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Abstract. The identification of plant-pathogenic bacteria is 
often of high importance. In this paper, we evaluate the 
identification of plant-pathogenic species within the genus 
Pseudomonas by fatty acid methyl ester (FAME) analysis. 
Starting from a FAME database, high quality data sets were 
generated. Two research questions were investigated: can 
plant-pathogenic Pseudomonas species be discriminated 
from each other and can the group of plant-pathogenic 
Pseudomonas species be distinguished from the group of 
non-plant-pathogenic Pseudomonas species. In a first stage, 
a principal component analysis was performed to evaluate 
the variability within the data. Secondly, the machine 
learning method Random Forests was evaluated for 
identification purposes. This intelligent method allows to 
learn from the variability and patterns in the data and to 
improve the species identification. The principal component 
analysis of plant-pathogenic species clearly showed 
overlapping data clouds. A Random Forests model was 
developed that achieved a species identification performance  
of 71.1%. Discriminating the group of plant-pathogenic  

Resumen. La identificación de bacterias fitopatógenas es de 
alta relavancia. En este trabajo se evaluó la identificación de 
especies fitopatógenas dentro del género Pseudomonas 
mediante análisis de esteres metílicos de ácidos grasos 
(FAME). A partir de una base de datos de FAME, se han 
generado conjuntos de conjuntos de datos de alta calidad. Dos 
aspectos fueron investigados: la separación de especies 
fitopatógenas de Pseudomonas, y la diferenciación del grupo 
de espcies fitopatógenas de Pseudomonas de las no 
fitopatógenas. En la primera fase se realizó un análisis de 
componentes principales para evaluar la variabilidad de los 
datos. Posteriormente el método de aprendizaje árboles 
aleatorios fue evaluado para propósitos de identificación. El 
método inteligente permite aprender de la variabilidad y los 
patrones de los datos y mejorar la identificación de especies. 
El análisis de componente principal de especies fitopatógenas 
mostró claramente sobreposición de grupos de datos. Se 
desarrolló un modelo de árboles aleatorios que permitió 
alcanzar una eficiencia de identificación de especies del 
71.1%. Discriminar el grupo de especies fitopatógenas del 
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plant-pathogenic species from the group of non-plant-
pathogenic species was more straightforward, given by the 
Random Forests identification performance of 85.9%. 
Moreover, it was shown that a statistical relation exists 
between the fatty acid profiles and plant pathogenesis.

Additional key words: Diagnosis, non-pathogenic bacteria.

grupo de especies no fitopatógenas fue más sencillo, dado el 
desempeño de los bosques al azar del 85.9%. Por otra parte se 
demostró que existe una relación estadística entre los perfiles 
de ácidos grasos y la patogénesis sobre la planta.

Palabras clave adicionales: Diagnóstico, bacterias no 
patogénicas. 

The genus Pseudomonas is classified in the domain of 
Bacteria ,  phylum of  Proteobacter ia  c lass  of  
Gammaproteobacteria, order of Pseudomonadales and 
family of Pseudomonaceae  (Brenner et al., 2005). The type 
species of the genus is Pseudomonas aeruginosa, which was 
originally discovered by Schroeter in 1872. The genus was, 
however, proposed by Migula in 1894. On 03/2008, 95 
Pseudomonas species were validly published. Pseudomonas 
members are typically straight or slightly curved motile rods 
with merely polar flagella, respiratory but never 
fermentative. Most species fail to grow under acid conditions 
(pH lower than 4.5) and natural habitats are water or soil. 
Different subgroupings can be made based on the phenotype 
or pathogenetic features. In the former case, grouping can be 
based on the production of pigments that fluorescence under 
UV radiation (e.g. P. fluorescens). In the latter case, a straight 
forward grouping of pathogenic and non-pathogenic species 
can be made. Two examples are P. aeruginosa which is an 
opportunistic pathogen of humans, while P. syringae is a 
plant pathogen (Palleroni, 2005; 2008). Pioneers in the 
taxonomic classificlassification of the genus Pseudomonas 
are Palleroni and coworkers (University of California, 
Berkeley, USA), who in 1973 described an initial grouping of 
five discrete Pseudomonas clusters based on rRNA-DNA 
hybridization (Palleroni, 1973; 1984). Since then, the 
taxonomy of the genus Pseudomonas underwent a series of 
rearrangements and the genus as described today 
corresponds to rRNA group I. This implies that numerous 
species, previously assigned to the genus Pseudomonas 
sensu lato (often referred to as the “Pseudmonads”) were 
transferred to the generic or suprageneric ranks, mainly 
residing in the Alpha-Beta, and Gammaproteobacteria 
classes. Examples are Acidivorax, Aminobacter, 
Brevundimonas, Burkholderia, Comamonas, Halomonas, 
Methy lobac ter ium ,  Rals ton ia ,  Sph ingomonas ,  
Xanthomonas, etc. (Kersters et al., 1996;  Palleroni, 2005). In 
1996, Moore et al, discriminated two intrageneric clusters in 
16S rRNA gene sequences of the Pseudomonas sensu stricto 
group (= the present genus Pseudomonas ): a P. aeruginosa  
cluster and a P. fluorescens cluster, each with different 
species lineages. Most lineages were also clustered in the 
FAME analysis as performed by Vancanneyt et al., (1996). 
Anzai et al., (2000) re-evaluated 128 valid and invalid 
Pseudomonas species based on 16S rRNA sequence data and 
reassigned several species to other genera. The complexity of 
the taxonomy of the present genus Pseudomonas is also 
demonstrated by the rpoB gene analysis of Tayeb et al., 
(2005), but validation of the rpoB grouping still need DNA-
DNA hybridization (DDH) data and extensive phenotypic 
analysis before emendations at the species level can be 
proposed.
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El género Pseudomonas está clasificado en el dominio 
B a c t e r i a ,  p h y l u m  P r o t e o b a c t e r i a ,  c l a s e  
Gammaproteobacteria, orden Pseudomonadales y familia 
Pseudomonaceae ( ). La especie tipo del 
género es Pseudomonas aeruginosa, la cual fue originalmente 
descubierta por Schroeter en 1872. El género, sin embargo fue 
propuesto por Migula en 1894. En marzo de 2008, 95 especies 
de Pseudomonas fueron válidamente publicadas. Los 
miembros del género Pseudomonas son bastones típicamente 
rectos o ligeramente curvados con flagelos polares, presentan 
un mecanismo aeróbico (respiratorio), pero ninguna especie 
es fermentativa. La mayoría de especies no crecen en 
condiciones ácidas (pH menor de 4.5) y son habitantes 
naturales del agua o suelo. Se han establecido diferentes 
subgrupos dentro de este género basado en las características 
fenotípicas o patogénicas. Anteriormente, el agrupamiento 
pudo estar basado en la producción de pigmentos 
fluorescentes bajo radiación UV (e.g. P. fluorescens) 
posteriormente se formaron grupos de especies patogénicas y 
no patogénicas. Dos ejemplos son P. aeruginosa, un patógeno 
oportunista de humanos, mientras que P. syringae es un 
patógeno de plantas Los pioneros en 
la clasificación taxonómica del género Pseudomonas fueron 
Palleroni y colaboradores (Universidad de California, 
Berkeley, USA) quien en 1963 describió cinco grupos de 
Pseudomonas basados en la hibridación rRNA-DNA. Desde 
entonces, la taxonomía del género Pseudomonas ha sufrido 
una serie de re-arreglos y hoy en día solamente el grupo I de 
rRNA corresponde al género Pseudomonas. Esto implica que 
un gran número de especies previamente asignadas al género 
Pseudomonas sensu lato (a menudo referida como las 
“Pseudomonas”) fueron transferidos a rangos genéricos o 
supra genéricos, principalmente pertenecientes a las clases: 
Alfa, Beta y Gammaproteobacteria. Ejemplos: Acidovorax, 
Aminobacter, Brevundimonas, Burkholderia, Comamonas, 
Halomonas, Methylobacterium, Ralstonia, Sphingomonas, 
Xanthomonas, etc., citado por Kersters et al., (1996) y 
Palleroni (2005). En 1996, Moore et al., diferenciaron 2 
grupos intergenéricos basados en la secuencia del gen 16S 
rRNA del grupo de Pseudomonas sensu stricto (= el presente 
género Pseudomonas): el grupo  denominado P. aeruginosa y 
el otro grupo P. fluorescens cada uno con especies 
provenientes de diferentes linajes. La mayoría de linajes 
fueron también agrupados con el análisis FAME por 
Vancanneyt et al., (1996). En el año 2000, Anzai et al., re-
evaluaron 128 especies válidas y no válidas de Pseudomonas 
basados en datos de la secuencia 16S rRNA y varias especies 
fueron reasignadas a otros géneros. La complejidad de la 
taxonomía del presente género Pseudomonas está también 
demostrada por los análisis del gen rpoB realizado por Tayeb 

Brenner et al., 2005

(Palleroni, 2005; 2008). 



