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Resumen. La identificacion de bacterias fitopatogenas es de
alta relavancia. En este trabajo se evaluo6 la identificacion de
especies fitopatdgenas dentro del género Pseudomonas
mediante analisis de esteres metilicos de acidos grasos
(FAME). A partir de una base de datos de FAME, se han
generado conjuntos de conjuntos de datos de alta calidad. Dos
aspectos fueron investigados: la separacion de especies
fitopatdgenas de Pseudomonas, y la diferenciacion del grupo
de espcies fitopatégenas de Pseudomonas de las no
fitopatdgenas. En la primera fase se realizd un analisis de
componentes principales para evaluar la variabilidad de los
datos. Posteriormente el método de aprendizaje arboles
aleatorios fue evaluado para propoésitos de identificacion. El
método inteligente permite aprender de la variabilidad y los
patrones de los datos y mejorar la identificacion de especies.
El andlisis de componente principal de especies fitopatogenas
mostré claramente sobreposicion de grupos de datos. Se
desarrolld un modelo de arboles aleatorios que permitié
alcanzar una eficiencia de identificacion de especies del
71.1%. Discriminar el grupo de especies fitopatdgenas del
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Abstract. The identification of plant-pathogenic bacteria is
often of high importance. In this paper, we evaluate the
identification of plant-pathogenic species within the genus
Pseudomonas by fatty acid methyl ester (FAME) analysis.
Starting from a FAME database, high quality data sets were
generated. Two research questions were investigated: can
plant-pathogenic Pseudomonas species be discriminated
from each other and can the group of plant-pathogenic
Pseudomonas species be distinguished from the group of
non-plant-pathogenic Pseudomonas species. In a first stage,
a principal component analysis was performed to evaluate
the variability within the data. Secondly, the machine
learning method Random Forests was evaluated for
identification purposes. This intelligent method allows to
learn from the variability and patterns in the data and to
improve the species identification. The principal component
analysis of plant-pathogenic species clearly showed
overlapping data clouds. A Random Forests model was
developed that achieved a species identification performance
of 71.1%. Discriminating the group of plant-pathogenic
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grupo de especies no fitopatégenas fue mas sencillo, dado el
desempeio de los bosques al azar del 85.9%. Por otra parte se
demostro que existe una relacion estadistica entre los perfiles
de 4cidos grasosy la patogénesis sobre la planta.

Palabras clave adicionales: Diagnoéstico, bacterias no
patogénicas.

plant-pathogenic species from the group of non-plant-
pathogenic species was more straightforward, given by the
Random Forests identification performance of 85.9%.
Moreover, it was shown that a statistical relation exists
between the fatty acid profiles and plant pathogenesis.

Additional key words: Diagnosis, non-pathogenic bacteria.

El género Pseudomonas estd clasificado en el dominio
Bacteria, phylum Proteobacteria, clase
Gammaproteobacteria, orden Pseudomonadales y familia
Pseudomonaceae (Brenner et al., 2005). La especie tipo del
género es Pseudomonas aeruginosa, la cual fue originalmente
descubierta por Schroeter en 1872. El género, sin embargo fue
propuesto por Migula en 1894. En marzo de 2008, 95 especies
de Pseudomonas fueron validamente publicadas. Los
miembros del género Pseudomonas son bastones tipicamente
rectos o ligeramente curvados con flagelos polares, presentan
un mecanismo aerdbico (respiratorio), pero ninguna especie
es fermentativa. La mayoria de especies no crecen en
condiciones acidas (pH menor de 4.5) y son habitantes
naturales del agua o suelo. Se han establecido diferentes
subgrupos dentro de este género basado en las caracteristicas
fenotipicas o patogénicas. Anteriormente, el agrupamiento
pudo estar basado en la produccion de pigmentos
fluorescentes bajo radiacion UV (e.g. P. fluorescens)
posteriormente se formaron grupos de especies patogénicas y
no patogénicas. Dos ejemplos son P. aeruginosa, un patégeno
oportunista de humanos, mientras que P syringae es un
patégeno de plantas (Palleroni, 2005; 2008). Los pioneros en
la clasificacion taxondmica del género Pseudomonas fueron
Palleroni y colaboradores (Universidad de California,
Berkeley, USA) quien en 1963 describi6 cinco grupos de
Pseudomonas basados en la hibridacion rRNA-DNA. Desde
entonces, la taxonomia del género Pseudomonas ha sufrido
una serie de re-arreglos y hoy en dia solamente el grupo I de
rRNA corresponde al género Pseudomonas. Esto implica que
un gran numero de especies previamente asignadas al género
Pseudomonas sensu lato (a menudo referida como las
“Pseudomonas”) fueron transferidos a rangos genéricos o
supra genéricos, principalmente pertenecientes a las clases:
Alfa, Beta y Gammaproteobacteria. Ejemplos: Acidovorax,
Aminobacter, Brevundimonas, Burkholderia, Comamonas,
Halomonas, Methylobacterium, Ralstonia, Sphingomonas,
Xanthomonas, etc., citado por Kersters et al., (1996) y
Palleroni (2005). En 1996, Moore et al., diferenciaron 2
grupos intergenéricos basados en la secuencia del gen 16S
rRNA del grupo de Pseudomonas sensu stricto (= el presente
género Pseudomonas): el grupo denominado P. aeruginosay
el otro grupo P fluorescens cada uno con especies
provenientes de diferentes linajes. La mayoria de linajes
fueron también agrupados con el analisis FAME por
Vancanneyt et al., (1996). En el afio 2000, Anzai et al., re-
evaluaron 128 especies validas y no validas de Pseudomonas
basados en datos de la secuencia 16S rRNA y varias especies
fueron reasignadas a otros géneros. La complejidad de la
taxonomia del presente género Pseudomonas estd también
demostrada por los analisis del gen rpoB realizado por Tayeb

The genus Pseudomonas is classified in the domain of
Bacteria, phylum of Proteobacteria class of
Gammaproteobacteria, order of Pseudomonadales and
family of Pseudomonaceae (Brenner et al., 2005). The type
species of the genus is Pseudomonas aeruginosa, which was
originally discovered by Schroeter in 1872. The genus was,
however, proposed by Migula in 1894. On 03/2008, 95
Pseudomonas species were validly published. Pseudomonas
members are typically straight or slightly curved motile rods
with merely polar flagella, respiratory but never
fermentative. Most species fail to grow under acid conditions
(pH lower than 4.5) and natural habitats are water or soil.
Different subgroupings can be made based on the phenotype
or pathogenetic features. In the former case, grouping can be
based on the production of pigments that fluorescence under
UV radiation (e.g. P. fluorescens). In the latter case, a straight
forward grouping of pathogenic and non-pathogenic species
can be made. Two examples are P. aeruginosa which is an
opportunistic pathogen of humans, while P. syringae is a
plant pathogen (Palleroni, 2005; 2008). Pioneers in the
taxonomic classificlassification of the genus Pseudomonas
are Palleroni and coworkers (University of California,
Berkeley, USA), who in 1973 described an initial grouping of
five discrete Pseudomonas clusters based on rRNA-DNA
hybridization (Palleroni, 1973; 1984). Since then, the
taxonomy of the genus Pseudomonas underwent a series of
rearrangements and the genus as described today
corresponds to rRNA group I. This implies that numerous
species, previously assigned to the genus Pseudomonas
sensu lato (often referred to as the “Pseudmonads™) were
transferred to the generic or suprageneric ranks, mainly
residing in the Alpha-Beta, and Gammaproteobacteria
classes. Examples are Acidivorax, Aminobacter,
Brevundimonas, Burkholderia, Comamonas, Halomonas,
Methylobacterium, Ralstonia, Sphingomonas,
Xanthomonas, etc. (Kersters et al., 1996; Palleroni, 2005). In
1996, Moore et al, discriminated two intrageneric clusters in
16S rRNA gene sequences of the Pseudomonas sensu stricto
group (= the present genus Pseudomonas ): a P. aeruginosa
cluster and a P. fluorescens cluster, each with different
species lineages. Most lineages were also clustered in the
FAME analysis as performed by Vancanneyt ef al., (1996).
Anzai et al., (2000) re-evaluated 128 valid and invalid
Pseudomonas species based on 16S rRNA sequence data and
reassigned several species to other genera. The complexity of
the taxonomy of the present genus Pseudomonas is also
demonstrated by the rpoB gene analysis of Tayeb et al.,
(2005), but validation of the rpoB grouping still need DNA-
DNA hybridization (DDH) data and extensive phenotypic
analysis before emendations at the species level can be
proposed.
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A maximum likelihood tree of the genus Pseudomonas based
on 16S rRNA gene sequences is visualized in. This tree is
based on the validly published list of bacterial species as of
Figure 1March 2008. Regarding plant pathogenesis, a
multitude of pathovars are described within the species P.
syringae and related species. A DDH study showed the
existence of nine discrete genomospecies (Gardan et al.,
1999). In this study, we follow these genomospecies
classifications as if they were formal species.

