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The response of a fluid to deformation by shear stress is known as shear viscosity. This concept arises from a macroscopic view and was
first introduced by Sir Isaac Newton. Nonetheless, a fluid is a series of moving molecules that are constrained by the shape of the container.
Such a view begs the treatment of viscosity from a microscopic or molecular view, a task undertaken by both Einstein and Smoluchowski
independently. Here we revisit the concept of viscosity and experimentally verify that the viscosity at a molecular level, which describes
the drag force, is the same as the macroscopic shear viscosity; hence, bridging different length- and time-scales. For capturing the shear
stress response of a fluid, we use classical rheometry; at a molecular level we use probe diffusion to determine the local viscosity from
the translational and rotational motions. In these cases, we use Fluorescence Correlation Spectroscopy and Time Resolved Fluorescence,
respectively. By increasing the osmolyte (Glucose-D) concentration, we change the viscosity and find that these methods provide a unified
view of viscosity, bridging the gap between the macroscopic and nanoscale regimes. Moreover, Glucose’s viscosity follows a scaling factor
more commonly associated to solutions of branched polymer because the probe dimensions are comparable to the dimensions of the osmolyte
that exerts the drag.

Keywords: Fluorescence correlation spectroscopy; rheometry; time-resolved fluorescence anisotropy; probe diffusion; macroviscosity; local
viscosity.
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1. Introduction ties which describe fluid response to compressive forces, re-
sistance to shear, and the coupling between flow and indi-
The viscosity of a fluid describes the internal drag forces,iqual particle rotations, respectively [10]. As was done his-
within the fluid as it is subjected to stress [1]. Accurate de"torically, compatible expressions for dynamic viscosity and
scriptions of viscosity have a broad range of applicationsygjated quantities can be derived under two different theo-
from the characterization of blood flow, as it relates to corol-retical models of fluids. The first model is a macroscopic,
lary heart disease, to optimizing lubricants for mechanicalontinuum one relating diffusion to concentration gradients.
systems [2,3]. Isaac Newton first described fluid viscosity inThe second is a statistical, Brownian motion model of sin-
his 1687Principia, where he stated Newton’s Law of Viscos- gje particle diffusion at local scales. Introduction of the term
ity, describing the response of a continuous, incompressiblgiscosity from both perspectives is followed by three differ-
fluid to shear stress [4]. In the 1840s, the Navier-Stokes equgsnt approaches to experimentally determine the viscosity of
tion was derived and used to describe the diffusion of totally; Newtonian fluid. These three experimental methods range
conserved guantities through a continuous fluid [5]. In 1866j,, scales from nm to cm and from ns to seconds. The shear
James Maxwell reported experimental results which verifiedtress of solutions of glucose at different concentrations was
his earlier calculations showing viscosity of a gas is depensiydied using a rheometer. For the probing of local viscosity,
dent on the mean free path of its particles [6]. Later, a microyransiational and rotational diffusion of Rhodamine-110 were
scopic description of diffusion grounded in Robert Brown's gpserved in glucose solution utilizing Fluorescence Correla-

1827 observations of pollen particles randomly moving wasjon Spectroscopy (FCS) and time-resolved anisotropy mea-
independently developed by Albert Einstein in 1905 and bysyrements, respectively.

Marian Smoluchowski in 1906, resulting in the Einstein-

Smoluchowski relation describing the probe diffusion coef-1.1. Continuous fluid

ficient [7, 8]. Through George Stokes’ 1851 derivation of

Stokes’ Law, the diffusion coefficient is related back to theEmpirically verified by Newton, Newton’s Law of Viscosity
fluid viscosity describing the frictional drag felt by individ- is

ual particles in a continuous media [9]. F/A=nVv, (2
~ In the broadest mathematical formalism, viscosity iSwhereF is the force in contact with a liquid over a cross sec-
given by the viscosity tensog, in tional aread, Vv is the velocity gradient in the fluid, ang

1) is defined as the shear, or dynamic, element of the viscosity

tensor [11,12]. This expression is a special case of Eq. (1)
relating the viscous stress tensor for a flutdand strain rate  for shear stress applied to isotropic, incompressible Newto-
tensor,e [10]. For Newtonian fluidsp has three indepen- nian fluids, in which casg reduces to the dynamic viscosity,
dent components: the bulk, dynamic, and rotational viscosi# [13].