A maximum likelihood tree of the genus Pseudomonas based 
on 16S rRNA gene sequences is visualized in. This tree is 
based on the validly published list of bacterial species as of 
Figure 1March 2008. Regarding plant pathogenesis, a 
multitude of pathovars are described within the species P. 
syringae and related species. A DDH study showed the 
existence of nine discrete genomospecies (Gardan et al., 
1999). In this study, we follow these genomospecies 
classifications as if they were formal species.

et al.,  (2005), pero la validación del agrupamiento del rpoB 
aún necesita datos de la hibridación DNA-DNA (DDH) y de 
la realización de extensos análisis fenotípicos antes de que se 
puedan proponer cambios a nivel de especie. Un árbol 
filogenético construido con el método de máxima 
verosimilitud del género Pseudomonas basado en la 
secuencia del gen 16S rRNA se puede observar en la Figura 1. 
Este árbol incluye las especies bacterianas válidamente 
publicadas en marzo del 2008. Un gran número de patovares 

Figura 1. Árbol filogenético de máxima similitud de genéro Pseudomonas basado en 

Figure 1.16S rRNA gene sequence-based maximum likelihood tree of the genus Pseudomonas. The 95 species included
correspond to the validly published taxonomy of March 2008. Each species is represented by one high-quality 16S rRNA
sequence as extracted from the SILVA database (Pruesse et al., 2007). The phylogenetic tree is built by the maximum likelihood 
algorithm as implemented in the RAxML software (based on 1000 bootstraps) and is visualized with the iTol webtool 

 Tree branch lengths are ignored because of outlier species, making the use of branch 
lengths pointless. Dotted branches correspond to bootstrap values larger than 75%.

 la secuencia del gen 16S rRNA . Las 95 
especies corresponden a la taxonomía valida publicada a marzo del 2008. Cada especie se representa por una secuencia de alta 
calidad del 16S rRNA extraída de la base de datos SILVA (Pruesse et al., 2007). El árbol filogenetico se elaboró mediante el 
algoritmo de máxima similitud en el software RAxML y es visualizado con la heramienta de la web iTol (Letunic and Bork, 
2007; Stamatakis, 2006). Para especies aisladas, la longitud de las ramas es ignorada debido a que  el uso de la longitud de la  
rama es  innecesario. Ramas punteadas corresponden a valores de re-muestreo  del 75%.

(Letunic 
and Bork, 2007; Stamatakis, 2006).
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The genus Pseudomonas belongs to the Gram-negative 
bacteria. This implies that initial research on the fatty acid in 
this genus was focused on the corresponding 
lipopolysaccharide (LPS) layer. This layer is responsible for 
an important discriminatory fraction of hydroxy fatty acids. 
Several researchers showed initially that the major fatty acid 
fraction of the LPS layer of Pseudomonas aeruginosa was 
constituded of hydroxy acids (Fensom and Gray, 1969; 
Hancock et al., 1970). In the 1970s, main research on the fatty 
acid content of the members of the genus Pseudomonas sensu 
lato was performed at the laboratory of Moss (Center for 
Disease Control, Atlanta, USA) (Dees and Moss, 1975; Dees 
et al., 1979; Moss et al., 1972; Moss, 1981). They found that 
FAME patterns were useful for rapidly distinguishing 
between Pseudomonas species and species groups, and that 
repeated FAME analysis resulted in similar patterns. Next to 
research on the bacterial fatty acid content itself, research was 
performed onimprovements of the analytic GC method. Of 
course, other microbiologists performed research on the 
cellular fatty acid content of the Pseudomonads. Ikemoto et 
al., (1978) concluded that the presence of hydroxy acids, 
cyclopropane acids and branched-chain acids was 
characteristic for the groups and species in the genus. 
Interestingly, probably as one of the first these authors used 
the equivalent chain length (ECL) for FAME peak detection. 
The ECL value was determined from the logarithm of the 
retention time of saturated straight-chain FAMEs plotted 
against their carbon number. A major study of the 3-hydroxy 
fatty acids was reported by Oyaizu (1983). In the early 1990s, 
the first evaluations of the commercial system for FAME-
based bacterial identification, Sherlock MIS (MIDI Inc. 
Newark, DE, USA), were also performed with Pseudomonas 
species (Hosterhout et al., 1991; Stead, 1992; Stead et al., 
1992). Herein, the group of Stead focused on the plant-
pathogenic Pseudomonas species. The latter paper can be 
regarded as one of the first important review papers as 38 of 
the, at that time, 86 validly described Pseudomonas species 
were analyzed. Six groups of strains were discriminated, 
mainly based on three types of hydroxy fatty acids (also core 
hydroxy fatty acids: 2-hydroxy, 3-hydroxy and iso-branched 
3-hydroxy), even though they count for less than 10% of the 
total peak area. Quantitative differences in non-hydroxy fatty 
acids allowed differentiating between taxa within those 
groups and few qualitative differences were found between 
the profiles of taxa included in the same subgroups. Even 
unique profiles were found for infraspecific taxa (subspecies, 
biovar, pathovar) (Stead et al., 1992). Also found good 
correlation between the fatty acid grouping and grouping 
based on the results of DNA-DNA and DNA-rRNA 
hybridization. Four years later, Vancanneyt et al., (1996) 
performed a taxonomic evaluation of the Pseudomonads. In 
this study, 30 Pseudomonas species were included. Again the 
presence of hydroxy fatty acids was shown to be a good 
taxonomic marker for delineating species and a good 
correlation was found between the major groups resulting 
from whole-cell FAME analysis and the groupings based on 
DNA-rRNA hybridization. However, Vancanneyt et al., 
(1996) also concluded that, from the mean species fatty acid 
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relacionados a patogenicidad en plantas, se han descrito 
dentro de la especie P. syringae y especies relacionadas. Un 
estudio de DDH mostró la existencia de nueve discretas 
genomoespecies (Gardan et al., 1999). En este estudio, 
nosotros seguimos esta clasificación de genomoespecies 
como si ellos fueran especies válidamente descritas. El género 
Pseudomonas pertenece a las bacterias Gram-negativas. Esto 
implica que las investigaciones iniciales en la composición de 
ácidos grasos en este género estuvieron enfocadas en la capa 
de lipopolisacáridos correspondiente (LPS). Esta capa es 
responsable de una importante fracción discriminatoria de 
hidroxi-ácidos grasos. Varios investigadores mostraron 
inicialmente que la mayor fracción de ácidos grasos de la capa 
de LPS de Pseudomonas aeruginosa estuvo constituida por 
hidroxi ácidos (Fensom y Grey, 1969; Hancock et al., 1970). 
En los años 1970, la principal investigación en el contenido de 
ácidos grasos de los miembros del género Pseudomonas sensu 
lato fue llevada a cabo en los laboratorios de  Moss (Centro de 
Control de enfermedades, Atlanta, USA) (Dees and Moss, 
1975; Dees et al., 1979; Moss et al., 1972; Moss, 1981). Ellos 
encontraron que los patrones de Esteres matílicos de ácidos 
grasos (FAME) fueron usados rápidamente para diferenciar 
especies de Pseudomonas y grupos de especies, debido a que 
los análisis repetidos de FAME dieron patrones similares.  
Junto con estas investigaciones sobre el contenido de ácidos 
grasos bacteriales, se llevaron a cabo investigaciones para el 
mejoramiento del método analítico del contenido de GC. Por 
supuesto, otros microbiólogos llevaron a cabo investigaciones 
sobre el contenido celular de ácidos grasos de las 
Pseudomonas. Ikemoto et al., (1978) concluyeron que la 
presencia de ácidos hidroxi, cyclopropano ácidos y ca ácidos 
de cadenas ramificadas fue característico para los grupos y 
especies de este género. Interesantemente, estos autores al 
igual que los primeros investigadores usaron la longitud de la 
cadena equivalente (ECL) para los picos de detección de 
FAME. Los valores de  ECL se determinaron del logaritmo del 
tiempo de retención de la cadena recta saturada FAME contra 
el número de carbonos. Uno de los principales estudios sobre 
los ácidos 3-hidroxi fue reportado por Oyaizu (1983). A 
inicios de los 90', las primeras evaluaciones de los sistemas de 
evaluación comercial para la identificación bacterial basada 
en FAME, Sherlock MIS (MIDI Inc. Newark, DE, USA), se 
llevaron a cabo también con especies del género 
Pseudomonas (Hosterhout et al., 1991; Stead, 1992; Stead et 
al., 1992). Aquí, el grupo de Stead se enfocó en las especies de 
Pseudomonas fitopatógenas. Este artículo posteriormente 
puede estar relacionado con una de las primeras revisiones 
importantes que se hicieron con FAME donde se analizaron 
38, de las 86 especies de Pseudomonas válidamente descritas. 
Seis grupos de cepas fueron discriminadas basadas 
principalmente en tres tipos de ácidos grasos  hidroxi 
(también core hidroxi ácidos grasos: 2-hidroxi, 3-hidroxi e 
iso-ramificado 3-hidroxi), a pesar de que ellos tuvieron menos 
del 10% del área total de picos. Diferencias cuantitativas en 
ácidos grasos no hidroxi permitieron diferenciar entre taxa 
dentro de estos grupos y se encontraron pocas diferencias 
cualitativas entre los perfiles de taxa incluidas en el mismo 
subgrupo. Incluso únicos perfiles se encontraron para taxa 



