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RESUMEN

Antecedentes/Objetivo. Fusarium tiene la capacidad de producir enzimas hidro-
liticas de interés en la industria de los alimentos o alcohdlica para descomponer
compuestos organicos naturales. Este trabajo estudi6 la capacidad de Fusarium
oxysporum f.sp. cubense raza 1 (FocR1) para producir enzimas celulasas y quitina-
sas en cultivo sumergido utilizando diferentes fuentes de carbono.

Materiales y métodos. Cinco cepas de FocR1 (CNRF-MIC17188, CNRF-
MIC17189, CNRF-MIC17190, CNRF-MIC17191, y CNRF-MIC17192) se utili-
zaron en cultivo sumergido para la degradacion de tres sustratos [papel filtro, papel
periddico, y quitina (Sigma®)], evaluando la velocidad de crecimiento radial (VCr)
y la actividad enzimadtica cuantitativa (FPase, CMCase y quitinasa).

Resultados. La VCr en las cinco cepas de FocR1 oscilé en un rango de 0.043 a
0.051 cm h'. A los dias 7 y 14, las cinco cepas de FocR1 produjeron celulasas y
quitinasas al utilizar los tres sustratos. De acuerdo con el analisis estadistico, las
cepas CNRF-MIC17191 y CNRF-MIC17192 presentaron los mejores resultados
de actividades enzimaticas.

Conclusiones. Las cinco cepas de FocR1 pueden utilizarse como una fuente co-
mercial de celulasas y quitinasas, asi como ser candidatas potenciales para biocon-
vertir complejas fuentes de carbono para su futuro aprovechamiento en procesos
industriales.

Palabras clave: Hongo, actividad enzimatica, fermentacion sumergida, papel pe-
riodico, papel filtro, quitina.
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INTRODUCCION

Fusarium oxysporum es un hongo del suelo cuyas especies incluyen una amplia
diversidad de cepas responsables de marchitamientos o pudriciones en muchas
especies vegetales, como platanos y algodon (Khan et al., 2021; Mon et al., 2021).
En contraste, varias especies de Fusarium participan en el biocontrol de otros
fitopatdgenos como Botrytis cinerea (ascomiceto) y el oomycete Phytophthora
capsici(Velosoy Diaz,2012). Los endofitos fingicos confieren un biocontrol directo,
ya sea por medio de la interaccion con patdogenos mediante el micoparasitismo y la
antibiosis o de la competencia por nutrientes o nichos de raices. El micoparasitismo
es considerado uno de los principales mecanismos del antagonismo hongo-hongo;
ademas, la actividad antagonica de los micoparasitos necrotroficos se atribuye a la
producciéon de antibidticos, toxinas y enzimas hidroliticas, tales como glucanasa,
celulasa y quitinasa (De Silva ef al., 2019). Estas enzimas hidroliticas producidas
por F. oxysporum (en especial la pectinasa y la celulasa) pueden usarse para
descomponer compuestos organicos naturales, asi como para biodegradar diferentes
sustratos organicos como bagazo de cafia (de Almeida et al., 2019), paja de arroz
(Indira et al., 2016), paja de moringa (Vazquez-Montoya et al., 2020), utilizando
fermentaciones sumergidas o en estado sélido (Hemansi et al., 2019). Algunas cepas
de Fusarium participan en formas beneficiosas para el ambiente, no s6lo como
un antagonista para fitopatdégenos sino también como un productor de enzimas de
interés industrial para favorecer la biodegradacion de sustratos complejos (Xiros
et al., 2009). Dada la capacidad de algunas especies de Fusarium para secretar
enzimas extracelulares de importancia industrial, es necesario estudiar la capacidad
de especies de Fusarium para biodegradar sustratos complejos como fuentes de
carbono, con el propoésito de reducir los costos de produccion de estas enzimas.
Por ello, el presente estudio evaluo la produccion potencial de enzimas (celulasa y
quitinasa) por cinco cepas de Fusarium oxysporum f. sp. cubense raza 1 (FocR1)
sembradas en cultivos sumergidos con diferentes fuentes de carbono.