T = 2€E,



REVISITING VISCOSITY FROM MACROSCOPIC TO NANOSCALE REGIMES 223

The dynamics of fluids, including diffusive processesThis is the non-convective, un-sourced diffusion equation in
which depend on the viscosity of the fluid, can also be determs of concentration, or Fick’s Second Law for constant
scribed using the Navier-Stokes equation. Let us begin fronD [1, 15]. D describes the rate at which a substance (either
the Cauchy Momentum Equation, a statement of conservaa continuum or a single particle) diffuses through medium.

tion of momentum for a continuum: D depends on the viscous drag force exerted by the fluid.
op D can be explicitly related to the viscosity experienced by
n +V.-Jp =s, 3) a probe through the Stokes-Einstein relation discussed in the

next section [16].
wherep = pu is the momentum density defined by the mass

density () times velocity {1), ¢ is time,J, is the momentum 1.2. Thermally-driven random walk

density flux out of the volume, angis a source term cor-

responding to stresses and forces imparting momentum Ogiscosity can also be defined by considering individual par-
the system. Rewriting in terms @f u, the material deriva- ticles undergoing Brownian motion in media. In Brownian
tive D/Dt, the sum of externally-caused acceleratighshe  motion, each individual probe particle undergoes an effec-

pressurep, and the stress tensar, we obtain tive random walk driven by thermal energy [17]. This model
Dpu allows a derivation of the diffusion equation from a micro-
i P8~ Vp+ V.1 (4)  scopic, statistical perspective which matches the continuum

case. Let us consider a particle randomly walking in space
Plugging in Eq. (1), where = (1/2)(Vu+Vu®)—(1/3)V-  with probabilitiesp andq to travel either right or left in the
ud;;, EqQ. (4) we obtain direction a distancé during timestep-. Then the probability
Dpu of finding the patrticle at positiom at timet + 7 is given by
Dp P8 Vp ,
(z,t+7) =pP(x —§,t) + qP(x + 4,t). (11)

1 o1
+V- <2“<2(vu +Vul) - v ua”))' () By doing a Taylor expansion to first order irand second
. o ) . ) . order inz in the continuous limit (smalt andé), we obtain
Taking the limit of an incompressible, Newtonian fluids & that the first non-vanishing contribution leads to
constant and/ - u = 0. Further, taking: as a constant with

respect to positiony - 7 reduces tquV?u and we are left OP(x,t) Ox OP(x,t) 0?P(z,t)
i —— t—a)5; =D (12
with ot ot o 92
CA S (6)
T pp ' the convective diffusion equation, with translational diffusion

Finally, we take the limits in which the external and hydro- coefficientD = §2/27 [18]. In our case of unbiased walking,
static force contributions are negligible and there is no nep = ¢ and this reduces to
fluid flow. The net result is that the material derivative re-

duces to the partial time derivative and the external force OP(x,t) _ DaQP(%t). (13)
terms becomé, leaving ot Ox?
du ) Finally, assuming thaD is the same in each direction and
Pop =KV summing over the three Cartesian coordinates, we obtain
This is the linear Navier-Stokes momentum density equation OP(r,t) )
for an incompressible, non-convecting fluid subjected to vis- ot DVZP(r,1), (14)

cous forces [14]. Equation (7) is essentially the momentum _ o

diffusion equation and is closely related to Eq. (2). A sim-the analog of Eq. (10) for a single probe diffusing through a
ilar analysis can be performed beginning from the conservalluid. These equations describe the same phenomena under
tion of amount of fluid in terms of concentratiofi, with no  the substitution” = C, or taking particle concentration for
sources: many particles as a probability distribution. This is seen in

their shared solution

oC
E‘Fv'Jﬂuid =0. (8)