content, species discrimination was not possible within the 
different groups. From the last two studies, it could also be 
concluded that 
genusPseudomonas are C , C  and derivatives (Stead et 16:0 18:1

al., 1992; Vancanneyt et al., 1996). Regarding hydroxy fatty 
acids, C  3-hydroxy C 3-hydroxy and C 2-hydroxy are 10:0 12:0 12:0

predominant (Palleroni, 2005). For more detailed 
information regarding the FAME content of the different 
Pseudomonas species, we refer to the corresponding species 
descriptions and to Bergey's Manual for Systematic 
Bacteriology (Palleroni, 2005). With the availability of a 
large FAME data set for the genus Pseudomonas and the 
presence of a large number of plant pathogens in the genus, 
we have shifted our research on intelligent learning methods 
for a global or genus-wide bacterial species identification by 
FAME data (Slabbink et al., 2008; Slabbink et al., 2009) 
towards the relation between bacterial FAME constitution 
and plant pathogenesis.Therefore, in this work, we analyze 
the ability of FAME analysis to distinguish between plant-
pathogenic Pseudomonas species and to distinguish these 
species from the group of non-plant-pathogenic 
Pseudomonas species. To understand and interpret the 
presented research and according results pr operly, we first 
introduce our data, principal component analysis, the used 
machine learning techniques and the subsequent statistical 
analysis. Finally, we present the results obtained in this 
FAME research on plant-pathogenic Pseudomonas species.

MATERIALS AND METHODS.
FAME analysis and data sets. The in-house FAME 
database of the Laboratory of Microbiology (Ghent 

TMUniversity, Belgium) and the BCCM /LMG Bacteria 
Collection (Belgium) is considered. Whole-cell bacterial 
FAME analysis has been performed in this laboratory since 
1989 and has resulted in a database that currently contains 
more than 71,000 FAME profiles. FAME research is directed
towards bacteria with environmental, clinical and industrial 
impact, but is also performed for taxonomic purposes. 
Basically, gas chromatographic FAME profiles are generated 
following bacterial growth, as described in the TSBA 
protocol of the Sherlock Microbial Identification System of 
MIDI Inc. (Newark, DE, USA). This protocol defines a 
standard for growth, cultur ing and analysis of bacterial 
strains, and reproducibility and interpretability of the profiles 
is only possible by working under the described conditions. 
In this work, we focus on the species of the genus 
Pseudomonas which were grown according to the TSBA 
protocol. Specifically, this protocol recommends 24h of 
growth on trypticase soy broth agar at a temperature of 28°C. 
Following growth, on average 40mg bacterial cells are 
harvested in the overlapping region of quadrants three and 
four of streaked plates.  Next, FAMEs are extracted by a four-
step procedure of saponification, methylation, extraction and 
sample cleanup, and are finally analyzed by gas 
chromatography. Following gas chromatographic analysis, 
the use of a calibration mix and a naming table, the resulting 
FAME profiles are standardized by calculating relative peak 
areas for each named peak with respect to the total named 
peak area. In this work, the TSBA50 peak naming table is 
used. Whole-cell bacterial FAME profiles resulting from gas 
chromatographic analysis following these standard growth

predominant fatty acids in the 
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infraespecíficas (subespecies, biovares, patovares) (Stead et 
al., 1992). Importantemente, Stead et al., (1992) también 
e n c o n t r a r o n  b u e n a s  c o r r e l a c i o n e s  e n t r e  l o s  
agrupamientosrealizados con datos de ácidos grasos y los 
agrupamientos basados en los resultados de hibridación 
DNA-DNA y DNA-rRNA. Cuatro años después Vancanneyt 
et al., (1996) realizaron una evaluación taxonómica de las 
Pseudomonas, en este estudio se incluyeron 30 especies de 
Pseudomonas. Nuevamente la presencia de ácidos grasos 
hidroxi mostró ser un buen marcador para  la delimitación de 
especies y una buena correlación se encontró entre los 
principales grupos obtenidos del análisis FAME de toda la 
célula y los grupos basados en hibridación DNA-rRNA. Sin 
embargo, Vancanneyt et al., (1996) también concluyeron que, 
el contenido de ácidos grasos de las principales especies, no 
permite discriminar especies dentro de los diferentes grupos, 
de estos dos últimos estudios, también se concluyó que los 
ácidos grasos predominantes en el género Pseudomonas  son 
C , C  y derivados (Stead et al., 1992; Vancanneyt et al., 16:0 18:1

1996). Sin embargo se considera que los ácidos grasos 
hidroxi, C  3-hidroxi, C  3-hidroxi y C  2-hidroxi son 10:0 12:0 12:0

predominantes (Palleroni, 2005). Para información mas 
detallada relacionada al contenido FAME de las diferentes 
especies de Pseudomonas, nosotros nos basamos en las 
descripciones de las especies y en el Manual Bergey de 
Bacteriología sietemática (Palleroni, 2005). Con la 
disponibilidad de un gran número de datos FAME para el 
género Pseudomonas y de un gran número de especies 
fitopatógenos de este género, nosotros hemos direccionado 
nuestra investigación al uso de métodos de aprendizaje 
inteligente para una identificación global o de las especies a 
nivel de género con datos FAME (Slabbink et al., 2008; 
Slabbink et al., 2009) a través de la relación entre la 
composición bacterial de FAME y la patogénesis en plantas. 
Sin embargo, en este trabajo, nosotros analizamos la 
habilidad del análisis FAME para diferenciar entre especies 
fitopatógenas de Pseudomonas y para distinguir estas 
especies del grupo de especies de Pseudomonas no 
patogénicas. Para entender e interpretar la presente 
investigación y los resultados correctamente, nosotros 
primero introducimos nuestros datos, el análisis de 
componentes principales, el uso de técnicas de aprendizaje 
inteligente y el subsecuente análisis estadístico. Finalmente, 
presentamos los resultados obtenidos en esta investigación de 
FAME en especies de Pseudomonas fitopatógenas.

MATERIALES Y MÉTODOS.
Análisis FAME y grupo de datos. Se consideraron las bases 
de datos FAME del Laboratorio de Microbiología (Ghent 

TMUniversity, Belgium) y el BCCM /Colección de Bacterias 
LMG (Bélgica). El análisis FAME de todas las células 
bacterianas se ha llevado a cabo en este laboratorio desde 
1989 y ha resultado en una base de datos que actualmente 
contiene más de 71,000 perfiles FAME. La investigación 
basada en FAME está dirigida a bacterias con impacto 
ambiental, clínico e industrial, pero también se lleva a cabo 
con propósitos taxonómicos. Básicamente, los perfiles 
FAME obtenidos por cromatografía de gases son generados 



conditions are further indicated as standard FAME profiles.
The Pseudomonas FAME data set of Slabbinck et al., 2009  
is considered, which relies on the bacterial taxonomy as of 
March 2008. This data set covers 1673 standard FAME 
profiles of 95 validly published Pseudomonas species and 94 
named FAME peaks. 
In this work, this data set is evaluated in terms of plant 
pathogenesis. Herein, a species is considered as plant-
pathogenic when one of its strains relates to plant or

Cuadro 1. Información general de las especies consideradas fitopatógenas. Para cada especie se dan, el número estándar de 
perfil FAME, el hospedero (s)  y las referencias correspondientes.
Table 1. Overview of the considered plant-pathogenic species. For each species, the number of standard FAME profiles, the 
host(s) and corresponding reference(s) are given.