Se utilizaron cinco cepas de FocR1. Estos hongos, relacionados con el platano
(Florencio-Anastasio et al., 2022) se obtuvieron de la coleccion fungica del La-
boratorio de Micologia del Centro Nacional de Referencia Fitosanitaria (CNRF),
perteneciente al Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimen-
taria (SENASICA, México). Estas cepas fingicas estan codificadas como CNRF-
MIC17188, CNRF-MIC17189, CNRF-MIC17190, CNRF-MIC17191 y CNRF-
MIC17192. La tasa de crecimiento radial (TCR) de las cinco cepas de FocR1 se
estim6 de acuerdo con Garcia-Espejo ef al. (2016). La cinética de degradacion
de los tres sustratos complejos [papel de filtro, papel periddico y quitina coloidal
(Sigma®)] se determinaron por medio de la siembra de las cepas fungicas en cul-
tivos sumergidos, por 14 dias a 25 £2 °C y 200 rpm. Cada ensayo se llevo a cabo
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por triplicado con el sustrato correspondiente y con la cepa fungica estudiada. En
resumen, se usaron tubos 50 mL-Falcon, cada uno de los cuales contenia 35 mL
de un medio minimo basal (BMM) [Na,HPO, 6 ¢ L', KH,PO, 3 g L', (NH,),SO,
2.64 g L', MgSO,+7H,0 0.5 g L', CaCl, 0.015 g L'!, MnSO, 3 g L', ZnSO, 3 g
L], con un pH de 4.8, ajustado con un buffer de citrato de 0.05 M (Garcia-Espejo
et al., 2016). Luego se agregoé el sustrato respectivo para degradar: a) 1% p/v de
quitina, b) una tira (1x11cm) de papel de filtro, y ¢) una tira (1x11cm) de papel
periodico. Cada tubo se inoculd con una concentracion de suspension de esporas
(1x10° esporas mL") de la cepa flingica correspondiente. Después de 7 y de 14 dias,
se tomaron alicuotas de 1.5 mL para determinar la actividad enzimatica correspon-
diente. La actividad total de la celulasa se evalué a partir del bioensayo con papel
de filtro (FPase), y con la actividad de la endoglucanasa (CMCase) realizada por
medio de la técnica DNS (Miller, 1959; Ghose, 1987), y como D-Glucosa como
blanco. La actividad de la quitinasa se realizd por medio del método descrito por
Vargas-Hoyos y Gilchrist-Ramelli (2015). La produccién de azicares se determind
con el método de Miller (1959) usando N-acetil-D-glucosamina (GIcNAc) como
blanco. El procedimiento para realizar las actividades enzimaticas fue descrito por
Hernandez-Melchor et al. (2022) y la medicion se llevo a cabo a 540 nm con un
lector de microplacas (Synergy 2, Biotek®). Cada unidad de actividad enzimatica
se definié como la cantidad de enzima requerida para liberar 1 pmol min' de azu-
car reductora y se expresd como equivalentes de glucosa bajo nuestras condiciones
experimentales. Las actividades se expresaron en unidades internacionales por litro
(TU L.

El experimento consisitio en un disefio completamente al azar, con cuatro tra-
tamientos con tres repeticiones para cada cepa de Fusarium. La normalidad de los
datos se verificd por medio de la prueba Shapiro-Wilks (P<0.05). Luego, se realizo
el analisis de varianza (ANDEVA) y la prueba de comparacion de medias (Tukey,
P<0.05) mediante el programa estadistico SAS (Windows version 6.2.9200) para
evaluar las diferencias significativas entre parametros (TCR y la capacidad de cada
cepa de FocR1 para degradar tres sustratos complejos) y se expresaron como me-
dias + error estandar.

