACNA2D1 Calcium channel, voltage‑dependent. 
alpha2/delta subunit 1

7q11‑q21 Del ‑ 7.5‑MB deletion 7q21.11‑q21.12
‑ 2.72‑MB del en 7q21.11

ESG GWEF Array CGH Mefford et al., 201133

Vergult et al., 201534

CDKL5 Cyclin‑dependent kinase‑like 5 Xp22.13 Del
SNP

‑ 1‑BP DEL, 183T
‑ IVSAS13, G‑A, ‑1
‑ CYS152PHE
‑ 4‑BP DEL, 166GAAA
‑ 2‑BP DEL, 2636CT
‑ ARG175SER
‑ GLN834TER
‑ VS6AS, G‑T, ‑1
‑ ALA40VAL
‑ ILE72THR
‑ THR288ILE
‑ CYS291TYR
‑ 2‑BP INS, 903GA
‑ ARG178PRO

EEIT, EI, EMT WES 
GWEF Array CGH

Archer et al., 200635

Elia et al., 200836

Bartnik et al., 201137

Elia et al., 200836

Erez et al., 200938

Møller, 20155

Mefford et al., 201133

Kalscheuer et al., 200339

Nectoux et al., 200640

Nemos et al., 200941

Rademacher et al., 201142

Rosas‑Vargas et al., 
200843

Russo et al., 200944

Saletti et al., 200945

Scala et al., 200546

Tao et al., 200447

Van Esch et al., 200748

Weaving et al., 200449

CHD2 Chromodomain helicase DNA‑binding 
protein 2

15q26.1 Del
SNP

‑ 1‑BP DEL, 1809G
GLU1412GLYFSTER64
‑ ARG121TER
GLY491VALFSTER13
ARG1644LYSFSTER22
‑ TRP548ARG
‑ TRP1657TER
‑ IVS15AS, A‑C, ‑2
‑ ARG466TER

Síndrome de Dravet, 
Lennox‑Gastaut y 
Doose. (Fotosensible)
EMA, Aus

WES, Targeted 
sequencing

Carvill et al., 2013,50

Chenier et al., 201451

Galizia et al., 201552

Liu et al., 201553

Lund et al., 201454

Rauch et al., 201255

Suls et al., 201356

Thomas et al., 201557

Trivisano et al., 201558

CHRNA7 Cholinergic receptor, nicotinic, alpha 7 15q13.3 Del EGG GWAS
CGH

Dibbens et al., 200959

Helbig et al., 200960

Mefford et al., 201133

CNTNAP2 Contactin‑associated protein‑like 2 7q35 Del 1‑BP DEL, 3709G EF con regresión.
Síndrome Epilepsia 
Focal‑Displasia 
Cortical

GWEF array CGH
Targeted sequencing

Mefford et al., 201133

Peñagarikan et al., 201161

Strauss et al., 200662

CSTB Cystatin‑B 21q22.3 Del
SNP

‑ IVS1, G‑C, ‑1
‑ ARG68TER
‑ (CCCCGCCCCGCG) n 
EXPANSION,
‑12‑MER EXPANSION,
‑PROMOTER REGION
‑ GLY4ARG
‑ 2‑BP DEL, 2404TC
‑ GLN71PRO

Epilepsia mioclónica 
progresiva (Síndrome 
de 
Unverricht‑Lundborg)

Complete 
sequencing of the 
gene

Alakurtti et al., 200563

Bespalova et al., 199764

de Haan et al., 200465

Di Giaimo et al., 200266

Lafrenière et al., 199767

Lalioti et al., 199768

Mazarib et al., 200169

Pennacchio et al., 199670

Virtaneva et al., 199771

DEPDC5 Dominio DEP 5 22q12.3 Del
SNP

‑ TYR7TER
‑ ARG555TER
‑ 3‑BP DEL, 488TGT
‑ TRP1369TER
‑ 1‑BP DEL, 1122A
‑ ARG239TER
‑ ARG328TER
‑ ARG1087TER
‑ ARG487TER
‑ ARG843TER
‑ THR864MET
‑ GLN140TER