et al., (2005), pero la validacion del agrupamiento del rpoB
aun necesita datos de la hibridacion DNA-DNA (DDH) y de
la realizacion de extensos analisis fenotipicos antes de que se
puedan proponer cambios a nivel de especie. Un arbol
filogenético construido con el método de maxima
verosimilitud del género Pseudomonas basado en la
secuenciadel gen 16S rRNA se puede observar en la Figura 1.
Este arbol incluye las especies bacterianas validamente
publicadas en marzo del 2008. Un gran niimero de patovares
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Figura 1. Arbol filogenético de maxima similitud de genéro Pseudomonas basado en la secuencia del gen 16S rRNA . Las 95

especies corresponden a la taxonomia valida publicada a marzo del 2008. Cada especie se representa por una secuencia de alta
calidad del 16S rRNA extraida de la base de datos SILVA (Pruesse et al., 2007). El arbol filogenetico se elabordé mediante el
algoritmo de maxima similitud en el software RAXML y es visualizado con la heramienta de la web iTol (Letunic and Bork,
2007; Stamatakis, 2006). Para especies aisladas, la longitud de las ramas es ignorada debido a que el uso de la longitud de la
ramaes innecesario. Ramas punteadas corresponden a valores de re-muestreo del 75%.

Figure 1.16S rRNA gene sequence-based maximum likelihood tree of the genus Pseudomonas. The 95 species included
correspond to the validly published taxonomy of March 2008. Each species is represented by one high-quality 16S rRNA
sequence as extracted from the SILVA database (Pruesse et al., 2007). The phylogenetic tree is built by the maximum likelihood
algorithm as implemented in the RAXML software (based on 1000 bootstraps) and is visualized with the iTol webtool (Letunic
and Bork, 2007; Stamatakis, 2006). Tree branch lengths are ignored because of outlier species, making the use of branch

lengths pointless. Dotted branches correspond to bootstrap values larger than 75%.
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relacionados a patogenicidad en plantas, se han descrito
dentro de la especie P. syringae y especies relacionadas. Un
estudio de DDH mostré la existencia de nueve discretas
genomoespecies (Gardan ef al., 1999). En este estudio,
nosotros seguimos esta clasificacion de genomoespecies
como si ellos fueran especies validamente descritas. El género
Pseudomonas pertenece a las bacterias Gram-negativas. Esto
implica que las investigaciones iniciales en la composicion de
acidos grasos en este género estuvieron enfocadas en la capa
de lipopolisacaridos correspondiente (LPS). Esta capa es
responsable de una importante fraccion discriminatoria de
hidroxi-acidos grasos. Varios investigadores mostraron
inicialmente que la mayor fraccion de acidos grasos de la capa
de LPS de Pseudomonas aeruginosa estuvo constituida por
hidroxi acidos (Fensom y Grey, 1969; Hancock et al., 1970).
En los afios 1970, la principal investigacion en el contenido de
acidos grasos de los miembros del género Pseudomonas sensu
lato fue llevada a cabo en los laboratorios de Moss (Centro de
Control de enfermedades, Atlanta, USA) (Dees and Moss,
1975; Dees et al., 1979; Moss et al., 1972; Moss, 1981). Ellos
encontraron que los patrones de Esteres matilicos de acidos
grasos (FAME) fueron usados rapidamente para diferenciar
especies de Pseudomonas 'y grupos de especies, debido a que
los analisis repetidos de FAME dieron patrones similares.
Junto con estas investigaciones sobre el contenido de acidos
grasos bacteriales, se llevaron a cabo investigaciones para el
mejoramiento del método analitico del contenido de GC. Por
supuesto, otros microbidlogos llevaron a cabo investigaciones
sobre el contenido celular de 4acidos grasos de las
Pseudomonas. Tkemoto et al., (1978) concluyeron que la
presencia de acidos hidroxi, cyclopropano acidos y ca acidos
de cadenas ramificadas fue caracteristico para los grupos y
especies de este género. Interesantemente, estos autores al
igual que los primeros investigadores usaron la longitud de la
cadena equivalente (ECL) para los picos de deteccion de
FAME. Los valores de ECL se determinaron del logaritmo del
tiempo de retencion de la cadena recta saturada FAME contra
el nimero de carbonos. Uno de los principales estudios sobre
los acidos 3-hidroxi fue reportado por Oyaizu (1983). A
inicios de los 90', las primeras evaluaciones de los sistemas de
evaluacion comercial para la identificacion bacterial basada
en FAME, Sherlock MIS (MIDI Inc. Newark, DE, USA), se
llevaron a cabo también con especies del género
Pseudomonas (Hosterhout et al., 1991; Stead, 1992; Stead et
al., 1992). Aqui, el grupo de Stead se enfoco en las especies de
Pseudomonas fitopatdégenas. Este articulo posteriormente
puede estar relacionado con una de las primeras revisiones
importantes que se hicieron con FAME donde se analizaron
38, de las 86 especies de Pseudomonas validamente descritas.
Seis grupos de cepas fueron discriminadas basadas
principalmente en tres tipos de 4cidos grasos hidroxi
(también core hidroxi acidos grasos: 2-hidroxi, 3-hidroxi e
iso-ramificado 3-hidroxi), a pesar de que ellos tuvieron menos
del 10% del area total de picos. Diferencias cuantitativas en
acidos grasos no hidroxi permitieron diferenciar entre taxa
dentro de estos grupos y se encontraron pocas diferencias
cualitativas entre los perfiles de taxa incluidas en el mismo
subgrupo. Incluso unicos perfiles se encontraron para taxa