La TCR estimada para las cinco cepas de FocR1 se muestra en la Figura 1. La
cepa CNRF-MIC17190 presento diferencias significativas (Tukey, 0=0.05) para la
TCR (0.051 cm h') en comparacion con las cepas restantes de FocR1. La TCR de
CNRF-MIC17190 fue 1.2 mayor a la reportada por Pal ef al. (2019) para F. oxyspo-
rum f. sp. lini (0.0399 cm h') sembrado a 25+2 °C y entre 21 y 23 veces mayor a
lo reportado por Scott ef al. (2010) para F. oxysporum f.sp lactucae (0.0022-0.0024
cm h') sembrado a temperaturas de entre 10 y 25 °C. La TCR de hongos filamen-
tosos ayuda a conocer su crecimiento con el tiempo bajo ciertas condiciones de
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Figura 1. Tasa de crecimiento radial (TCR) de cepas de Fusarium oxysporum f.sp. cubense Raza 1
(FocR1)enunmedio PDA, alas 192 h. Letras diferentes en las barras son significativamente
diferentes (Tukey; p<0.05). Medias + error estandar, n=3.

cultivo, tales como la temperatura, el sustrato, pH y otras. Ademas, este parametro
permitio establecer el tiempo para operar bioreactores por lotes sumergidos especi-
ficos basados en el uso de microorganismos (Moore et al., 2020; Valle et al., 2022).

Las Figuras 2 a 4 muestran las actividades enzimaticas cuantificadas obtenidas
para las cinco cepas de FocR1, a los 7 y 14 dias mediante el uso de papel perio-
dico, papel de filtro y quitina coloidal como fuentes de carbono. Al usar papel
periodico, la produccion de enzimas resultd en diferencias significativas (Tukey,
a=0.05) entre cepas de FocR1; las actividades de celulasa mas altas (FPasa y CM-
Casa) se registraron para las cepas CNRF-MIC17191 y CNRF- MIC17192 a los
7 y 14 dias (Figuras 2A y B), y la mayor actividad de quitinase se obtuvo para
CNRF-MIC17188 y CNRF-MIC17189, a los 7 dias (Figura 2C). Sin embargo, al
usar papel de filtro como fuente de carbono, las cepas CNRF-MIC17191, CNRF-
MIC17192 y CNRF-MIC17190 a a los 7 y 14 dias, respectivamente, presentaron
diferencias significativas (Tukey, a=0.05) en la actividad celulasa, en compara-
cion con el resto de las cepas de FocR1 (Figuras 3A y B). En el dia 14, las cepas
CNRF-MIC17189 y CNRF-MIC17192 presentaron la mayor actividad quitinasa
(Figura 3C). Finalmente, cuando se aplico la quitina como fuente de carbono, las
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Figura 2. Actividad enzimatica cuantitativa de cinco cepas de Fusarium oxysporum f.sp. cubense
Raza 1 (FocR1) usando papel periddico como sustrato, a los 7 y 14 dias. A) Actividad
celulasa (FPase). B) Carboximetil celulasa (CMCasa), y C) Actividad quitinasa. Letras
diferentes sobre las barras en las tres graficas, son significativamente diferentes (Tukey;
p=<0.05). Medias + error estandar, n=3.
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Actividad enzimatica cuantitativa como cinco cepas de Fusarium oxysporum f.sp. cubense
Raza 1 (FocR1) usando papel de filtro como sustrato, a los 7 y 14 days. A) Actividad
celulasa (FPase). B) Carboximetil celulasa (CMCase), y C) Actividad de quitinasa. Letras
diferentes sobre las barras en las tres graficas, son significativamente diferentes (Tukey;
p=0.05). Medias + error estandar, n=3.

Hernandez-Melchor et al., 2024. Vol. 42(1): 8. 6



Mexican Journal of Phytopathology. Nota Fitopatologica. Open access

A

2500 )

2000

1500

1000

Actividad celulasa (FPasa) (IUL")

500

a
ab

[ ldia7
I dia 14

ab

b

CNRF-MIC17188 CNRF-MIC17189 CNRF-MIC17190 CNRF-MIC17191 CNRF-MIC17192

1000

800

Carboximetil celulasa (CMCasa) (IUL")

a
a
b
J%“‘l‘\

600 b b b
b
b
400 b
200
CNRF-MIC17188 CNRF-MIC17189  CNRF-MIC17190 CNRF-MIC17191 CNRF-MIC17192
C
12001
a
10001 a
—~
z t
) 0
-
= 800
<
g b
=i DC
£ . : B
=
3. 600 .
o
o
=
<
=2 4001
B
=]
Q
<
200
CNRF-MIC17188 CNRF-MIC17189 CNRF-MIC17190 CNRF-MIC17191 CNRF-MIC17192