EFFFM, ELFNAD, 
ELTMF

WES,
Direct sequencing

Baulac et al., 201572

Berkovic et al., 200473

Callenbach et al., 200374

Dibbens et al., 201375

Ishida et al., 201376

Klein et al., 201477

Martin et al., 201478

Picard et al., 200079

Picard et al., 201480

Scheffer et al., 201481

Scheffer et al., 199882

Xiong et al.,199983

DMRT2, 
DMRT3

Doublesex‑ and Mab‑3‑related 
transcription factor 2 and factor 3

9p24.3 Del EI Array ‑ CGH Epi4K Consortium and 
Epilepsy Phenome/
Genome Project, 201584

DNM1 Dynamin 1 9q34.11 SNP ALA177PRO
LYS206ASN
GLY359ALA
130982480C‑T
130984491A‑T

EEIT (Lennox‑Gastaut), 
EI

WES Møller, 20155

Boumil et al., 201085

Deciphering 
Developmental Disorders 
Study, 201586

Dhindsa et al., 201587

EuroEPINOMICS‑RES 
Consortium et al., 201488

DOCK7 Dedicator for cytokinesis 7 1p31.3 Del
SNP

‑ 1‑BP DEL, 2510A
‑ ARG1237TER
‑ SER328TER
‑ GLU2078TER

EEIT WES Perrault et al., 201489

GABRA1 Gamma‑aminobutyric acid (GABA) A 
receptor, alpha 1

5q34 SNP
Del
Ins

‑ ALA322ASP
‑ 1‑BP DEL, 975C
‑ GLY251SER
‑ ARG112GLN
‑ LYS306THR
‑ 25‑BP INS
‑ ASP219ASN

EEIT, EMJ, Aus Array ‑ CGH
WES

Carvill et al., 201490

Cossette et al., 200291

Ding et al., 201092

Epi4K Consortium and 
Epilepsy Phenome/
Genome Project, 201584

Lachance‑Touchette 
et al., 201193

Maljevik et al., 200694

GABRB3 Gamma‑aminobutyric acid A receptor, 
beta 3

15q11 SNP ‑ PRO11SER
‑ SER15PHE
‑ GLY32ARG

EI, TCG, T, atonicas, 
Aus

Array ‑ CGH
WES

Epi4K Consortium and 
Epilepsy Phenome/
Genome Project, 201584

Tanaka et al., 200895

Urak et al., 200696

GABRG2 Receptor GABA‑A, Polipéptido gamma‑2 5q34 SNP ‑ LYS289MET
‑ ARG43GLN
‑ GLN351TER
‑ ARG139GLY
‑ ARG323GLN

EGI, CF, Aus Candidate gene 
sequencing

Audenaert et al., 200697

Baulac et al., 201198

Chaumont et al., 201399

Chiu et al., 2008100

Frugier et al., 2007101

Harkin et al., 2002102

Kananura et al., 2002103

Kang et al., 2006104

Lachance‑Touchette 
et al., 201193

Sancar and Czajkowski, 
2004105

Tan et al., 2007106

Wallace et al., 2001107

GNAO1 Guanine nucleotide‑binding protein alpha 
activating

16q12.2 SNP
Del

‑ ILE279ASN
‑ ASP174GLY
‑ 21‑BP DEL, NT572
‑ GLY203ARG

EEIT CGH
WES

Lesca, 20159

Nakamura et al., 2013108

GRIN2A Glutamate receptor, ionotropic, N‑methyl 
D‑aspartate 2A

16p13.2 SNP GLN218TER
IVS4DS, G‑A, +1
ASN615LYS
LEU649VAL
PRO522ARG
MET1THR
THR531MET
IVS5AS, A‑G, ‑2
ARG518HIS
PHE652VAL
ARG681TER
TYR943TER

SEA, EF WES Møller, 20155

Carvill et al., 2013109

Endele et al., 2010110

Lesca et al., 2013111

Lemke et al., 2013112

Scheffer et al., 1995113

HCN1 Hyperpolarization‑activated cyclic 
nucleotide‑gated potassium channel 1

5p12 SNP ASP401HIS
SER100PHE
SER272PRO
ARG297THR
HIS279TYR

EEIT CGH
WES

Lesca, 20159

Nava et al., 2014114

HDAC4 Histone deacetylase 4 2q37.3 EEIT WES Møller, 20155

HIP1 Huntingtin interacting Protein 1 7q11 EI Array ‑ CGH Epi4K Consortium and 
Epilepsy Phenome/
Genome Project, 201584