The genus Pseudomonas belongs to the Gram-negative
bacteria. This implies that initial research on the fatty acid in
this genus was focused on the corresponding
lipopolysaccharide (LPS) layer. This layer is responsible for
an important discriminatory fraction of hydroxy fatty acids.
Several researchers showed initially that the major fatty acid
fraction of the LPS layer of Pseudomonas aeruginosa was
constituded of hydroxy acids (Fensom and Gray, 1969;
Hancock et al., 1970). In the 1970s, main research on the fatty
acid content of the members of the genus Pseudomonas sensu
lato was performed at the laboratory of Moss (Center for
Disease Control, Atlanta, USA) (Dees and Moss, 1975; Dees
etal.,1979; Moss et al., 1972; Moss, 1981). They found that
FAME patterns were useful for rapidly distinguishing
between Pseudomonas species and species groups, and that
repeated FAME analysis resulted in similar patterns. Next to
research on the bacterial fatty acid content itself, research was
performed onimprovements of the analytic GC method. Of
course, other microbiologists performed research on the
cellular fatty acid content of the Pseudomonads. Ikemoto et
al., (1978) concluded that the presence of hydroxy acids,
cyclopropane acids and branched-chain acids was
characteristic for the groups and species in the genus.
Interestingly, probably as one of the first these authors used
the equivalent chain length (ECL) for FAME peak detection.
The ECL value was determined from the logarithm of the
retention time of saturated straight-chain FAMEs plotted
against their carbon number. A major study of the 3-hydroxy
fatty acids was reported by Oyaizu (1983). In the early 1990s,
the first evaluations of the commercial system for FAME-
based bacterial identification, Sherlock MIS (MIDI Inc.
Newark, DE, USA), were also performed with Pseudomonas
species (Hosterhout et al., 1991; Stead, 1992; Stead et al.,
1992). Herein, the group of Stead focused on the plant-
pathogenic Pseudomonas species. The latter paper can be
regarded as one of the first important review papers as 38 of
the, at that time, 86 validly described Pseudomonas species
were analyzed. Six groups of strains were discriminated,
mainly based on three types of hydroxy fatty acids (also core
hydroxy fatty acids: 2-hydroxy, 3-hydroxy and iso-branched
3-hydroxy), even though they count for less than 10% of the
total peak area. Quantitative differences in non-hydroxy fatty
acids allowed differentiating between taxa within those
groups and few qualitative differences were found between
the profiles of taxa included in the same subgroups. Even
unique profiles were found for infraspecific taxa (subspecies,
biovar, pathovar) (Stead et al., 1992). Also found good
correlation between the fatty acid grouping and grouping
based on the results of DNA-DNA and DNA-rRNA
hybridization. Four years later, Vancanneyt et al., (1996)
performed a taxonomic evaluation of the Pseudomonads. In
this study, 30 Pseudomonas species were included. Again the
presence of hydroxy fatty acids was shown to be a good
taxonomic marker for delineating species and a good
correlation was found between the major groups resulting
from whole-cell FAME analysis and the groupings based on
DNA-rRNA hybridization. However, Vancanneyt et al.,
(1996) also concluded that, from the mean species fatty acid
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infraespecificas (subespecies, biovares, patovares) (Stead et
al., 1992). Importantemente, Stead ef al., (1992) también
encontraron buenas correlaciones entre los
agrupamientosrealizados con datos de acidos grasos y los
agrupamientos basados en los resultados de hibridacion
DNA-DNA y DNA-rRNA. Cuatro afios después Vancanneyt
et al., (1996) realizaron una evaluacion taxonomica de las
Pseudomonas, en este estudio se incluyeron 30 especies de
Pseudomonas. Nuevamente la presencia de acidos grasos
hidroxi mostré ser un buen marcador para la delimitacion de
especies y una buena correlacion se encontr6 entre los
principales grupos obtenidos del analisis FAME de toda la
célula y los grupos basados en hibridacion DNA-rRNA. Sin
embargo, Vancanneyt et al., (1996) también concluyeron que,
el contenido de acidos grasos de las principales especies, no
permite discriminar especies dentro de los diferentes grupos,
de estos dos ultimos estudios, también se concluyo que los
acidos grasos predominantes en el género Pseudomonas son
Cs0o Cipy v derivados (Stead ef al., 1992; Vancanneyt et al.,
1996). Sin embargo se considera que los acidos grasos
hidroxi, C,,, 3-hidroxi, C,,, 3-hidroxi y C,,, 2-hidroxi son
predominantes (Palleroni, 2005). Para informaciéon mas
detallada relacionada al contenido FAME de las diferentes
especies de Pseudomonas, nosotros nos basamos en las
descripciones de las especies y en el Manual Bergey de
Bacteriologia sietematica (Palleroni, 2005). Con la
disponibilidad de un gran nimero de datos FAME para el
género Pseudomonas y de un gran numero de especies
fitopatogenos de este género, nosotros hemos direccionado
nuestra investigacion al uso de métodos de aprendizaje
inteligente para una identificacion global o de las especies a
nivel de género con datos FAME (Slabbink et al., 2008;
Slabbink et al., 2009) a través de la relacién entre la
composicion bacterial de FAME y la patogénesis en plantas.
Sin embargo, en este trabajo, nosotros analizamos la
habilidad del analisis FAME para diferenciar entre especies
fitopatéogenas de Pseudomonas y para distinguir estas
especies del grupo de especies de Pseudomonas no
patogénicas. Para entender e interpretar la presente
investigacion y los resultados correctamente, nosotros
primero introducimos nuestros datos, el analisis de
componentes principales, el uso de técnicas de aprendizaje
inteligente y el subsecuente andlisis estadistico. Finalmente,
presentamos los resultados obtenidos en esta investigacion de
FAME en especies de Pseudomonas fitopatogenas.

MATERIALES Y METODOS.

Analisis FAME y grupo de datos. Se consideraron las bases
de datos FAME del Laboratorio de Microbiologia (Ghent
University, Belgium) y el BCCM ™/Coleccién de Bacterias
LMG (Bélgica). El analisis FAME de todas las células
bacterianas se ha llevado a cabo en este laboratorio desde
1989 y ha resultado en una base de datos que actualmente
contiene mas de 71,000 perfiles FAME. La investigacion
basada en FAME esta dirigida a bacterias con impacto
ambiental, clinico e industrial, pero también se lleva a cabo
con propdsitos taxondmicos. Basicamente, los perfiles
FAME obtenidos por cromatografia de gases son generados

content, species discrimination was not possible within the
different groups. From the last two studies, it could also be
concluded that predominant fatty acids in the
genusPseudomonas are C,y,, C ., and derivatives (Stead et
al., 1992; Vancanneyt ef al., 1996). Regarding hydroxy fatty
acids, C,,, 3-hydroxy C,,,3-hydroxy and C,, ,2-hydroxy are
predominant (Palleroni, 2005). For more detailed
information regarding the FAME content of the different
Pseudomonas species, we refer to the corresponding species
descriptions and to Bergey's Manual for Systematic
Bacteriology (Palleroni, 2005). With the availability of a
large FAME data set for the genus Pseudomonas and the
presence of a large number of plant pathogens in the genus,
we have shifted our research on intelligent learning methods
for a global or genus-wide bacterial species identification by
FAME data (Slabbink ez al., 2008; Slabbink et al., 2009)
towards the relation between bacterial FAME constitution
and plant pathogenesis.Therefore, in this work, we analyze
the ability of FAME analysis to distinguish between plant-
pathogenic Pseudomonas species and to distinguish these
species from the group of non-plant-pathogenic
Pseudomonas species. To understand and interpret the
presented research and according results pr operly, we first
introduce our data, principal component analysis, the used
machine learning techniques and the subsequent statistical
analysis. Finally, we present the results obtained in this
FAME research on plant-pathogenic Pseudomonas species.

MATERIALSAND METHODS.

FAME analysis and data sets. The in-house FAME
database of the Laboratory of Microbiology (Ghent
University, Belgium) and the BCCM"™/LMG Bacteria
Collection (Belgium) is considered. Whole-cell bacterial
FAME analysis has been performed in this laboratory since
1989 and has resulted in a database that currently contains
more than 71,000 FAME profiles. FAME research is directed
towards bacteria with environmental, clinical and industrial
impact, but is also performed for taxonomic purposes.
Basically, gas chromatographic FAME profiles are generated
following bacterial growth, as described in the TSBA
protocol of the Sherlock Microbial Identification System of
MIDI Inc. (Newark, DE, USA). This protocol defines a
standard for growth, cultur ing and analysis of bacterial
strains, and reproducibility and interpretability of the profiles
is only possible by working under the described conditions.
In this work, we focus on the species of the genus
Pseudomonas which were grown according to the TSBA
protocol. Specifically, this protocol recommends 24h of
growth on trypticase soy broth agar at a temperature of 28°C.
Following growth, on average 40mg bacterial cells are
harvested in the overlapping region of quadrants three and
four of streaked plates. Next, FAMEs are extracted by a four-
step procedure of saponification, methylation, extraction and
sample cleanup, and are finally analyzed by gas
chromatography. Following gas chromatographic analysis,
the use of a calibration mix and a naming table, the resulting
FAME profiles are standardized by calculating relative peak
areas for each named peak with respect to the total named
peak area. In this work, the TSBAS50 peak naming table is
used. Whole-cell bacterial FAME profiles resulting from gas
chromatographic analysis following these standard growth
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durante el crecimiento bacterial, como se describe en el
protocolo TSBA del Sistema de Identificaciéon Microbial
Sherlock de MIDI Inc. (Sherlock Microbial Identification
System de MIDI Inc.) (Newarl, DE, USA). Este protocolo
define un estandar para el crecimiento, cultivo y analisis de
cepas bacterianas y la reproducibilidad e interpretabilidad de
los perfiles es solamente posible trabajando bajo las
condiciones descritas. En este trabajo nosotros nos
enfocamos en las especies del género Pseudomonas las cuales

conditions are further indicated as standard FAME profiles.
The Pseudomonas FAME data set of Slabbinck ef al., 2009
is considered, which relies on the bacterial taxonomy as of
March 2008. This data set covers 1673 standard FAME
profiles of 95 validly published Pseudomonas species and 94
named FAME peaks.

In this work, this data set is evaluated in terms of plant
pathogenesis. Herein, a species is considered as plant-
pathogenic when one of its strains relates to plant or

Cuadro 1. Informacion general de las especies consideradas fitopatdogenas. Para cada especie se dan, el nimero estandar de
perfil FAME, el hospedero (s) y las referencias correspondientes.
Table 1. Overview of the considered plant-pathogenic species. For each species, the number of standard FAME profiles, the
host(s) and corresponding reference(s) are given.