Especie No. FAME de perfil Hospedero(s) Referencia(s)

P. Agarici
P. amygdali
P. asplenii
P. avellanae
P. beteli
P. cannabina
P. caricapapayae
P. cichorii

P. cissicola
P. coronafaciens
P. corrugata

P. costantinii

P. flavescens
P. flectens
P. fuscovaginae

P. hibiscicola
P. marginalis

P. mediterranea

P. salomonii
P. syringae
P. syringae genomespecie 3
P. syringae genomespecie 7
P. tolaasii

P. tremae

P. viridiflava

8
111
13
4
6
7
5
32

8
44
22

6

7
6
45

6
63

10

10
88
53
8
53

8

17

Agaricus bisporus
 Prunus amygdalus

Asplenium nidus
Corylus avellana

Piper betle
Cannabis sativa
Carica papaya

Rango amplio de hospederos

Cissus japonica 
 Avena sativa

Lycopersicon, Chrysanthemum, 
Geranium, Medicago, , pepper

Agaricus bisporus
 

Juglans regia 
 Phaseolus vulgaris

Oryza sativa, Allium, 
Secalotriticum,Triticum
Hibiscus rosa-sinensis

Pastinaca sativa, Allium, 
Cichorium, Medicago, Phaseolus, 

Phragmipedium
 Lycopersicon

Allium sativum
Amplio rango de hospederos
Amplio rango de hospederos

Helianthus annuus, Tagetes erecta
Agaricus bisporus, Agaricus, 

bitorquis, Allium sativum, Pleurotus 
ostreatus, Pleurotus eryngii

Trema orientalis

Amplio rango de hospederos 

Höfte y  De Vos, 2007.
Höfte y  De Vos, 2007.
Gardan, et al., 2002.
Janse et al., 1996.
Van Den Mooter y Swings, 1996
Gardan et al., 1999.
Höfte y  De Vos, 2007.
Smith et al., 1988; Höfte y  De 
Vos, 2007.
Hu et al, 1997.
Gardan, et al., 1999.
Catara et al., 2002; Gardan et 
al., 2002;Höfte y  De Vos, 2007. 
Höfte y  De Vos, 2007; Munsch 
et al., 2002.
Hildebrand et al., 1994.
Gardan et al., 2002.
Miyajima et al., 1983.

Vancanneyt et al., 1996.
Gardan et al., 2002;Höfte y  De 
Vos, 2007. 

Catara et al., 2002; Höfte y  De 
Vos, 2007. 
Gardan et al., 2002.
Gardan et al., 2002.
Gardan, et al., 1999.
Gardan, et al., 1999.
Höfte y  De Vos, 2007;Munsch 
et al., 2002. 

Gardan, et al., 1999 ; Gardan et 
al., 2002. 
Höfte y  De Vos, 2007.

mushroom pathogenesis. Related to our Pseudomonas 
FAME data set, several plant-pathogenic Pseudomonas 
species are considered. These species are listed Table 1 
species are considered. These species are listed Table 1, 
together with the number of corresponding standard FAME 
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durante el crecimiento bacterial, como se describe en el 
protocolo TSBA del Sistema de Identificación Microbial 
Sherlock de MIDI Inc. (Sherlock Microbial Identification 
System de MIDI Inc.) (Newarl, DE, USA). Este protocolo 
define un estándar para el crecimiento, cultivo y análisis de 
cepas bacterianas y la reproducibilidad e interpretabilidad de 
los perfiles es solamente posible trabajando bajo las 
condiciones descritas. En este trabajo nosotros nos 
enfocamos en las especies del género Pseudomonas las cuales 

crecieron de acuerdo al protocolo TSBA. Específicamente, 
este protocolo recomienda el crecimiento de las bacterias 
durante 24 horas en Tripticasa-caldo de soya-agar a una 

otemperatura de 28 C. Después del crecimiento, se colecta un 
promedio de 40 mg de células bacterianas de la región 



profiles, related host(s) and reference(s). 

Principal component analysis. When dealing with datasets 
with an excessive dimensionality (i.e. in this work the number 
of FAME peaks), one approach to reduce the dimensionality is 
to combine the different features and, as such, project the 
high-dimensional data in a lower dimensional space. 
Principal component analysis (PCA) is such a popular 
dimensionality reduction method by which linear 
combinations are composed from the different FAME peaks 
(also called features) (Duda et al., 2001). Initially, the linear 
combination that represents the largest amount of variability 
in the data is chosen and called the first principal component 
(PC). Next, subsequent linear combinations are composed 
that are orthogonal to the previous PCs, repeatedly based on 
the combination representing the highest variance. A simple 
visualization of the PCA is achieved by plotting the variance 
and accumulated variance of the PCs as ranked by amount of 
represented variance in a so-called skree plot (see also Figures 
2 and 4). From this plot, it is easy to determine how many PCs 
are needed to cover a certain percentage of variability in the 
data. These Pcs can subsequently be used for learning with a 
smaller number of features, resulting in a model of lower  
dimensions, or thus a less complex model. This is not only 
advantageous for computational reasons but may also be very 

Regarding 
Pseudomonas syringae pathovars, the genomospecies 
classification is followed as suggested by Gardan et al., 1999. 
Herein, genomospecies 3 corresponds to the P. syringae 
pathovars antirrhini, apii, berberidis, delphinii, maculicola, 
passiflorae, persicae, primulae, ribicola, tomatoand viburni. 
Genomospecies 7 corresponds to the P. syringae pathovars 
helianthi and tagetis. Remark also that some Pseudomonas 
species are generically misnamed and are transferred to  
another genus, such as P. beteli, (Stenotrophomonas 
maltophilia) and P. hibiscicola (Stenotrophomonas 
maltophilia) (Anzai et al., 2000). P. cissicola should be 
transferred to the genus Xanthomonas but a more extensive 
analysis of the genomic and phenotypic characteristics of the 
species is required (Anzai et al., 2000; Hu et al., 2007; 
Palleroni, 2005). A similar taxonomic anomaly for P. flectens 
that, based on 16S rRNA gene sequence analysis, clusters in 
the family of the Enterobacteriaceae (Anzai et al., 2000; 
Palleroni, 2005). P. beteli, P. cissicola and P. hibiscicola are 
further denoted as P. beteli group. When focusing on plant-
pathogenic Pseudomonas species, two interesting test cases 
are evaluated regarding bacterial identification based on 
FAME data: the discrimination of the plant-pathogenic 
Pseudomonas species as listed in Table 1 and the 
discrimination of plant-pathogenic Pseudomonas species 
from the non-plantpathogenic Pseudomonas species present 
in the Pseudomonas FAME data set. In the first case, a new 
data set is extracted from the complete Pseudomona FAME 
data set, covering 25 plant-pathogenic species. In the second 
case, the FAME profiles of the complete Pseudomonas data 
set are re-labeled in accordance with the property of infecting 
plants or mushrooms. Thus, in this case, only two labels or 
'classes' are considered: plant pathogen or non-plant 
pathogen. Remark that the non-plant pathogen subset 
contains70 Pseudomonas species.
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sobrepuesta del tercer y cuarto cuadrante de la placa estriada. 
Posteriormente, los FAME se extraen mediante un 
procedimiento de cuatro pasos: saponificación, metilación, 
extracción y limpieza de la muestra, finalmente son 
analizadas por cromatografía de gases. Seguido al análisis por 
cromatografía de gases, con la ayuda de una calibración y una 
lista de nombres, los perfiles FAME resultantes son 
estandarizados mediante el cálculo de las áreas relativas de los 
picos para cada pico identificado con respecto al área total de 
los picos. En este trabajo, se usó el cuadro de picos 
identificados en  TSBA. El perfil FAME resultante de toda la 
célula bacteriana analizado por cromatografía de gases en 
condiciones de crecimiento estándar es considerado 
posteriormente como perfiles estándares FAME. En este 
trabajo se consideraron los datos de las Pseudomonas 
obtenidos con el análisis FAME por Slabbinck et al., 2009 
debido a que se encuentra en concordancia con la taxonomía 
bacterial de Marzo de 2008. Este grupo de datos cubre 1673 
perfiles estándares de FAME de 95 especies de Pseudomonas 
válidamente publicadas en los que se ha identificado 94 picos 
FAME. En la presente investigación, este grupo de datos es 
evaluado en términos de patogénesis en plantas. Aquí, una 
especie es considerada como fitopatógena cuando una cepa 
está relacionada a plantas o patogénicas en hongos o setas. En 
relación a nuestro grupo de datos FAME de Pseudomonas se 
consideran varias especies de Pseudomonas fitopatógenas. 
Estas especies están listadas en el Cuadro 1, junto con el 
número de perfiles estándar de FAME correspondientes, su 
hospedante (s) relacionado y la referencia (s). En relación a 
los patovares de Pseudomonas syringae, la clasificación de 
genomoespecies se realizó de acuerdo a lo sugerido por 
Gardan .
Aquí, la genomoespecie 3 corresponde a los patovares de P. 
syringae: antirrhini, apii, berberidis, delphinii, maculicola, 
passiflorae, persicae, primulae, ribicola, tomato y viburni. La 
genomoespecie 7 corresponde a los patovares de P. syringae: 
helianthi y tagetis. Remarcando también que algunas especies 
de Pseudomonas son generalmente mal nominadas y están 
transferidas a otros géneros, tales como P. beteli 
(Stenotrophomonas maltophilia)  y P. hibiscola  
(Stenotrophomonas maltophilia)  La 
especie P. cissicola debería ser transferida al género 
Xanthomonas, pero se requiriere de un análisis más extensivo 
de las características genotípicas y fenotípicas de las especies 

Una anomalía taxonómica similar se observó en P. flectens, la 
cual basada en el análisis de la secuencia del gen 16S rRNA se 
agrupó en la familia Enterobacteriaceae (

 P. beteli, P. cissicola y P. hibiscicola fueron 
posteriormente anotadas en el grupo P. beteli. Cuando se 
enfocan en especies de Pseudomonas fitopatógenas, se 
evalúan dos casos interesantes de pruebas relacionadas con la 
identificación bacteriana basada en datos FAME: la 
discriminación de las especies fitopatógenas están listadas en 
el Cuadro 1 y la discriminación de especies fitopatógenas y no 
fitopatógenas basadas en datos FAME de las Pseudomonas. 
En el primer caso, un nuevo grupo de datos se extrajo del 
grupo de datos completos de FAME cubriendo 25 especies  

et al., (1999)

(Anzai et al., 2000).