KCNQ2 Potassium channel, voltage‑gated, 
KQT‑like subfamily, member 2

20q13.3 SNP
Ins
Del

TYR284CYS
ALA306THR
5‑BP INS
1‑BP DEL, 1846T
ARG214TRP
ARG207TRP
LYS526ASN
SER247TRP
10‑BP DEL/1‑BP INS, NT761
1‑BP DEL, 2127T
ARG207GLN
ARG213GLN
MET546VAL
GLY290ASP
ALA265VAL

EEIT, ENFB CGH
WES

Lesca, 20159

Bassi et al., 2005115

Berkovic et al., 1994116

Biervert et al., 1998117

Bievert and Steinlein, 
1999118

Borgatti et al., 2004119

Dedek et al., 2003120

del Giudice et al., 
2000121

Heron et al., 2007122

Saitsu et al., 2012123

Singh et al., 1998124

Weckhuysen et al., 
2012125

Wuttke et al., 2007126

Yang et al., 1998127

Zimprich et al., 2006128

KCNT1 Potassium channel, sodium‑activated 
subfamily T, member 1

9q34.4 SNP ARG428GLN
ALA934THR
ARG474HIS
ILE760MET
ARG928CYS
TYR796HIS
ARG398GLN
MET896ILE
PHE932ILE
GLY288SER

ELFNAD, EICFM WES Barcia et al., 2012129

Derry et al., 2008130

Heron et al., 2012131

Ishii et al., 2013132

Møller et al., 20155

Ohba et al.,133

Vanderver et al., 2014134

LGI1 Leucine‑rich gene, glioma inactivated 1 10q23.33 SNP
Del

GLU383ALA
1‑BP DEL, 835C
IVS3AS, C‑A, ‑3
CYS46ARG
1320C‑T
PHE318CYS
IVS5DS, G‑A, +1
LEU232PRO
ARG136TRP
ILE122LYS
81‑KB DEL

ELTMF Direct sequencing
CNV analysis

Chabrol et al., 2007135

Fanciulli et al., 2012136

Fertig et al., 2003137

Kalachikov et al., 2002138

Morante‑Redolat et al., 
2002139

Nobile et al., 2009140

Sirerol‑Piquer et al., 
2006141

Striano et al., 2008142

PCDH19 Protocadherin 19 Xq22.1 SNP
Ins
Dup

1‑BP INS, 1091C
VAL441GLU
GLN85TER
SER671TER
1‑BP INS, 2030T
GLU48TER
5‑BP DUP, NT1036
ASN557LYS

EEIT en mujeres 
(Ohtahara, Dravet)

Microarrays, 
Systematic 
resequencing

Depienne et al., 2009143

Dibbens et al., 2008144

Hynes et al., 2010145

PLCB1 Phospholipase C, beta‑1 20p12.3 Del 0.5‑MB DEL EEIT, CPMMI CGH
Genome‑wide scan

Lesca, 20159

Kurian et al., 2010146

Poduri et al., 2012147

PNKP Polynucleotide kinase 3 phosphatase 19q13.33 SNP
Dup
Del

GLU326LYS
17‑BP DUP, NT1250
LEU176PHE
17‑BP DEL

EEIT,
Microcefalia‑Crisis y 
Retraso Mental

CGH
Genome‑wide scan

Lesca, 20159

Shen et al., 2010148

PRRT2 Proline‑rich transmembrane protein 2 16p11.2 Dup
Ins
SNP
Del

1‑BP DUP, 649C
1‑BP INS, 629C
SER317ASN
IVS2DS, G‑A, +5
ARG240TER
1‑BP INS, 516T
GLN163TER
GLN188TER
1‑BP DEL, 629C
1‑BP DEL, 291C
GLN250TER
1‑BP DEL, 650G