Especie No. FAME de perfil Hospedero(s) Referencia(s)
P. Agarici 8 Agaricus bisporus Hoftey De Vos,2007.
P. amygdali 111 Prunus amygdalus Hoftey De Vos,2007.
P asplenii 13 Asplenium nidus Gardan, et al.,2002.
P avellanae 4 Corylus avellana Janseetal., 1996.
P. beteli 6 Piper betle Van Den Mootery Swings, 1996
P. cannabina 7 Cannabis sativa Gardanetal., 1999.
P, caricapapayae 5 Carica papaya Hoftey De Vos,2007.
P. cichorii 32 Rango amplio de hospederos ~ Smith et al., 1988; Hofte y De
Vos, 2007.
P, cissicola 8 Cissus japonica Huetal, 1997.
P. coronafaciens 44 Avena sativa Gardan, et al., 1999.
P. corrugata 22 Lycopersicon, Chrysanthemum, Catara et al., 2002; Gardan et
Geranium, Medicago, , pepper  al.,2002;Hoftey De Vos, 2007.
P. costantinii 6 Agaricus bisporus Hoftey De Vos, 2007; Munsch
etal.,2002.
P. flavescens 7 Juglans regia Hildebrand et al., 1994.
P. flectens 6 Phaseolus vulgaris Gardanetal.,2002.
P. fuscovaginae 45 Oryza sativa, Allium, Miyajimaetal., 1983.
Secalotriticum, Triticum
P, hibiscicola 6 Hibiscus rosa-sinensis Vancanneyt et al., 1996.
P. marginalis 63 Pastinaca sativa, Allium, Gardan et al., 2002;Hofte y De
Cichorium, Medicago, Phaseolus, Vos,2007.
Phragmipedium
P. mediterranea 10 Lycopersicon Catara et al., 2002; Hofte y De
Vos, 2007.
P. salomonii 10 Allium sativum Gardanetal.,2002.
P. syringae 88 Amplio rango de hospederos ~ Gardanetal.,2002.
P, syringae genomespecie 3 53 Amplio rango de hospederos  Gardan, et al., 1999.
P, syringae genomespecie 7 8 Helianthus annuus, Tagetes erecta Gardan, etal., 1999.
P tolaasii 53 Agaricus bisporus, Agaricus, ~ Hofte y De Vos, 2007;Munsch
bitorquis, Allium sativum, Pleurotus et al.,2002.
ostreatus, Pleurotus eryngii
P, tremae 8 Trema orientalis Gardan, et al., 1999 ; Gardan et
al.,2002.
P, viridiflava 17 Amplio rango de hospederos ~ Héftey De Vos, 2007.

crecieron de acuerdo al protocolo TSBA. Especificamente,
este protocolo recomienda el crecimiento de las bacterias
durante 24 horas en Tripticasa-caldo de soya-agar a una
temperatura de 28°C. Después del crecimiento, se colecta un
promedio de 40 mg de células bacterianas de la region

mushroom pathogenesis. Related to our Pseudomonas
FAME data set, several plant-pathogenic Pseudomonas
species are considered. These species are listed Table 1
species are considered. These species are listed Table 1,
together with the number of corresponding standard FAME
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sobrepuesta del tercer y cuarto cuadrante de la placa estriada.
Posteriormente, los FAME se extraen mediante un
procedimiento de cuatro pasos: saponificacion, metilacion,
extraccion y limpieza de la muestra, finalmente son
analizadas por cromatografia de gases. Seguido al analisis por
cromatografia de gases, con la ayuda de una calibracién y una
lista de nombres, los perfiles FAME resultantes son
estandarizados mediante el calculo de las areas relativas de los
picos para cada pico identificado con respecto al area total de
los picos. En este trabajo, se usé el cuadro de picos
identificados en TSBA. El perfil FAME resultante de toda la
célula bacteriana analizado por cromatografia de gases en
condiciones de crecimiento estandar es considerado
posteriormente como perfiles estandares FAME. En este
trabajo se consideraron los datos de las Pseudomonas
obtenidos con el analisis FAME por Slabbinck et al., 2009
debido a que se encuentra en concordancia con la taxonomia
bacterial de Marzo de 2008. Este grupo de datos cubre 1673
perfiles estandares de FAME de 95 especies de Pseudomonas
validamente publicadas en los que se ha identificado 94 picos
FAME. En la presente investigacion, este grupo de datos es
evaluado en términos de patogénesis en plantas. Aqui, una
especie es considerada como fitopatdgena cuando una cepa
esta relacionada a plantas o patogénicas en hongos o setas. En
relacion a nuestro grupo de datos FAME de Pseudomonas se
consideran varias especies de Pseudomonas fitopatogenas.
Estas especies estan listadas en el Cuadro 1, junto con el
numero de perfiles estaindar de FAME correspondientes, su
hospedante (s) relacionado y la referencia (s). En relacion a
los patovares de Pseudomonas syringae, la clasificacion de
genomoespecies se realizd de acuerdo a lo sugerido por
Gardanetal.,(1999).

Aqui, la genomoespecie 3 corresponde a los patovares de P,
syringae: antirrhini, apii, berberidis, delphinii, maculicola,
passiflorae, persicae, primulae, ribicola, tomato y viburni. La
genomoespecie 7 corresponde a los patovares de P. syringae:
helianthiy tagetis. Remarcando también que algunas especies
de Pseudomonas son generalmente mal nominadas y estan
transferidas a otros géneros, tales como P. beteli
(Stenotrophomonas maltophilia) y P. hibiscola
(Stenotrophomonas maltophilia) (Anzai et al., 2000). La
especie P. cissicola deberia ser transferida al género
Xanthomonas, pero se requiriere de un analisis mas extensivo
de las caracteristicas genotipicas y fenotipicas de las especies
(Anzaietal.,2000; Hu etal.,2007; Palleroni, 2005).

Una anomalia taxondmica similar se observo en P. flectens, la
cual basada en el analisis de la secuencia del gen 16S rRNA se
agrupo en la familia Enterobacteriaceae (Anzai et al., 2000;
Palleroni, 2005). P. beteli, P. cissicola 'y P. hibiscicola fueron
posteriormente anotadas en el grupo P. beteli. Cuando se
enfocan en especies de Pseudomonas fitopatogenas, se
evaluan dos casos interesantes de pruebas relacionadas con la
identificaciéon bacteriana basada en datos FAME: la
discriminacion de las especies fitopatdgenas estan listadas en
el Cuadro 1 y la discriminacion de especies fitopatogenas y no
fitopatdgenas basadas en datos FAME de las Pseudomonas.
En el primer caso, un nuevo grupo de datos se extrajo del
grupo de datos completos de FAME cubriendo 25 especies

profiles, related host(s) and reference(s). Regarding
Pseudomonas syringae pathovars, the genomospecies
classification is followed as suggested by Gardan et al., 1999.
Herein, genomospecies 3 corresponds to the P syringae
pathovars antirrhini, apii, berberidis, delphinii, maculicola,
passiflorae, persicae, primulae, ribicola, tomatoand viburni.
Genomospecies 7 corresponds to the P. syringae pathovars
helianthi and tagetis. Remark also that some Pseudomonas
species are generically misnamed and are transferred to
another genus, such as P beteli, (Stenotrophomonas
maltophilia) and P. hibiscicola (Stenotrophomonas
maltophilia) (Anzai et al., 2000). P. cissicola should be
transferred to the genus Xanthomonas but a more extensive
analysis of the genomic and phenotypic characteristics of the
species is required (Anzai et al., 2000; Hu et al., 2007,
Palleroni, 2005). A similar taxonomic anomaly for P. flectens
that, based on 16S rRNA gene sequence analysis, clusters in
the family of the Enterobacteriaceae (Anzai et al., 2000;
Palleroni, 2005). P. beteli, P. cissicola and P. hibiscicola are
further denoted as P. beteli group. When focusing on plant-
pathogenic Pseudomonas species, two interesting test cases
are evaluated regarding bacterial identification based on
FAME data: the discrimination of the plant-pathogenic
Pseudomonas species as listed in Table 1 and the
discrimination of plant-pathogenic Pseudomonas species
from the non-plantpathogenic Pseudomonas species present
in the Pseudomonas FAME data set. In the first case, a new
data set is extracted from the complete Pseudomona FAME
data set, covering 25 plant-pathogenic species. In the second
case, the FAME profiles of the complete Pseudomonas data
set are re-labeled in accordance with the property of infecting
plants or mushrooms. Thus, in this case, only two labels or
'classes' are considered: plant pathogen or non-plant
pathogen. Remark that the non-plant pathogen subset
contains70 Pseudomonas species.