(Anzai et al., 2000; Hu  et al., 2007; Palleroni, 2005). 

Anzai et al., 2000; 
Palleroni, 2005). 



effective for increasing the performance of an identification
model. Plotting the data in a two or three dimensional 
principal component space allows for an easy interpretation 
of the relations (similarities or distances) between the 
different classes, i.e. species or species groups.
Machine learning.
Terminology. Classification and identification are terms 
used with different meanings in the fields of microbiology 
and machine learning. Whereas identification is similarly 
interpreted as assigning existing class labels to unknown 
bacterial organisms or data points, classification should be 
interpreted differently. In a taxonomic context, bacterial 
classification refers to the grouping of bacterial organisms 
based on genotypic and phenotypic similarities (Madigan et 
al., 2009). How ever, in machine learning, the goal of 
classification is to statistically describe the relationship 
between data points of various classe, given the class labels, 
by generalizing the observed trends in the data (Mitchell, 
1997). In the context of this work, we refer to classification as 
the process of building computational models to distinguish 
between the FAME profiles of the different bacterial species 
or species groups (Slabbinck et al., 2009).
Random Forests. Random Forests (RFs) is an ensemble 
method based on bagging. Ensemble methods generate 
multiple classifiers (or classification models) and aggregate 
the results. Specifically, a RF is an ensemble of classification 
trees. At each node of a classification tree, the best split is 
chosen among a subset of features randomly chosen at that 
node. In contrast, standard classification trees split each node 
based on all features available. RFs performs very well 
compared to many other classifiers and is robust against 
overfitting (Breiman, 2001). To achieve optimal 
classification of the data, two parameters require an 
optimization step: the number of randomly chosen features at 
each node (Nf) and the number of trees to be grown in the 
forest (Nt). Optimization of Nf is done by varying the number 
of features from 1 to the total number of features in steps of 5 
and optimization of Nt is done by varying the number of trees 
from 1000 to 4000 in steps of 250. Optimization of the 
parameters is done by a grid-search and the combination of 
parameters leading the smallest validation error is finally 
chosen. The first step in the RF algorithm is the generation of 
Nt bootstrap samples from the original data set. These 
samples contain about two-thirds of the FAME profiles of the 
original data set. The remaining profiles are used as test set. 
For each bootstrap sample, an unpruned tree is grown by the 
method previously described. Next, for each sample, the 
corresponding test profiles are predicted by the 
corresponding tree. At the end of the run, and over all 
samples, we assign the class label of the class which got most 
of the votes every time a given profile was present in a test set. 
The proportion of misclassifications averaged over all test 
profiles is taken as the overall error rate. New data can be 
predicted by aggregating the predictions of the Nt trees and 
selecting the label with the highest number of votes 
(Breimen, 2001). The RFs used in this study are generated by 
the RandomForest software package.
Validation. For parameter optimization and model
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fitopatógenas. En el segundo caso, los perfiles de FAME del 
grupo completo de Pseudomonas son re-calificadas de 
acuerdo con las propiedades de infectar plantas u hongos. Así, 
en este caso, solamente dos etiquetas o clases son 
considerados: fitopatógenos o no fitopatógenos. Obsérvese 
que el grupo de las no-fitopatógenas contiene 70 especies de 
Pseudomonas.
Análisis de componentes principales. Cuando se trata con 
grupo de datos de una dimensionalidad excesiva ( i.e. en este 
trabajo el número de picos FAME), el enfoque para reducir 
esta dimensionalidad es combinar las diferentes 
características y de esta manera, proyectar la gran 
dimensionalidad de los datos en un espacio dimensional 
reducido. El análisis de componentes principales (ACP) es un 
método de reducción de dimensionalidad, en el cual las 
combinaciones lineares están compuestas de los diferentes 
picos FAME (también llamado características) (Duda et al., 
2001). Inicialmente, la combinación linear que representa la 
cantidad de variabilidad en los datos es seleccionada y 
llamado el principal componente principal (PC). Después, las 
subsecuentes combinaciones lineares son ortogonales al PC 
anterior, y así  repetidamente, estas combinaciones van a 
representar la varianza más alta. Una visualización simple de 
los PCA se lleva a cabo dibujando la varianza y la varianza 
acumulada de los PC, la cantidad de varianza está 
representada en la gráfica de sedimentación (ver también 
Figuras 2 y 4). De esta gráfica, es fácil determinar cuántos PC 
son necesarios para cubrir un cierto porcentaje de la 
variabilidad en los datos. Estos PC pueden subsecuentemente 
ser usados para aprender con un número más pequeño de 
características, resultando en un modelo de bajas 
dimensiones, o al menos en un modelo menos complejo. Esto 
no es solamente una ventaja por razones computacionales, 
sino también puede ser efectivo para incrementar el 
comportamiento de un modelo de identificación. Graficando 
los datos en dos o tres espacios dimensionales de 
componentes principales permite una fácil interpretación de 
las relaciones (similitud o distancias) entre las diferentes 
clases, i.e. especies o grupos de especies.
Aprendizaje automatizado.
Terminología. Clasificación e identificación son términos 
usados con diferentes significados en los campos de la 
microbiología y en el aprendizaje automatizado. Mientras la 
identificación se interpreta como la asignación de las clases 
existentes de un organismo desconocido o datos puntuales, la 
clasificación debería ser interpretada de manera diferente. En 
un contexto taxonómico, la clasificación bacterial se refiere a 
la agrupación de organismos bacterianos basados en 
similitudes genotípicas y fenotípicas (Madigan et al., 2009). 
Sin embargo, en el aprendizaje automatizado, el objetivo de la 
clasificación es describir estadísticamente la relación entre 
los datos señalados de varias clases, considerando las clases 
establecidas, por la generalización de las tendencias 
observadas en los datos (Mitchell, 1997). En el contexto de 
este trabajo, nos referimos a clasificación como el proceso de 
construir modelos computacionales para diferenciar entre los 
perfiles FAME de los diferentes grupos de especies bacterias 
o grupos de especies  (Slabbinck et al., 2009).  



evaluation, cross-validation is performed with pooling of the 
test results (Parker et al., 2007; Varma and Simon, 2006; 
Witten et al., 2005). In cross-validation, the input data set is 
split into k equally sized parts, generally in a random manner. 