CIF, CICA WES Møller, 20155

Chen et al., 2011149

Heron et al., 2012150

Lee et al., 2012151

Meneret et al., 2012152

Ono et al., 2012153

Pelzer et al., 2014154

Schubert et al., 2012155

Striano et al., 2006156

Wang et al., 2011157

Weber et al., 2004158

RYR3 Ryanodine receptor 3 15q13.3 EEIT WES Møller, 20155

SCN1A Sodium voltage‑gated channel alpha 
subunit 1

2q24.3 SNP
Del

ARG1648HIS
THR875MET
ASP188VAL
VAL1353LEU
ILE1656MET
TRP1204ARG
2‑BP DEL, 657AG
ARG222TER
LEU986PHE
LYS1270THR
VAL1428ALA
THR1709ILE
VAL1611PHE
MET145THR
IVS5N + 5G‑A
1‑BP DEL, 2528G
DEL EX21‑26
6.5‑Kb DEL
1‑BP DEL, 3608A
ALA1669GLU
ARG862GLY

Síndrome de Dravet, 
CF familiares, EEIT

WES
SSCA
Multiplex 
ligation‑dependent 
probe amplification

Abou‑Khalil et al., 2001159

Baulac et al., 1999160

Buoni et al., 2006161

Carranza Rojo et al., 
2011162

Claes et al., 2001163

Depienne et al., 2009143

Dichgans et al., 2005164

Escayg et al., 2000165

Freilich et al., 2011165

Mantegazza et al., 
2005167

McArdle et al., 2008168

Moulard et al., 1999169

Mulley et al., 2005170

Ohmori et al., 2002171

Orrico et al., 2009172

Petrovsky et al., 2009173

Schlachter et al., 2009174

Vahedi et al., 2009175

Zucca et al., 2008176

SCN2A Sodium channel, voltage‑gated, type II, 
alpha subunit

2q24.3 ARG188TRP
LEU1330PHE
LEU1563VAL
VAL892ILE
ARG223GLN
ARG1319GLN
LEU1003ILE
ARG102TER
GLU1211LYS
ILE1473MET
ALA263VAL
MET252VAL

EEIT Direct sequencing, 
WES, Genome‑wide 
analysis.

Berkovic et al., 2004177

Heron et al., 2002178

Kamiya et al., 2004179

Liao et al., 2010180

Malacarne et al., 2001181

Ogiwara et al., 2009182

Sugawara et al., 2001183

SCN8A Sodium Channel, voltage‑gated, type VIII, 
alpha subunit

12q13.13 SNP ASN1768ASP
LEU1290VAL
ARG1617GLN
ASN1466LYS
ASN1466THR
ARG223GLY
ASN984LYS
GLY1451SER

EEIT
SUDEP

WES
Targeted capture 
sequencing

Blanchard et al., 2015184

Carvill et al., 201350

De Kobel et al., 2014185

Ohba et al., 2014133

Veeramah et al., 2012186

SLC2A1 Solute carrier family 2 (facilitated glucose 
transporter), member 1

1p34.2 SNP ARG232CYS
ARG223PRO
ARG458TRP
ASN411SER

EGI Direct sequencing, 
PCR sequencing

Arsov et al., 2012187

Striano et al., 2012188

Suls et al., 2009189

SLC25A22 Solute carrier family 25 (mitochondrial 
carrier, glutamate) member 22

11p15.5 SNP PRO206LEU
GLY236TRP
GLY110ARG

EEIT CGH
WES

Lesca, 20159

Molinari et al., 2005190

Poduri et al., 2013191

SLC26A1 Solute carrier family 26, (anion 
exchanger), member 1

4p16 SEA GWEF array CGH Mefford et al., 201130

SLC35A2 Solute carrier family 35 (UDP‑galactose 
transporter) member 2

Xp11.23 Del
SNP

2‑BP DEL, 433TA
1‑BP DEL, 972T
SER213PHE

EEIT CGH
WES

Lesca, 20159

Nakamura et al., 2013108

SPTAN1 Alpha, non‑erythrocytic, spectrin 1 9q34.11 Del
Dup

3‑BP DEL, 6619GAG
6‑BP DUP, NT6923
3‑BP DEL, NT6605
9‑BP DUP, NT6908

EEIT CGH
Direct sequencing.