Principal component analysis. When dealing with datasets
with an excessive dimensionality (7.e. in this work the number
of FAME peaks), one approach to reduce the dimensionality is
to combine the different features and, as such, project the
high-dimensional data in a lower dimensional space.
Principal component analysis (PCA) is such a popular
dimensionality reduction method by which linear
combinations are composed from the different FAME peaks
(also called features) (Duda ef al., 2001). Initially, the linear
combination that represents the largest amount of variability
in the data is chosen and called the first principal component
(PC). Next, subsequent linear combinations are composed
that are orthogonal to the previous PCs, repeatedly based on
the combination representing the highest variance. A simple
visualization of the PCA is achieved by plotting the variance
and accumulated variance of the PCs as ranked by amount of
represented variance in a so-called skree plot (see also Figures
2 and 4). From this plot, it is easy to determine how many PCs
are needed to cover a certain percentage of variability in the
data. These Pcs can subsequently be used for learning with a
smaller number of features, resulting in a model of lower
dimensions, or thus a less complex model. This is not only
advantageous for computational reasons but may also be very
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fitopatogenas. En el segundo caso, los perfiles de FAME del
grupo completo de Pseudomonas son re-calificadas de
acuerdo con las propiedades de infectar plantas u hongos. Asi,
en este caso, solamente dos etiquetas o clases son
considerados: fitopatdogenos o no fitopatdgenos. Obsérvese
que el grupo de las no-fitopatdogenas contiene 70 especies de
Pseudomonas.

Analisis de componentes principales. Cuando se trata con
grupo de datos de una dimensionalidad excesiva ( i.e. en este
trabajo el numero de picos FAME), el enfoque para reducir
esta dimensionalidad es combinar las diferentes
caracteristicas y de esta manera, proyectar la gran
dimensionalidad de los datos en un espacio dimensional
reducido. El analisis de componentes principales (ACP) es un
método de reduccion de dimensionalidad, en el cual las
combinaciones lineares estdn compuestas de los diferentes
picos FAME (también llamado caracteristicas) (Duda et al.,
2001). Inicialmente, la combinacion linear que representa la
cantidad de variabilidad en los datos es seleccionada y
llamado el principal componente principal (PC). Después, las
subsecuentes combinaciones lineares son ortogonales al PC
anterior, y asi repetidamente, estas combinaciones van a
representar la varianza mas alta. Una visualizacion simple de
los PCA se lleva a cabo dibujando la varianza y la varianza
acumulada de los PC, la cantidad de varianza esta
representada en la grafica de sedimentacion (ver también
Figuras 2 y 4). De esta grafica, es facil determinar cuantos PC
son necesarios para cubrir un cierto porcentaje de la
variabilidad en los datos. Estos PC pueden subsecuentemente
ser usados para aprender con un nimero mas pequefio de
caracteristicas, resultando en un modelo de bajas
dimensiones, o al menos en un modelo menos complejo. Esto
no es solamente una ventaja por razones computacionales,
sino también puede ser efectivo para incrementar el
comportamiento de un modelo de identificacion. Graficando
los datos en dos o tres espacios dimensionales de
componentes principales permite una facil interpretacion de
las relaciones (similitud o distancias) entre las diferentes
clases, i.e. especies o grupos de especies.

Aprendizaje automatizado.

Terminologia. Clasificacion e identificacion son términos
usados con diferentes significados en los campos de la
microbiologia y en el aprendizaje automatizado. Mientras la
identificacion se interpreta como la asignacion de las clases
existentes de un organismo desconocido o datos puntuales, la
clasificacion deberia ser interpretada de manera diferente. En
un contexto taxonoémico, la clasificacion bacterial se refiere a
la agrupacion de organismos bacterianos basados en
similitudes genotipicas y fenotipicas (Madigan et al., 2009).
Sin embargo, en el aprendizaje automatizado, el objetivo de la
clasificacion es describir estadisticamente la relacion entre
los datos sefialados de varias clases, considerando las clases
establecidas, por la generalizacion de las tendencias
observadas en los datos (Mitchell, 1997). En el contexto de
este trabajo, nos referimos a clasificacion como el proceso de
construir modelos computacionales para diferenciar entre los
perfiles FAME de los diferentes grupos de especies bacterias
o grupos de especies (Slabbinck ez al.,2009).

effective for increasing the performance of an identification
model. Plotting the data in a two or three dimensional
principal component space allows for an easy interpretation
of the relations (similarities or distances) between the
different classes, i.e. species or species groups.

Machine learning.

Terminology. Classification and identification are terms
used with different meanings in the fields of microbiology
and machine learning. Whereas identification is similarly
interpreted as assigning existing class labels to unknown
bacterial organisms or data points, classification should be
interpreted differently. In a taxonomic context, bacterial
classification refers to the grouping of bacterial organisms
based on genotypic and phenotypic similarities (Madigan et
al., 2009). How ever, in machine learning, the goal of
classification is to statistically describe the relationship
between data points of various classe, given the class labels,
by generalizing the observed trends in the data (Mitchell,
1997). In the context of this work, we refer to classification as
the process of building computational models to distinguish
between the FAME profiles of the different bacterial species
or species groups (Slabbinck ez al., 2009).

Random Forests. Random Forests (RFs) is an ensemble
method based on bagging. Ensemble methods generate
multiple classifiers (or classification models) and aggregate
the results. Specifically, a RF is an ensemble of classification
trees. At each node of a classification tree, the best split is
chosen among a subset of features randomly chosen at that
node. In contrast, standard classification trees split each node
based on all features available. RFs performs very well
compared to many other classifiers and is robust against
overfitting (Breiman, 2001). To achieve optimal
classification of the data, two parameters require an
optimization step: the number of randomly chosen features at
each node (Nf) and the number of trees to be grown in the
forest (Nt). Optimization of Nfis done by varying the number
of features from 1 to the total number of features in steps of 5
and optimization of Nt is done by varying the number of trees
from 1000 to 4000 in steps of 250. Optimization of the
parameters is done by a grid-search and the combination of
parameters leading the smallest validation error is finally
chosen. The first step in the RF algorithm is the generation of
Nt bootstrap samples from the original data set. These
samples contain about two-thirds of the FAME profiles of the
original data set. The remaining profiles are used as test set.
For each bootstrap sample, an unpruned tree is grown by the
method previously described. Next, for each sample, the
corresponding test profiles are predicted by the
corresponding tree. At the end of the run, and over all
samples, we assign the class label of the class which got most
of'the votes every time a given profile was present in a test set.
The proportion of misclassifications averaged over all test
profiles is taken as the overall error rate. New data can be
predicted by aggregating the predictions of the Nt trees and
selecting the label with the highest number of votes
(Breimen, 2001). The RFs used in this study are generated by
the RandomForest software package.

Validation. For parameter optimization and model
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Arboles aleatorios. Random Forest (RFs) es un método de
agrupacion basado en datos contenidos idealmente en una
bolsa. Los métodos de agrupacion generan multiples
clasificadores (0 modelos de clasificacion) y los resultados se
acumulan en forma de agregados. Especificamente, un RF es
una agrupacion de arboles para clasificacion. En cada nodo
deun arbol de clasificacion, se elige la mejor division entre un
subconjunto de caracteristicas elegidas al azar en ese nodo.
En contraste, los arboles de clasificacion estandar dividen a
cada nodo en base a todas las caracteristicas disponibles. Los
RF funcionan muy bien comparados con muchos otros
clasificadores y es robusto frente a re-muestreos (Breiman,
2001). Para lograr una clasificacion 6ptima de los datos, se
requiere un paso de optimizacion en dos parametros: el
numero de caracteristicas elegidas al azar en cadanodo (Nf) y
el nimero de arboles que se produzcan en el andlisis (Nt). La
optimizacion de Nf se realiza variando el numero de
caracteristicas de 1 al numero total de caracteristicas en pasos
de 5y la optimizacion de Nt se realiza variando el numero de
arboles de 1000 a 4000 en pasos de 250. La optimizacion de
los parametros se realiza con un filtro de busqueda y
finalmente se elige la combinacion de los parametros que
llevan a los mas pequefios errores de validacion. El primer
paso en el algoritmo RF es la generacion de muestras Nt
bootstrap (muestreo con reemplazo) del conjunto de datos
originales. Estas muestras contienen cerca de dos tercios de
los perfiles FAME del grupo de datos originales. Los perfiles
restantes son usados como un grupo de pruecba. Para cada
muestra bootstrap, se produce un arbol sin ninguna
modificacion por el método previamente descrito. Después,
para cada muestra, los perfiles de prueba correspondientes
son predecibles por el arbol correspondiente. Al final de la
corrida de todas las muestras, se asigna un valor a la clase
marcada que obtuvo la mayoria de las combinaciones en cada
perfil y que estuvo presente en la prueba. La proporcion de los
errores de clasificacion promedio de todos los perfiles
probados se toma como la tasa de error global. Nuevos datos
pueden ser predecidos por la agregacion de los arboles Nty
por seleccion del que tuvo el mayor numero de veces que
coincidieron (Breiman, 2001). Los Rfs usados en este estudio
son generados con el programa “Random Forest”.