Figura 4. Actividad enzimatica cuantitativa de cinco cepas de Fusarium oxysporum f.sp. cubense
Raza 1 (FocR1) usando quitina como sustrato, a los 7 y 14 dias. A) Actividad celulasa
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cepas fungicas presentaron diferencias significativas (Tukey, 0=0.05) en la activi-
dad enzimatica. Las cepas CNRF-MIC17188 y CNRF-MIC17190, en el dia 7, y las
cepas CNRF-MIC17188 y CNRF-MIC17189 en el dia 14, presentaron FPasa alta,
respectivamente (Figura 4A). En el caso de la CMCasa, la cepa CNRF-MIC17192
present6 la mayor actividad enzimatica, tanto a los 7 como a los 14 dias (Figura
4B). Ademas, las cepas CNRF-MIC17188 y CNRF-MIC17192, a los 7 y 14 dias,
respectivamente, present6 una alta actividad de quitinasa (Figura 4C). En términos
generales, la actividad enzimatica varid, dependiendo de la fuente de carbono y la
cepa fungica. Martinez-Pacheco et al. (2020) mencionaron que los requerimientos
nutrimentales de cada especie de Fusarium son especificos para la produccion de
diferentes actividades enzimaticas, debido a la abundancia o limitaciones de los
macro- o micronutrientes a lo largo del proceso de fermentacion que altera la fisio-
logia fungica; ademas, la naturaleza de los residuos organicos podria influir sobre la
expresion de los mecanismos enzimaticos que intervienen en su despolimerizacion
con el tiempo.