-1For the k part, the model is trained with the k  other parts, 
while the performance is evaluated with the respective part. 
This training and validation process is done for each part and 
the cross-validation estimation of the errorequals the average 
of the errors obtained by the different folds (Bishop, 2006; 
Hastie et al., 2009). In general, five-fold and ten-fold cross-
validation is recommended for model selection (Breiman, 
1992; Kohavi, 1995). In many real-world data sets, the 
number of data instances varies per class. A good approach for 
dealing with these disproportions is to perfor m a stratified 
cross-validation. Herein, the different folds are so-called 
stratified so that, based on the different class labels, they 
contain approximately the same proportions of data points as 
the original data set (Kohavi, 1995). Because RF do not 
overfit (Breiman, 2001), parameter optimization is done on 
the test set. We have chosen to do so because some species 
correspond to a small number of FAME profiles and learning 
would be based on an even smaller number of FAME profiles. 
Nonetheless, it is better experimental practice to perform 
parameter optimization in a separate cross-validation process 
and use the test set only for identification purposes. 
Ultimately, pooling is done of the separate cross-validation 
folds (or test subsets), implying a model performance 
estimate based on the complete data set. As only species are 
considered associated with a minimum of four FAME profiles 
per species, a four-fold cross-validation is performed.
Evaluation. For both techniques, the probability estimates 
are statistically analyzed. For each profile, the species label 
associated with the highest probability estimate is considered. 
When dealing with two classes, a popular method for 
evaluation of the performance of a classifier is to construct a 
confusion matrix. A confusion matrix summarizes the 
predictions by reporting the number of true positives (TP or 
positive instances that are predicted as positive), false 
positives (FP or negative instances that are predicted as 
positive), true negatives (TN or negative instances that are 
predicted as negative) and false negatives (FN or positive 
instances that are predicted as negative). From this matrix 
different performance measures can be calculated such as 
sensitivity (TP/(TP+FN)), precision (TP/(TP+FP)) and F-
score (2*S*P)/(S+P), with S and P the sensitivity and 
precision respectively). Note that when no TP and FP results 
are obtained, precision resolves in a value equal to infinity. 
For the F-score, this case, together with a denominator of 
zero, will also resolve in a value of infinity. When, however, 
confronted with more than two bacterial species, or thus a 
multi-class problem, a multi-class confusion matrix can be 
composed. Subsequently, evaluation can be done by 
decomposing the multi-class confusion matrix to N two-class 
confusion matrix, with N the number of classes or species 
considered. In each two-class confusion matrix, the 
corresponding species is evaluated against all other species 
implemented in the classifier. In other words, all other species 
are considered as one dummy species. Finally, a global
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Árboles aleatorios. Random Forest (RFs) es un método de 
agrupación basado en datos contenidos idealmente en una 
bolsa. Los métodos de agrupación generan múltiples 
clasificadores (o modelos de clasificación) y los resultados se 
acumulan en forma de agregados. Específicamente, un RF es 
una agrupación de  árboles para clasificación. En cada nodo 
de un árbol de clasificación, se elige la mejor división entre un 
subconjunto de características elegidas al azar en ese nodo. 
En contraste, los árboles de clasificación estándar dividen a 
cada nodo en base a todas las características disponibles. Los 
RF funcionan muy bien comparados con muchos otros 
clasificadores y es robusto frente a  re-muestreos (Breiman, 
2001). Para lograr una clasificación óptima de los datos, se 
requiere un paso de optimización en dos parámetros: el 
número de características elegidas al azar en cada nodo (Nf) y 
el número de árboles que se produzcan en el análisis (Nt). La 
optimización de Nf se realiza variando el número de 
características de 1 al número total de características en pasos 
de 5 y la optimización de Nt se realiza variando el número de 
árboles de 1000 a 4000 en pasos de 250. La optimización de 
los parámetros se realiza con un filtro de búsqueda y 
finalmente se elige la combinación de los parámetros que 
llevan a los más pequeños errores de validación. El primer 
paso en el algoritmo RF es la generación de muestras Nt 
bootstrap (muestreo con reemplazo) del conjunto de datos 
originales. Estas muestras contienen cerca de dos tercios de 
los perfiles FAME del grupo de datos originales. Los perfiles 
restantes son usados como un grupo de prueba. Para cada 
muestra bootstrap, se produce un árbol sin ninguna 
modificación por el método previamente descrito. Después, 
para cada muestra, los perfiles de prueba correspondientes 
son predecibles por el árbol correspondiente. Al final de la 
corrida de todas las muestras, se asigna un valor a la clase 
marcada que obtuvo la mayoría de las combinaciones en cada 
perfil y que estuvo presente en la prueba. La proporción de los 
errores de clasificación promedio de todos los perfiles 
probados se toma como la tasa de error global. Nuevos datos 
pueden ser predecidos por la agregación de los árboles Nt y 
por selección del que tuvo el mayor número de veces que 
coincidieron (Breiman, 2001). Los Rfs usados en este estudio 
son generados con el programa “Random Forest”.
Validación. Para la optimización de los parámetros y la 
evaluación del modelo, se realiza una evaluación cruzada con 
la unión de los resultados de las pruebas (Parker et al., 2007; 
Varma y Simon, 2006; Witten et al., 2005). En la validación 
cruzada, el grupo de datos de entrada se dividen en k  partes de 
igual tamaño, generalmente de una forma aleatoria. Para la 

thparte k , el modelo funciona con la otra parte k-1, mientras el 
comportamiento es evaluado con la parte respectiva. Este 
proceso de entrenamiento y validación se realiza por cada 
parte y la validación cruzada de la estimación del error es 
igual al promedio de los errores obtenidos en las  diferentes 
veces (Bishop, 2006; Hastie et al., 2009). En general, cinco y 
10 validaciones cruzadas son recomendadas para la selección 
del modelo (Breiman, 1992; Kohavi, 1995). En muchos 
mundos reales los grupos de datos, o el número de datos por 
clase varían. Un buen enfoque para tratar con estas 
desproporciones es realizar una validación cruzada 



measure can be calculated by averaging the results of the 
different confusion matrices.

RESULTS AND DISCUSSION
PCA. We have investigated how FAME data could be used to 
discriminate between plant-pathogenic Pseudomonas 
species, and between this group and non-plant-pathogenic 
Pseudomonas species. Skree plots are given following 
principal component analysis on both corrsponding data sets.
These plots are given in Figures 2 and 4. From both plots, it 
becomes clear that three to four principal components can 
represent 90% to 95% of the variability in the data. This not 
only indicates that a lot of features (peaks) are correlated with 
each other, but also that the dimensionality of the data sets 
(number of peaks) can be significantly decreased, while 
keeping a similar discrimination possible for the different 
species or species groups. This correlation may be attributed 
to the fatty acid biosynthesis pathway through which 
different fatty acids are typically converted into other fatty 
acid molecules (Madigan et al., 2009). Furthermore, the 
discrimination between the different species or species 
groups is visualized by a biplot of the first two principal 
components, see Figures 3 and 5. From the first biplot, which 
corresponds to the plant-pathogenic data set, it is clear that 
plant-pathogenic species are hard to distinguish from each 
other based on FAME data. Also, some distinct groupings can 
immediately be seen such as P. agarici, P. corrugata, P. 
flavescens, P. tolaasii. The species present in the cluster on 
the left correspond to the P. syringae group (Anzai et al., 
2000). Remark that in this biplot, the species belonging to the 
P. beteli group and the species P. flectens are not included to 
allow for a better scaling of the other species. This can be 
explained by the distance between these species and the 
Pseudomonas sensu stricto species, leading to a tight 
clustering of the latter species in the respective principal 
component space. When compared to non-plant-pathogenic 
species, the second biplot shows that the plant-pathogenic 
FAME profiles mainly cluster in one data cloud, and the non-
plant-pathogenic data cluster in two distinct FAME clouds, 
with one cloud clearly overlapping with the plant-pathogenic 
FAME clouds.
Machine learninig. The first row of Table 2 summarizes the 
results of the machine learning experiment by which a 
possible discrimination of plant-pathogenic Pseudomonas 
species is investigated. These results are similar to those 
resulting from the machine learning analysis of the complete 
data set, in the sense that similar metric values are found 
(Slabbnick et al., 2009). Even though a smaller number of 
species is investigated, it is clearly not straightforward to 
distinguish the different plant-pathogenic Pseudomonas 
species from one another. These findings are supported by the 
principal components analysis in the previous section and 
Figure 1. From the corresponding biplot of the first two 
principal components, it is obvious that the FAME patterns of 
the different species overlap, making it not easy for machine 
learning techniques to find good flexible mathematical 
functions representing the species boundaries. We can 
conclude that FAME analysis is not a very good technique to 
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Figura 2. Diagrama de sedimentación derivado  del análisis 
de componentes principales con datos de fitopatógenos. Se 
muestra el porcentaje de varianza asociado con los 10 
primeros componentes principales y la variación acumulada.
Figure 2. Skree plot resulting from principal component 
analysis of the plant pathogen data set. The percentage
of variance associated with the first ten principal components 
is visualized, together with the cumulative variance.

10/VOLUMEN 28, NÚMERO 1, 2010

estratificada. Aquí, los diferentes subgrupos son llamados 
estratificados de modo que, basados en las diferentes clases, 
tienen aproximadamente las mismas proporciones de puntos 
de datos como el grupo de datos originales (Kohavi, 1995).
Porque RF no origina errores aleatorios (Breiman, 2001), la 
optimización de parámetros se realiza en el grupo de prueba. 
Hemos escogido hacer esto porque algunas especies 
corresponden a un pequeño número de perfiles FAME y el 
aprendizaje se basa en un número aún más pequeño de perfiles 
FAME. Sin embargo, una mejor práctica experimental es 
realizar la optimización de parámetros en un proceso de 
validación cruzada y usar los grupos de prueba solamente para 
propósitos de identificación. Finalmente, el agrupamiento es 
realizado por la validación cruzada de los “folds” (o de las 
pruebas de los subgrupos), implicando un modelo de 
desempeño estimado basado en el conjunto completo de 
datos. Como las especies son consideradas solamente 
asociadas con un mínimo de cuatro perfiles FAME por 
especie, se realizan validaciones cruzadas por cuadriplicado.
Evaluación. Para ambas técnicas, la probabilidad estimada es 
analizada estadísticamente. Para cada perfil, las especies 
etiquetadas son consideradas con la probabilidad más alta. 
Cuando se trata con dos clases, un método popular para la 
evaluación del comportamiento de un clasificador es la 
construcción de una matriz confusa. Una matriz confusa 
resume las predicciones al reportar el número de positivos 
verdaderos (TP o casos positivos que son previstos como 
positivos), falsos positivos (FP o casos negativos que son 
predichos como positivos, verdaderos negativos (TN o casos 
negativos que son predichos como negativos) y falsos 
negativos (FN o casos positivos que son previstos como 
negativos). 