Validacién. Para la optimizacion de los parametros y la
evaluacion del modelo, se realiza una evaluacion cruzada con
la union de los resultados de las pruebas (Parker et al., 2007;
Varma y Simon, 2006; Witten ef al., 2005). En la validacion
cruzada, el grupo de datos de entrada se dividenen &k partes de
igual tamafio, generalmente de una forma aleatoria. Para la
parte k", el modelo funciona con la otra parte k-1, mientras el
comportamiento es evaluado con la parte respectiva. Este
proceso de entrenamiento y validacion se realiza por cada
parte y la validacion cruzada de la estimacion del error es
igual al promedio de los errores obtenidos en las diferentes
veces (Bishop, 2006; Hastie et al., 2009). En general, cinco y
10 validaciones cruzadas son recomendadas para la seleccion
del modelo (Breiman, 1992; Kohavi, 1995). En muchos
mundos reales los grupos de datos, o el nimero de datos por
clase varian. Un buen enfoque para tratar con estas
desproporciones es realizar una validacion cruzada

evaluation, cross-validation is performed with pooling of the
test results (Parker et al., 2007; Varma and Simon, 2006;
Witten et al., 2005). In cross-validation, the input data set is
split into £ equally sized parts, generally in a random manner.
For the k part, the model is trained with the k' other parts,
while the performance is evaluated with the respective part.
This training and validation process is done for each part and
the cross-validation estimation of the errorequals the average
of the errors obtained by the different folds (Bishop, 2006;
Hastie et al., 2009). In general, five-fold and ten-fold cross-
validation is recommended for model selection (Breiman,
1992; Kohavi, 1995). In many real-world data sets, the
number of data instances varies per class. A good approach for
dealing with these disproportions is to perfor m a stratified
cross-validation. Herein, the different folds are so-called
stratified so that, based on the different class labels, they
contain approximately the same proportions of data points as
the original data set (Kohavi, 1995). Because RF do not
overfit (Breiman, 2001), parameter optimization is done on
the test set. We have chosen to do so because some species
correspond to a small number of FAME profiles and learning
would be based on an even smaller number of FAME profiles.
Nonetheless, it is better experimental practice to perform
parameter optimization in a separate cross-validation process
and use the test set only for identification purposes.
Ultimately, pooling is done of the separate cross-validation
folds (or test subsets), implying a model performance
estimate based on the complete data set. As only species are
considered associated with a minimum of four FAME profiles
per species, a four-fold cross-validation is performed.

Evaluation. For both techniques, the probability estimates
are statistically analyzed. For each profile, the species label
associated with the highest probability estimate is considered.
When dealing with two classes, a popular method for
evaluation of the performance of a classifier is to construct a
confusion matrix. A confusion matrix summarizes the
predictions by reporting the number of true positives (TP or
positive instances that are predicted as positive), false
positives (FP or negative instances that are predicted as
positive), true negatives (TN or negative instances that are
predicted as negative) and false negatives (FN or positive
instances that are predicted as negative). From this matrix
different performance measures can be calculated such as
sensitivity (TP/(TP+FN)), precision (TP/(TP+FP)) and F-
score (2*S*P)/(S+P), with S and P the sensitivity and
precision respectively). Note that when no TP and FP results
are obtained, precision resolves in a value equal to infinity.
For the F-score, this case, together with a denominator of
zero, will also resolve in a value of infinity. When, however,
confronted with more than two bacterial species, or thus a
multi-class problem, a multi-class confusion matrix can be
composed. Subsequently, evaluation can be done by
decomposing the multi-class confusion matrix to N two-class
confusion matrix, with N the number of classes or species
considered. In each two-class confusion matrix, the
corresponding species is evaluated against all other species
implemented in the classifier. In other words, all other species
are considered as one dummy species. Finally, a global
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estratificada. Aqui, los diferentes subgrupos son llamados
estratificados de modo que, basados en las diferentes clases,
tienen aproximadamente las mismas proporciones de puntos
de datos como el grupo de datos originales (Kohavi, 1995).
Porque RF no origina errores aleatorios (Breiman, 2001), la
optimizacion de parametros se realiza en el grupo de prueba.
Hemos escogido hacer esto porque algunas especies
corresponden a un pequefio nimero de perfiles FAME y el
aprendizaje se basa en un nimero aun mas pequeio de perfiles
FAME. Sin embargo, una mejor practica experimental es
realizar la optimizacion de parametros en un proceso de
validacion cruzada y usar los grupos de prueba solamente para
propositos de identificacion. Finalmente, el agrupamiento es
realizado por la validacion cruzada de los “folds” (o de las
prucbas de los subgrupos), implicando un modelo de
desempeiio estimado basado en el conjunto completo de
datos. Como las especies son consideradas solamente
asociadas con un minimo de cuatro perfiles FAME por
especie, se realizan validaciones cruzadas por cuadriplicado.
Evaluacién. Para ambas técnicas, la probabilidad estimada es
analizada estadisticamente. Para cada perfil, las especies
etiquetadas son consideradas con la probabilidad mas alta.
Cuando se trata con dos clases, un método popular para la
evaluacion del comportamiento de un clasificador es la
construccion de una matriz confusa. Una matriz confusa
resume las predicciones al reportar el nimero de positivos
verdaderos (TP o casos positivos que son previstos como
positivos), falsos positivos (FP o casos negativos que son
predichos como positivos, verdaderos negativos (TN o casos
negativos que son predichos como negativos) y falsos
negativos (FN o casos positivos que son previstos como
negativos).
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Figura 2. Diagrama de sedimentacion derivado del analisis
de componentes principales con datos de fitopatogenos. Se
muestra el porcentaje de varianza asociado con los 10
primeros componentes principalesy la variacion acumulada.
Figure 2. Skree plot resulting from principal component
analysis of the plant pathogen data set. The percentage
of variance associated with the first ten principal components
is visualized, together with the cumulative variance.

measure can be calculated by averaging the results of the
different confusion matrices.

RESULTS AND DISCUSSION

PCA. We have investigated how FAME data could be used to
discriminate between plant-pathogenic Pseudomonas
species, and between this group and non-plant-pathogenic
Pseudomonas species. Skree plots are given following
principal component analysis on both corrsponding data sets.
These plots are given in Figures 2 and 4. From both plots, it
becomes clear that three to four principal components can
represent 90% to 95% of the variability in the data. This not
only indicates that a lot of features (peaks) are correlated with
each other, but also that the dimensionality of the data sets
(number of peaks) can be significantly decreased, while
keeping a similar discrimination possible for the different
species or species groups. This correlation may be attributed
to the fatty acid biosynthesis pathway through which
different fatty acids are typically converted into other fatty
acid molecules (Madigan et al., 2009). Furthermore, the
discrimination between the different species or species
groups is visualized by a biplot of the first two principal
components, see Figures 3 and 5. From the first biplot, which
corresponds to the plant-pathogenic data set, it is clear that
plant-pathogenic species are hard to distinguish from each
other based on FAME data. Also, some distinct groupings can
immediately be seen such as P. agarici, P. corrugata, P.
flavescens, P. tolaasii. The species present in the cluster on
the left correspond to the P. syringae group (Anzai et al.,
2000). Remark that in this biplot, the species belonging to the
P. beteli group and the species P. flectens are not included to
allow for a better scaling of the other species. This can be
explained by the distance between these species and the
Pseudomonas sensu stricto species, leading to a tight
clustering of the latter species in the respective principal
component space. When compared to non-plant-pathogenic
species, the second biplot shows that the plant-pathogenic
FAME profiles mainly cluster in one data cloud, and the non-
plant-pathogenic data cluster in two distinct FAME clouds,
with one cloud clearly overlapping with the plant-pathogenic
FAME clouds.

Machine learninig. The first row of Table 2 summarizes the
results of the machine learning experiment by which a
possible discrimination of plant-pathogenic Pseudomonas
species is investigated. These results are similar to those
resulting from the machine learning analysis of the complete
data set, in the sense that similar metric values are found
(Slabbnick et al., 2009). Even though a smaller number of
species is investigated, it is clearly not straightforward to
distinguish the different plant-pathogenic Pseudomonas
species from one another. These findings are supported by the
principal components analysis in the previous section and
Figure 1. From the corresponding biplot of the first two
principal components, it is obvious that the FAME patterns of
the different species overlap, making it not easy for machine
learning techniques to find good flexible mathematical
functions representing the species boundaries. We can
conclude that FAME analysis is not a very good technique to
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Figura 3. Comportamiento de los dos primeros componentes principales tras un andlisis del conjunto de datos de
fitopatdgenos. Las especies del grupo de Pseudomonas beteli y Pseudomonas flectens no fueron incluidas para lograr una
mejor escala del resto de especies.