Las actividades mas altas de CMCasa regstradas para las cepas CNRF-
MIC17191 y CNRF-MIC17192 se obtuvieron a los 14 dias, mediante el uso de
papael periddico (1859 TU L) o quitina (1045 TU L) como fuentes de carbono,
respectivamente. Dichos valores son comparables con los reportados por Yuan et
al. (2012), quienes evaluaron la actividad de la celulasa de una cepa de F. oxyspo-
rum al usar carboximetilcelulosa como fuente de carbono en un cultivo sumergido
(1430 TU L). En cambio, los valores de CMCasa mencionados por Yuan et al.
(2012) fueron 2.8 veces mas bajos que los registrados en el presente estudio por la
cepa CNRF-MIC17192 (4063 TU L), cuando se uso papel de filtro como fuente
de carbono. Por otro lado, los mejores resultados para la actividad de FPasa se
obtuvieron para las cepas CNRF-MIC17191 y CNRF-MIC17192 en el dia 7, al
usar papel periddico (754 TU L'and 906 TU L, respectively) y papel de filtro (930
IU L'y 1011 TU L, respectivamente) como fuentes de carbono. Para las cepas
CNRF-MIC17188 y CNRF-MIC17190, la mayor actividad de FPasa se detect6 en
el dia 7, al usar quitina como fuente de carbono (2259 TU L-'and 1859 TU L*!). Estos
resultados son comparables a los reportados por Ramanathan et al. (2010), quienes
estudiaron la capacidad enzimatica de F. oxysporum usando 1 % de carboximetilce-
lulosa como fuente de carbono a 50 °C y un pH de 6 durante 12 d. Ademas, Xiros et
al. (2009) obtuvieron valores similares de actividad de FPasa de F. oxysporum ais-
lados de comino, que alcanzo6 valores maximos de 850 TU L' después de 70 h en un
cultivo basado en mazorcas de maiz sin granos y en granos usados por cerveceros
como fuentes de carbono. Asimismo, los resultados de FPasa usando quitina como
sustrato son similares a los reportados por da Rosa-Garzon et al. (2019), quienes
realizaron un cultivo sumergido con F. oxysporum en el cual la FPasa (~ 2000 IU
L) se produjo a niveles similares en cultivos de caseina y harina de plumas. Con
respecto a la actividad de la quitinasa, los resultados mas significativos se consi-
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guieron para las cepas CNRF-MIC17188 y CNRF-MIC17189 con el uso de papel
periodico, para las cepas CNRF-MIC17189 y CNRF-MIC17192 con el papel de
filtro, y para las cepas CNRF-MIC17188 y CNRF-MIC17192 con quitina como
fuente de carbono. Existen algunos reportes cientificos acerca de la capacidad de
especies de Fusarium para producir quitinasas en cultivos sumergidos (Mathivanan
et al., 1998), aunque algunas especies pueden liberar quitinasas involucradas en el
biocontrol de hongos fitopatdogenos como Puccinia arachidis (Patil et al., 2000). En
este sentido, varios autores demostraron la capacidad de varias especies de Fusa-
rium para usar sustratos complejos como fuentes de carbono para producir comple-
jos multienzimaticos bajo un proceso controlado de fermentacion en un bioreactor.
Por ejemplo, F. verticillioides puede producir enzimas de celulosa por medio de
carboximetilcelulosa o residuos de pasto (4dndropogon gayanus) como fuente de
carbono en cultivos sumergidos (de Almeida et al., 2019; Vazquez-Montoya et al.,
2020). Indira et al. (2016) estudiaron la capacidad de F. subglutinans para producir
celulasas por medio de paja de arroz pretratado y preparado con agua dulce o de
mar (277.5 U mL" and 126.72 U mL", respectivamente). Martinez-Pacheco et al.
(2020) optimizaron la capacidad de F. solani para producir xilanasas extracelulares
por medio del disefio Box-Wilson. Estas enzimas son relevantes para los procesos
biotecnologicos (industria alimenticia, de papel y pulpa de celulosa, y quimica).
Si bien muchas enzimas fingicas han sido seleccionadas por su eficiencia para
degradar sustratos complejos, su produccion a gran escala es dependiente de varios
factores como variaciones en pH, temperatura y concentracion de sustratos para
las enzimas (Hemansi ef al., 2019), los cuales deben ser estudiados y estandari-
zados para llevar a cabo la optimizacion de dicho bioproceso. Esto ultimo resalta
la importancia de nuestra investigacion, para que, a pesar de que algunas cepas de
Fusarium son conocidas por ser fitopatdgenos, estos hongos también puedan pro-
ducir complejos extracelulares multi-enzimaticos (enzimas celulasas y quitinasas,
por ejemplo) que puedan ser caracterizados y purificados, ya que poseen caracte-
risticas Unicas en comparacion con enzimas producidas por otros géneros fiingicos.
Adicionalmente, algunas especies saprofitas de Fusarium tienen la capacidad de
degradar diferentes sustratos (desechos agroindustriales) bajo cultivos sumergidos
controlados en bioreactores, por lo que estas especies flingicas pueden reducir los
costos de produccion de enzimas y permitir la separacion de la biomasa fingica del
sobrenadante que contiene el producto objetivo a lo largo de un bioproceso, a dife-
rentes escalas de produccion. No obstante lo anterior, el uso adicional de especies
o cepas de Fusarium debe ser cuidadosamente valorado para evitar implicaciones
negativas al usar agentes fitopatdogenos, asi como para cumplir con ciertas evalua-
ciones de bioseguridad y riesgos ecologicos.

En conclusion, este trabajo demostréo que algunas fuentes de carbono, tales
como papel periddico, papel de filtro o la quitina, pueden ser inductores eficien-
tes para la produccion de celulasa y quitinasa por parte de Fusarium oxysporum
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f.sp. cubense Raza 1 (FocR1) en cultivos sumergidos. Estas cepas de FocR1 son
especies fungicas prometedoras, para futuras aplicaciones biotecnoldgicas, ya que
crecen rapidamente bajo condiciones sumergidas controladas con la adicion de sus-
tratos de bajo costo, secretando y produciendo enzimas extracelulares importantes.
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