Figura 3. Comportamiento de los dos primeros componentes principales tras un análisis del conjunto de datos de 
fitopatógenos. Las especies del grupo de Pseudomonas beteli y Pseudomonas flectens no fueron incluídas para lograr una 
mejor escala del resto de especies.    
Figure 3. Biplot of the first two principal components following analysis of the phytopathogen data set. The species of the
Pseudomonas beteli group and Pseudomonas flectens are not included for achieving a good scaling of the other species. 

Pseudomonas species could be discriminated from the group 
distinguish between all plant-pathogenic Pseudomonas 
species. However, some species could clearly be 
distinguished. Species with an F-score larger than 0.8 are P. 
cissicola, P. corrugata, P. flavescens, P. flectens, P. 
fuscovaginae, P. marginalis, P. tolaasii, P. tremae and P. 
viridiflava. For some of these species, distinct groups could 
also be found in the PCA biplots. Whether this conclusion 
holds for plant-pathogenic species in other genera remains a 
topic for future investigation.
In a second machine learning experiment, we have 
investigated how well the group of plant-pathogenic P. 
fuscovaginae, P. marginalis, P. tolaasii, P. tremae and P. 
viridiflava. For some of these species, distinct groups could 
also be found in the PCA biplots. Whether this conclusion 
holds for plant-pathogenic species in other genera remains a 
topic for future investigation. In a second machine learning 
experiment, we have investigated how well the group of 
plant-pathogenic Pseudomonas species could be 
discriminated from the group of non-plant-pathogenic 
Pseudomonas species. The same learning setting as 
described in the previous experiment is used. However, 
because a larger number of data points per class is available, 
we have chosen to perform a ten-fold cross-validation. 
Again, because RFs do not overfit, parameter optimization is 
also done by the cross-validation fold. The test results of this 
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De esta matriz pueden ser calculadas diferentes mediciones de 
desempeño tales como sensibilidad (TP/(TP+FN)), precisión 
(TP/(TP+FP)) y F-score ((2*S*P)/(S+P), con S y P como 
sensibilidad y precisión respectivamente. Nótese que cuando 
no se obtienen resultados TP y FP, la precisión lleva a un valor 
igual al infinito. Para el F-score, este caso, junto con el 
denominador de cero, puede también llevar a un valor de 
infinito. Sin embargo, cuando, se confrontan con más de dos 
especies bacterianas, por lo tanto a un problema de múltiples 
clases, se puede tener una matriz de confusión compuesta. 
Subsecuentemente, la evaluación puede ser hecha mediante la 
fragmentación de la matriz de confusión multiclase a una 
matriz de confusión N dos clases, donde N es el número de 
clases o especies consideradas. En cada matriz de confusión 
de dos clases, las especies correspondientes son evaluadas 
contra todas las demás especies implementadas en el 
clasificador. En otras palabras, todas las demás especies son 
consideradas como una especie ficticia. Finalmente, una 
medida global puede ser calculada promediando los 
resultados de las diferentes matrices de confusión.

RESULTADOS Y DISCUSIÓN
ACP. Los datos que tenemos evaluados hasta ahora de FAME 
pueden ser usados para discriminar entre especies 
fitopatogénicas de Pseudomonas, y entre este grupo y  
especies no fitopatógenas de Pseudomonas. El análisis de 



two-class classification experiment are reported in the second 
row of Table 2. It can immediately be concluded that a high 
discrimination is possible between plant-pathogenic and non-
plant-pathogenic Pseudomonas species using FAME data. 
The high metric values are somewhat surprising given the 
overlapping data clouds as visualized by the principal 
component analysis (see Figure 5). It is clear that some 
relation exists between plant-pathogenicity and the fatty acid 
content.The probability estimates as given by the RF 
experiment are statistically analyzed by a Wilcoxon rank-sum 
test. This test assumes randomly sampled observations that 
are independent and continuous and that the shapes of the 
underlying distributions are identical (Higging, 2004; 
Sheskin, 2004). In this experiment, the first assumptions are 
satisfied, while the last assumption is considered to be met. A 
p value of approximately zero is obtained, implying 
statistically different probability estimates at the significance 
level of 0.05. A possible explanation for these strong 
identification results could be found in the paper of Stead 
(1992) who describes a clustering of a multitude of the plant-
pathogenic Pseudomonas species by hydroxy fatty acids. 
Though, in this study, the genus Pseudomonas sensu lato is 
considered and major discriminations are discussed. Herein, 
one major group corresponds to the genus Pseudomonas 
sensu stricto. This group consisted of about 35 plant-
pathogenic taxa that could mainly be discriminated based on 
the hydroxy fatty acids C 3-hydroxy and C 3-hydroxy. 10:0 12:0 

Subgrouping could also be achieved by these hydroxy fatty 
acids, together with the hydroxy fatty acid C  2-hydroxy. 12:0
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Figura 4. Diagrama de sedimentación del Análisis de 
componente principal de fitopatógenos vs no fitopatógenos, 
porcentaje de varianza acumulado y  porcentaje de varianza 
relacionado con el primero de los 10 componentes 
principales.
Figure 4. 

  

Skree plot resulting from principal component 
analysis of the plant pathogen vs. non-plant pathogen data 
set. The percentage of variance associated with the first ten 
principal components is visualized, together with the 
cumulative variance.

Cuadro 2. Resultados de los experimentos de árboles al azar 
referentes a identificación de especies de Pseudomonas, 
identificación de especies fitopatógenas y no fitopatógenas dentro 
del género Pseudomonas, prueba de F y desviación estándar.
Table 2. Results of the random forests experiments about  
Pseudomonas species identification, identification of plant-
pathogenic species and non-plant-pathogenic species (NPPS) within 
the genus Pseudomonas, precision and F-score and, standard 
deviations.

PPS
PPS vs NPPS

aTécnica
bSensibilidad

cPrecisión dF

e0.631 (0.297)
   0.961

0.811 (0.152)
0.907

0.711 (0.181)
 0.859

a b
Usando la base de datos de especies patogénicas. Dentro del grupo de 

e, fPseudomonas. Porcentaje entre todas las clases (cada especie contra el 
eresto de especies). Desviación estandar. 

a bUsing te data base of pathogenic species. Inside of the group Pseudomonas.
 cPercentaje among all classes (each species against all other species).

dStandar desviation.
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sedimentación obtenido corresponde al análisis de 
componentes principales en ambos grupos de datos. Estos 
datos están marcados en las Figuras 2 y 4. De ambas figuras, 
queda claro que tres a cuatro componentes principales pueden 
representar el 90 a 95% de la variabilidad en los datos. Esto 
nos indica solamente que muchas de las características (picos) 
son correlacionados con cada uno, pero también la 
dimensionalidad del grupo de datos (número de picos) pueden 
ser significativamente disminuidos, mientras mantenga una 
discriminación similar posible para las diferentes especies o 
grupos de especies. Esta correlación puede ser atribuida a la 
ruta biosintética de ácidos grasos a través de los cuales 
diferentes ácidos grasos son típicamente convertidos en otras 
moléculas de ácidos grasos (Madigan et al., 2009). Además, 
la discriminación entre las diferentes especies o grupos de 
especies es visualizada por gráficos de los primeros dos 
componentes principales, ver Figura 3 y 5. Del primer gráfico, 
el cual corresponde al grupo de datos de fitopatógenos, es 
claro que las especies fitopatógenas son fuertes para 
distinguir de otros basados en los datos FAME. También, 
algunos grupos distintivos pueden inmediatamente ser vistos 
tales como P. agarici, P. corrugata, P. flavescens, P. tolaasii. 
Estas especies presentes en el agrupamiento de la izquierda 
corresponde al grupo de P. syringae (Anzai et al., 2000). Se 
remarca que en esta gráfica, las especies pertenecientes al 
grupo P. beteli y la especie de P. flectens no están incluidos 
permitiendo su cambio a otras especies. Esto puede ser 
explicado por la distancia entre estas especies y las especies 
de Pseudomonas sensu stricto, permitiendo posteriormente 
un estricto agrupamiento de las especies en el espacio 
respectivo de componentes principales. Cuando comparamos 
a una especie no fitopatógenas, el segundo biplot muestra que 
el perfil de FAME de las fitopatógenas se agrupa 
principalmente en una nube de dispersión y el grupo de datos 
de las especies no fitopatógenas en dos distintas nubes de 
dispersión FAME, con una nube claramente sobrepuesta con 
las nubes FAME de las fitopatógenas.
Aprendizaje automatizado. La primera columna del Cuadro 
2 resume los resultados del experimento de aprendizaje 



For this group, Stead (1992) concluded that qualitative and 
quantitative differences in many of these fatty acids were 
found. No comparison was, however, made with non-plant-
pathogenic Pseudomonas species. Nonetheless, these 
discrimination can also be assumed to be very valuable for 
discrimination between plant-pathogenic and non-plant-
pathogenic species. Future study of this relation should, 
however, reveal all determining FAME constituents and the 
corresponding qualitative and quantitative differences.