Figure 3. Biplot of the first two principal components following analysis of the phytopathogen data set. The species of the
Pseudomonas beteli group and Pseudomonas flectens are not included for achieving a good scaling of the other species.

De esta matriz pueden ser calculadas diferentes mediciones de
desempeiio tales como sensibilidad (TP/(TP+FN)), precision
(TP/(TP+FP)) y F-score ((2*S*P)/(S+P), con S y P como
sensibilidad y precision respectivamente. Notese que cuando
no se obtienen resultados TPy FP, la precision lleva a un valor
igual al infinito. Para el F-score, este caso, junto con el
denominador de cero, puede también llevar a un valor de
infinito. Sin embargo, cuando, se confrontan con mas de dos
especies bacterianas, por lo tanto a un problema de multiples
clases, se puede tener una matriz de confusion compuesta.
Subsecuentemente, la evaluacion puede ser hecha mediante la
fragmentacion de la matriz de confusion multiclase a una
matriz de confusion N dos clases, donde N es el nimero de
clases o especies consideradas. En cada matriz de confusion
de dos clases, las especies correspondientes son evaluadas
contra todas las demas especies implementadas en el
clasificador. En otras palabras, todas las demas especies son
consideradas como una especie ficticia. Finalmente, una
medida global puede ser calculada promediando los
resultados de las diferentes matrices de confusion.

RESULTADOS Y DISCUSION

ACP. Los datos que tenemos evaluados hasta ahora de FAME
pueden ser usados para discriminar entre especies
fitopatogénicas de Pseudomonas, y entre este grupo y
especies no fitopatdgenas de Pseudomonas. El analisis de

Pseudomonas species could be discriminated from the group
distinguish between all plant-pathogenic Pseudomonas
species. However, some species could clearly be
distinguished. Species with an F-score larger than 0.8 are P
cissicola, P. corrugata, P. flavescens, P. flectens, P.
fuscovaginae, P. marginalis, P. tolaasii, P. tremae and P,
viridiflava. For some of these species, distinct groups could
also be found in the PCA biplots. Whether this conclusion
holds for plant-pathogenic species in other genera remains a
topic for future investigation.

In a second machine learning experiment, we have
investigated how well the group of plant-pathogenic P,
fuscovaginae, P. marginalis, P. tolaasii, P. tremae and P,
viridiflava. For some of these species, distinct groups could
also be found in the PCA biplots. Whether this conclusion
holds for plant-pathogenic species in other genera remains a
topic for future investigation. In a second machine learning
experiment, we have investigated how well the group of
plant-pathogenic Pseudomonas species could be
discriminated from the group of non-plant-pathogenic
Pseudomonas species. The same learning setting as
described in the previous experiment is used. However,
because a larger number of data points per class is available,
we have chosen to perform a ten-fold cross-validation.
Again, because RFs do not overfit, parameter optimization is
also done by the cross-validation fold. The test results of this
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Cuadro 2. Resultados de los experimentos de arboles al azar
referentes a identificacion de especies de Pseudomonas,
identificacion de especies fitopatdogenas y no fitopatdgenas dentro
del género Pseudomonas, prueba de F y desviacion estandar.

Table 2. Results of the random forests experiments about
Pseudomonas species identification, identification of plant-
pathogenic species and non-plant-pathogenic species (NPPS) within
the genus Pseudomonas, precision and F-score and, standard
deviations.

Técnica’ Sensibilidad”  Precision® E
PPS 0.631 (0.297) 0.811 (0.152) 0.711 (0.181)
PPS vs NPPS  0.961 0.907 0.859

aUsando la base de datos de especies patogénicas. *Dentro del grupo de

Pseudomonas. © 'Porcentaje entre todas las clases (cada especie contra el
resto de especies). ‘Desviacion estandar.

‘Using te data base of pathogenic species. "Inside of the group Pseudomonas.
cPercentaje among all classes (each species against all other species).
‘Standar desviation.

sedimentacion obtenido corresponde al analisis de
componentes principales en ambos grupos de datos. Estos
datos estan marcados en las Figuras 2 y 4. De ambas figuras,
queda claro que tres a cuatro componentes principales pueden
representar el 90 a 95% de la variabilidad en los datos. Esto
nos indica solamente que muchas de las caracteristicas (picos)
son correlacionados con cada uno, pero también la
dimensionalidad del grupo de datos (mimero de picos) pueden
ser significativamente disminuidos, mientras mantenga una
discriminacion similar posible para las diferentes especies o
grupos de especies. Esta correlacion puede ser atribuida a la
ruta biosintética de acidos grasos a través de los cuales
diferentes 4cidos grasos son tipicamente convertidos en otras
moléculas de acidos grasos (Madigan et al., 2009). Ademas,
la discriminacion entre las diferentes especies o grupos de
especies es visualizada por graficos de los primeros dos
componentes principales, ver Figura 3 y 5. Del primer grafico,
el cual corresponde al grupo de datos de fitopatdgenos, es
claro que las especies fitopatogenas son fuertes para
distinguir de otros basados en los datos FAME. También,
algunos grupos distintivos pueden inmediatamente ser vistos
tales como P. agarici, P. corrugata, P. flavescens, P. tolaasii.
Estas especies presentes en el agrupamiento de la izquierda
corresponde al grupo de P. syringae (Anzai et al., 2000). Se
remarca que en esta grafica, las especies pertenecientes al
grupo P. beteli y la especie de P. flectens no estan incluidos
permitiendo su cambio a otras especies. Esto puede ser
explicado por la distancia entre estas especies y las especies
de Pseudomonas sensu stricto, permitiendo posteriormente
un estricto agrupamiento de las especies en el espacio
respectivo de componentes principales. Cuando comparamos
auna especie no fitopatdgenas, el segundo biplot muestra que
el perfil de FAME de las fitopatdgenas se agrupa
principalmente en una nube de dispersion y el grupo de datos
de las especies no fitopatdogenas en dos distintas nubes de
dispersion FAME, con una nube claramente sobrepuesta con
las nubes FAME de las fitopatogenas.

Aprendizaje automatizado. La primera columna del Cuadro
2 resume los resultados del experimento de aprendizaje

two-class classification experiment are reported in the second
row of Table 2. It can immediately be concluded that a high
discrimination is possible between plant-pathogenic and non-
plant-pathogenic Pseudomonas species using FAME data.
The high metric values are somewhat surprising given the
overlapping data clouds as visualized by the principal
component analysis (see Figure 5). It is clear that some
relation exists between plant-pathogenicity and the fatty acid
content.The probability estimates as given by the RF
experiment are statistically analyzed by a Wilcoxon rank-sum
test. This test assumes randomly sampled observations that
are independent and continuous and that the shapes of the
underlying distributions are identical (Higging, 2004;
Sheskin, 2004). In this experiment, the first assumptions are
satisfied, while the last assumption is considered to be met. A
p value of approximately zero is obtained, implying
statistically different probability estimates at the significance
level of 0.05. A possible explanation for these strong
identification results could be found in the paper of Stead
(1992) who describes a clustering of a multitude of the plant-
pathogenic Pseudomonas species by hydroxy fatty acids.
Though, in this study, the genus Pseudomonas sensu lato is
considered and major discriminations are discussed. Herein,
one major group corresponds to the genus Pseudomonas
sensu stricto. This group consisted of about 35 plant-
pathogenic taxa that could mainly be discriminated based on
the hydroxy fatty acids C,,, 3-hydroxy and C,,, 3-hydroxy.
Subgrouping could also be achieved by these hydroxy fatty
acids, together with the hydroxy fatty acid C,,, 2-hydroxy.
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Figura 4. Diagrama de sedimentacion del Andlisis de
componente principal de fitopatégenos vs no fitopatogenos,
porcentaje de varianza acumulado y porcentaje de varianza
relacionado con el primero de los 10 componentes
principales.

Figure 4. Skree plot resulting from principal component
analysis of the plant pathogen vs. non-plant pathogen data
set. The percentage of variance associated with the first ten
principal components is visualized, together with the
cumulative variance.
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Figura 5. Primeros dos componentes principales derivados
del analisis de datos de fitopatogenos vs no fitopatdgenos. Los
puntos verdes sefialan especies con una o mas razas
fitopatdgenas, puntos rojos son referidos a especies no
asociadas arazas fitopatogenas.