Lesca, 20159

Hamdan et al., 2012192

Nonoda et al., 2013193

Saitsu et al., 2010194

STXBP1 Syntaxin‑binding protein 1 9q34.11 SNP GLY544ASP
CYS180TYR
MET443ARG
VAL84ASP
ARG388TER
IVS3DS, G‑A, +1
GLU283LYS

EIEE WES Møller, 20155

Carvill et al., 2014195

Hamdan et al., 2009190

Saitsu et al., 2008196

STX1B Syntaxin 1B 16p11.2 Síndromes asociados 
con epilepsia febril

WES Møller, 20155

ST3GAL3 ST3 beta‑galactoside 
alpha‑2,3‑sialyltransferase 3

1p34.1 SNP ALA320PRO EEIT CGH
WES

Lesca, 20159

Edvarson et al., 2013197

SYNGAP1 Synaptic RAS‑GTPase‑activating protein 1 6p21.32 SNP PRO562LEU TRP267TER
ARG143TER
c. 321_324del
c. 427C > T/p.Arg143

EEIT, mioclónicas, Aus WES Barryer et al., 2013198

Carvill et al., 2013199

Mignot et al., 201650

SZT2 Seizure threshold 2, mouse homolog 1p34.2 SNP ARG25TER
GLN698TER
c. 1496G‑T ‑

EEIT CGH
WES

Basel‑Vanagaite et al., 
2013200

Lesca, 20159

TAS2R1, 
FAM173B, 
CCT5, 
MTRR

Taste receptor, type 2, member 1/family 
with sequence similarity 173, 
member B/chemokine receptor 
5/5‑ methyltetrahydrofolate‑homocysteine 
methyltransferase reductase

5p15 FS, focal, TCG, aA, SE Array ‑ CGH Epi4K Consortium and 
Epilepsy Phenome/
Genome Project, 201584

TBC1D24 TBC1 domain family, member 24 16p13.3 SNP
Del

ASP147HIS
ALA509VAL
PHE251LEU
2‑BP DEL, 969GT
PHE229SER
CYS156TER

EEIT, EMIF CGH
Candidate gene 
sequencing

Lesca, 20159

Corbett et al., 2010201

Duru et al., 2010202

Falace et al., 2010203

Guven and Tolun, 2013204

Milh et al., 2013205

Zara et al., 2000206

UBE3A Ubiquitin protein ligase E3A 15q11 Del EMA GWEF array CGH Mefford et al., 201133

GWAS: Genome Wide Association Study; WES: Whole Exome Sequencing; Array‑CGH: Array Comparative Genome Hybridization; NGS: Next Generation Sequencing; HPM: Highly Polymorphic Microsatellite; DES: Direct Exon Sequencing; 
SSCA: Single‑Stranded Conformation Analysis; EF: Epilepsia Focal; TCG: Crisis Tónico Clónicas Generalizadas; T: Crisi Tónicas; CF: Crisis Febriles; aA: Ausencias Atípicas; SE: Status Epiléptico; Aus: Ausencias; EMA: Epilepsia Mioclónica‑Atónica; 
SEA: Síndrome Epilepsia‑Afasia; ESG: Epilepsia Sintomática Generalizada; EMJ: Epilepsia Mioclónica Juvenil; EEIT: Encefalopatía Epiléptica Infantil Temprana; EGG: Epilepsia Generalizada Genética; EI: Espasmos Infantiles;; EGI: Epilepsia 
Generalizada Idiopática; CICA: Convulsiones Infantiles y Coreo‑Atetosis; EICFM: Epilepsia Infantil con Crisis Focales Migratorias; CPMMI: Crisis Parciales Malignas Migratorias de la Infancia; EMT: Epilepsia Mioclónica Tardía; EFFFM: Epilepsia 
Focal Familiar de Focos Múltiples; ELFNAD: Epilepsia del Lóbulo Frontal Nocturna Autosómica Dominante; ELTMF: Epilepsia del Lóbulo Temporal Mesial Familiar; ENFB: Epilepsia Neonatal Familiar Benigna; CIF: Crisis Infantiles Familares; 
SUDEP: Suden Unexpected Death of someone with Epilepsy; EMIF: Epilepsia Mioclónica Infantil Familiar
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