CONCLUSIONS
We have evaluated the possibilities of FAME analysis for the 
identification of plant-pathogenic Pseudomonas species. 
Two cases have been considered: identification at species 
level and a discrimination of the group of plant-pathogenic 
species from the non-plant-pathogenic species. An initial 
simple analysis of the data was done by principal component 
analysis. From these experiments, it has become clear that 
only a few principal components exploit a large amount of the 
variability in the data. This is mainly due to the correlation be-
tween different fatty acids. Nonetheless, when looking at the 
biplot of the first two principal components, the fatty acid 
profiles of different plant-pathogenic species are clearly 
overlapping.  Regarding the plant pathogen versus non-plant 
pathogen data set, a distinct data cloud can be seen. However, 
an overlap is still seen in the data. This data analysis results in 
impor tant knowledge when considering machine learning 
for identification purposes. Due to overlapping FAME 
clouds, flexible species boundaries need to be learned. In the 
case of distinguishing between plant-pathogenic 
Pseudomonas species, this learning process appears to be 
quite hard as only a moderate identification performance is 
achieved. Nonetheless, some species could clearly be 
identified. When discriminating plant-pathogenic 
Pseudomonas species from non-plant-pathogenic 
Pseudomonas species, RFs  are able to achieve a good 
identifica tion of either group. Besides this, we have 
statistically also shown that the FAME profiles of both groups 
are significantly different. In other words, a clear statistical 
relation exists between certain fatty acids and plant 
pathogenesis. Future work should reveal which constituents 
are major players in this relation. Other interesting topics for 
future research may comprise the relations to and between 
plant pathogens in other bacterial genera.

Figura 5. Primeros dos componentes principales derivados 
del análisis de datos de fitopatógenos vs no fitopatógenos. Los 
puntos verdes señalan especies con una o más razas 
fitopatógenas, puntos rojos son referidos a especies no 
asociadas a razas fitopatógenas.
Figure 5. Biplot of the first two principal components 
following analysis of the plant pathogen vs non-plant-
pathogen data set. Green dots denote species with one or more 
plant-pathogenic strains, while red dots denote species not 
associated with plant-pathogenic strains.
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automatizado por los cuales se investiga la posible 
discriminación de las especies de Pseudomonas 
fitopatógenas. Estos resultados son similares a los resultados 
del análisis de aprendizaje automatizado de los grupos de 
datos completos, en el sentido de que son encontrados 
similares los valores métricos (Slabbnick et al., 2009). 
Aunque un número más pequeño de especies es investigado, 
queda claro que no es sencillo para diferenciar las diferentes 
especies fitopatógenas de otras Pseudomonas. Estos 
resultados son soportados por los análisis de componentes 
principales en la sección previa y Figura 1. De los 
correspondientes gráficos de los primeros dos componentes 
principales, es obvio que los patrones FAME se sobreponen 
en las diferentes especies, haciendo que la técnica de 
aprendizaje automatizado no sea fácil para encontrar una 
buena función matemática flexible que represente la amplitud 
de las especies.Podemos concluir que el análisis FAME no es 
una buena técnica para diferenciar entre todas las especies 
fitopatógenas de Pseudomonas. Sin embargo, algunas 
especies podrían ser claramente diferenciadas.
Especies con un F-score más grande que 0.8 son P. cissicola, 
P. corrugata, P. flavescens, P. flectens, P. fuscovaginae, P. 
marginalis, P. tolaasii, P. tremae y P. viridiflava. Para algunas 
de estas especies, grupos distintos podrían también ser 
encontrados en la gráfica del PCA. Si esta conclusión 
permanece para especies fitopatógenas en otros géneros este 
es un tópico para investigaciones futuras. En un segundo 
experimentos sobre aprendizaje automatizado, se ha 
investigado como un grupo de especies fitopatógenas de 
Pseudomonas podrían ser discriminados de los grupos de 
especies no fitopatógenas. Se estableció el mismo sistema de 
aprendizaje automatizado usado anteriormente. Sin embargo,   
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debido al gran número de datos  disponibles en los diagramas 
de dispersión disponibles, se decidió llevar a cabo la 
validación de “ten-fold cross-validation”. Nuevamente, 
debido a un no sobre ajuste de RF, la optimización de 
parámetros es también hecho por la “cross-validation fold”. 
Los resultados de la prueba de esta segunda clase de 
experimento para clasificación son reportados en la segunda 
columna del Cuadro 2. Se puede concluir inmediatamente que 
es posible una alta discriminación entre especies 
fitopatógenas y no fitopatógenas usando datos FAME. El alto 
valor métrico es algo que sorpresivamente se observa con las 
nubes de dispersión sobrepuestas visualizado en el análisis de 
componentes principales (ver Figura 5). 
Está claro que existen algunas relaciones entre el contenido de 
ácidos grasos de especies fitopatógenas. La probabilidad 
est imada obtenida en el  experimento RF son 
estadísticamenteanalizadas con la prueba de Wilcoxon Rank-
sum. Esta prueba asume observaciones de muestras al azar 
que son independientes y continuas y que la forma de la 
distribuciones subsecuentes son idénticas (Higging, 2004; 
Sheskin, 2004).En este experimento, los primeros supuestos 
están confirmados, mientras el último supuesto se considera 
como presente. Un valor-p de aproximadamente cero es 
obtenido,  implicando probabil idades est imadas 
estadísticamente diferentes en el nivel de significancia de 
0.05. Una posible explicación para esta fuerte  identificación 
podría ser encontrado en el artículo de Stead (1992), quien 
describe un agrupamiento de un gran número de especies 
fitopatógenas de Pseudomonas por hidroxi-ácidos grasos. 
Aunque, en este estudio, se ha considerado principalmente 
datos del género Pseudomonas sensu lato para discusión. 
Aquí, un grupo principal corresponde al género Pseudomonas 
sensu stricto. Este grupo consistió de cerca de 35 taxa de 
fitopatógenas que podrían ser principalmente discriminadas 
con base  en los ácidos grasos hidroxy C  3-hidroxy y C  3-10:0 12:0

hidroxy. Subgrupos podrían ser también obtenidos por estos 
ácidos grasos hidroxy, juntos con el ácidos grasos C  2-12:0

hidroxy. Para este grupo, Stead (1992) concluyó que se 
encontraron muchas diferencias cuantitativas y cualitativas en 
estos ácidos grasos. No se realizaron comparaciones con 
especies no fitopatógenas de Pseudomonas. Sin embargo, 
estas discriminaciones pueden ser también asumidas y es muy 
valorable para la discriminación entre especies patogénicas y 
no patogénicas. Futuros estudios de esta relación debería, sin 
embargo, revelar todos los constituyentes que determina 
FAME y las diferencias cualitativas y cuantitativas 
correspondientes.

CONCLUSIONES
Hemos evaluados las posibilidades del análisis FAME para la 
identificación de especies fitpatogénicas. Se han considerado 
dos casos; identificación a nivel de especie y una 
discriminación del grupo de especies fitpopatógenas de las no 
fitopatógenas. Un simple análisis inicial de los datos fue 
hecho por el análisis de componentes principales. De estos 
experimentos, surge claramante que solamente unos pocos 
componentes principales explican la gran variabilidad en los 
datos. Esto es principalmente debido a la correlación entre  
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diferentes ácidos grasos. Sin embargo, cuando se observa el 
biplot del primero de los dos componentes principales, los 
perfiles de ácidos grasos de diferentes especies fitopatógenas 
están claramente sobrepuestos. En relación al grupo de datos 
de los patógenos de plantas versus no patogénicos, una 
distinta nube de dispersión de los datos puede ser vista. Sin 
embargo, una sobreposición es aún vista en los datos. Los 
resultados del análisis de datos es un conocimiento importante 
cuando se considera el aprendizaje automatizado para 
propósitos de identificación. Debido a los diagramas de 
dispersión FAME sobrepuestos, se necesita conocer más de la 
amplitud de especies flexibles. En el caso de de distinguir  
entre especies de Pseudomonas fitopatógenas, este proceso de 
aprendizaje parece ser muy difícil cuando solamente se lleva a 
cabo una identificación moderada. Sin embargo, algunas 
especies podrían ser claramente identificadas. Cuando 
discriminamos las especies  fitopatógenas de Pseudomonas, 
los RFs son capaces de llevar a cabo una buena identificación 
de los grupos. Además de esto, tenemos estadísticamente 
también mostrado que los perfiles de FAME de ambos grupos 
son significantemente diferentes. En otras palabras, una clara 
relación estadística existe entre ciertos ácidos grasos y 
lapatogénesis en plantas. Trabajos futuros deberán revelar 
cual constituyentes juegan un rol principal en esta relación. 
Otro tópico interesante para futuras investigaciones puede 
comprender las relaciones entre fitopatógenos en otros 
géneros bacteriales.
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