Figure 5. Biplot of the first two principal components
following analysis of the plant pathogen vs non-plant-
pathogen data set. Green dots denote species with one or more
plant-pathogenic strains, while red dots denote species not
associated with plant-pathogenic strains.

automatizado por los cuales se investiga la posible
discriminacion de las especies de Pseudomonas
fitopatdgenas. Estos resultados son similares a los resultados
del analisis de aprendizaje automatizado de los grupos de
datos completos, en el sentido de que son encontrados
similares los valores métricos (Slabbnick et al., 2009).
Aunque un nimero mas pequefio de especies es investigado,
queda claro que no es sencillo para diferenciar las diferentes
especies fitopatdgenas de otras Pseudomonas. Estos
resultados son soportados por los analisis de componentes
principales en la seccion previa y Figura 1. De los
correspondientes graficos de los primeros dos componentes
principales, es obvio que los patrones FAME se sobreponen
en las diferentes especies, haciendo que la técnica de
aprendizaje automatizado no sea facil para encontrar una
buena funcion matematica flexible que represente la amplitud
de las especies.Podemos concluir que el analisis FAME no es
una buena técnica para diferenciar entre todas las especies
fitopatogenas de Pseudomonas. Sin embargo, algunas
especies podrian ser claramente diferenciadas.

Especies con un F-score mas grande que 0.8 son P, cissicola,
P corrugata, P. flavescens, P. flectens, P. fuscovaginae, P.
marginalis, P. tolaasii, P. tremae'y P. viridiflava. Para algunas
de estas especies, grupos distintos podrian también ser
encontrados en la grafica del PCA. Si esta conclusion
permanece para especies fitopatdgenas en otros géneros este
es un topico para investigaciones futuras. En un segundo
experimentos sobre aprendizaje automatizado, se ha
investigado como un grupo de especies fitopatogenas de
Pseudomonas podrian ser discriminados de los grupos de
especies no fitopatdogenas. Se establecid el mismo sistema de
aprendizaje automatizado usado anteriormente. Sin embargo,

For this group, Stead (1992) concluded that qualitative and
quantitative differences in many of these fatty acids were
found. No comparison was, however, made with non-plant-
pathogenic Pseudomonas species. Nonetheless, these
discrimination can also be assumed to be very valuable for
discrimination between plant-pathogenic and non-plant-
pathogenic species. Future study of this relation should,
however, reveal all determining FAME constituents and the
corresponding qualitative and quantitative differences.

CONCLUSIONS

We have evaluated the possibilities of FAME analysis for the
identification of plant-pathogenic Pseudomonas species.
Two cases have been considered: identification at species
level and a discrimination of the group of plant-pathogenic
species from the non-plant-pathogenic species. An initial
simple analysis of the data was done by principal component
analysis. From these experiments, it has become clear that
only a few principal components exploit a large amount of the
variability in the data. This is mainly due to the correlation be-
tween different fatty acids. Nonetheless, when looking at the
biplot of the first two principal components, the fatty acid
profiles of different plant-pathogenic species are clearly
overlapping. Regarding the plant pathogen versus non-plant
pathogen data set, a distinct data cloud can be seen. However,
an overlap is still seen in the data. This data analysis results in
impor tant knowledge when considering machine learning
for identification purposes. Due to overlapping FAME
clouds, flexible species boundaries need to be learned. In the
case of distinguishing between plant-pathogenic
Pseudomonas species, this learning process appears to be
quite hard as only a moderate identification performance is
achieved. Nonetheless, some species could clearly be
identified. When discriminating plant-pathogenic
Pseudomonas species from non-plant-pathogenic
Pseudomonas species, RFs are able to achieve a good
identifica tion of either group. Besides this, we have
statistically also shown that the FAME profiles of both groups
are significantly different. In other words, a clear statistical
relation exists between certain fatty acids and plant
pathogenesis. Future work should reveal which constituents
are major players in this relation. Other interesting topics for
future research may comprise the relations to and between
plant pathogens in other bacterial genera.
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debido al gran nimero de datos disponibles en los diagramas
de dispersion disponibles, se decidiéo llevar a cabo la
validacion de “ten-fold cross-validation”. Nuevamente,
debido a un no sobre ajuste de RF, la optimizacion de
parametros es también hecho por la “cross-validation fold”.
Los resultados de la prucba de esta segunda clase de
experimento para clasificacion son reportados en la segunda
columna del Cuadro 2. Se puede concluir inmediatamente que
es posible una alta discriminaciéon entre especies
fitopatégenas y no fitopatégenas usando datos FAME. El alto
valor métrico es algo que sorpresivamente se observa con las
nubes de dispersion sobrepuestas visualizado en el analisis de
componentes principales (ver Figura 5).

Esta claro que existen algunas relaciones entre el contenido de
acidos grasos de especies fitopatdogenas. La probabilidad
estimada obtenida en el experimento RF son
estadisticamenteanalizadas con la prueba de Wilcoxon Rank-
sum. Esta prueba asume observaciones de muestras al azar
que son independientes y continuas y que la forma de la
distribuciones subsecuentes son idénticas (Higging, 2004;
Sheskin, 2004).En este experimento, los primeros supuestos
estan confirmados, mientras el Gltimo supuesto se considera
como presente. Un valor-p de aproximadamente cero es
obtenido, implicando probabilidades estimadas
estadisticamente diferentes en el nivel de significancia de
0.05. Una posible explicacion para esta fuerte identificacion
podria ser encontrado en el articulo de Stead (1992), quien
describe un agrupamiento de un gran nimero de especies
fitopatdgenas de Pseudomonas por hidroxi-acidos grasos.
Aunque, en este estudio, se ha considerado principalmente
datos del género Pseudomonas sensu lato para discusion.
Aqui, un grupo principal corresponde al género Pseudomonas
sensu stricto. Este grupo consistid de cerca de 35 taxa de
fitopatdgenas que podrian ser principalmente discriminadas
conbase en los acidos grasos hidroxy C,,, 3-hidroxy y C,,,, 3-
hidroxy. Subgrupos podrian ser también obtenidos por estos
acidos grasos hidroxy, juntos con el acidos grasos C,,, 2-
hidroxy. Para este grupo, Stead (1992) concluyé que se
encontraron muchas diferencias cuantitativas y cualitativas en
estos acidos grasos. No se realizaron comparaciones con
especies no fitopatogenas de Pseudomonas. Sin embargo,
estas discriminaciones pueden ser también asumidas y es muy
valorable para la discriminacion entre especies patogénicas y
no patogénicas. Futuros estudios de esta relacion deberia, sin
embargo, revelar todos los constituyentes que determina
FAME vy las diferencias cualitativas y cuantitativas
correspondientes.

CONCLUSIONES

Hemos evaluados las posibilidades del analisis FAME para la
identificacion de especies fitpatogénicas. Se han considerado
dos casos; identificacion a nivel de especie y una
discriminacion del grupo de especies fitpopatdgenas de las no
fitopatogenas. Un simple analisis inicial de los datos fue
hecho por el analisis de componentes principales. De estos
experimentos, surge claramante que solamente unos pocos
componentes principales explican la gran variabilidad en los
datos. Esto es principalmente debido a la correlacion entre
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diferentes acidos grasos. Sin embargo, cuando se observa el
biplot del primero de los dos componentes principales, los
perfiles de acidos grasos de diferentes especies fitopatogenas
estan claramente sobrepuestos. En relacion al grupo de datos
de los patogenos de plantas versus no patogénicos, una
distinta nube de dispersion de los datos puede ser vista. Sin
embargo, una sobreposicion es aun vista en los datos. Los
resultados del analisis de datos es un conocimiento importante
cuando se considera el aprendizaje automatizado para
propositos de identificacion. Debido a los diagramas de
dispersion FAME sobrepuestos, se necesita conocer mas de la
amplitud de especies flexibles. En el caso de de distinguir
entre especies de Pseudomonas fitopatdgenas, este proceso de
aprendizaje parece ser muy dificil cuando solamente se lleva a
cabo una identificacion moderada. Sin embargo, algunas
especies podrian ser claramente identificadas. Cuando
discriminamos las especies fitopatdgenas de Pseudomonas,
los RFs son capaces de llevar a cabo una buena identificacion
de los grupos. Ademas de esto, tenemos estadisticamente
también mostrado que los perfiles de FAME de ambos grupos
son significantemente diferentes. En otras palabras, una clara
relacion estadistica existe entre ciertos acidos grasos y
lapatogénesis en plantas. Trabajos futuros deberan revelar
cual constituyentes juegan un rol principal en esta relacion.
Otro topico interesante para futuras investigaciones puede
comprender las relaciones entre fitopatdogenos en otros
géneros bacteriales.
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