Making use of the empirically verified Fick’s First Law,

(r?) = 6Dt, (15)

where (r?) is the mean-square position for an ensemble of
Jfnia = —DVC, (9)  particles at time [1]. The ergodic principle assures us that
) i . o . the ensemble averade. .) is equal to the time average [19].
WhereD_ is defined as the translational diffusion coefficient, o, identically structured derivation can also be performed by
we obtain Yo considering an angular random walk, or the random reorien-
i DV?*C. (10)  tation of a probe molecule such that the probability of finding
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the particle in some orientation is given in an identical formsuch intermediate cases. This function is found through con-

to Eq. (11). In this case the solution siderations of the kinds of drag exerted by polymers on dif-
fusing probes and on each other. Other variations of the dif-
(6) = 2Dyt, (16)  fusion equations are also use to describe the sub diffusive be-

havior with at time dependent form of the diffusivity, but this
is found, wheré is the orientation angle anfly is the rota-  goes beyond the current work. For our purposes, we are inter-
tional diffusion coefficient with units réds. est in describing scaling laws that pertain to the relationship
Through the considerations of random forces acting orpf the probe and the solution, as explained further.
particles undergoing Brownian motion, Einstein and Smolu-  Considerf,, the drag experienced by a probe diffusing
chowski independently arrived at the fluctuation-dissipationin an infinitely dilute polymer solution. As polymers are

relation T more rigid than the solvent, their presence in solution pro-
D) = 2B (17)  vides an additional drag term depending on their diffusion
feo characteristics. Additionally, this increase is magnified at

whereD ) can be either the translational or rotational diffu- higher concentrations since the presence of polymers will ef-
sion coefficient/: is the Boltzmann constart, is the tem- ~ fectively increase the drag experienced by other polymers as
perature, andy) can be either the translational or rotational Well. If we now consider two increments in polymer con-
drag coefficient [7, 8]. Under the simplifying assumption of _centratlon,d(], then we can make the assumption that each
spherical particles, Stokes relatgg) to the dynamic viscos- increment increaseg by an amount(C') fdC, wherea(C)

ity 1 by is a concentration-dependent modifier fo After the first
f=6mR (18) increment,f = f, is then modified such that
and by fo— fo+afodC = f(C). (21)
fo = 8mR3, (19)  Then after the second increment,

whereR is the probe particle’s radius [13,16,20]. Combina- fo+ afodC — (fo + afodC)

tion of Eq. (18) or (19) with Eq. (17) directly relatésor Dy

to 7, yielding the well-known Stokes-Einstein relation [120]. +a(fo + afodC)dC = f(C +dC), (22)

or
1.3. Scaling Law fo — fo(1 +adC) — fo(1 + adC)?. (23)

At lengthscales associated with individual random walkersgeirrarg'nggéc + dg) N ft()C)_(l + adC), and taking
scaling laws for diffusion become suitable. Such is the casef = f(C'+dC) — f(C), we obtain

in crowded and disordered intracellular environments, where daf af (C) (24)
additional effective drag interactions between the probe and ac '

the individual solution molecules become important. Thusfinally, taking the limitdC' — 0, this integrates to

the definition of an effective local viscosity, described by the o

diffusion coefficient and which accounts for these interac-

tions, becomes relevant [21]. To introduce this effect and f(C) = foexp /dCa(C) : (25)
the introduction of active transport effects or Levy flights at 0

the probe level and bridge the gap between the macroscopiSypstituting this into Eq. (17) yields

and local viscosity scales, it is useful to consider the space-

fractional version of the diffusion equation, Eq. (13), given <
by D(C) = Dy exp —/dCa(C’) , (26)
0
OP(7,t) "y . I . .
T DV"P(7,t). (20)  whereDj is the probe diffusion coefficient corresponding to

fo atinfinite polymer dilution. Assuming the hydrodynamic
Here, P(7,t) is the probability of finding a particle at a po- interactions between polymers to scale similarly to those for
sition 7 at timet, andn > 0 is a numerical factor which hard spheres described by Mazur and van Saarloos, the in-
accounts for microscopic effects and alters the scaling of pategral in Eq. (26) can be shown to scale wite'' ~>* [23].
ticle diffusion, where the fractional derivative is still a scalar Here, 3 is an average of higher-order interactions determin-
operator [22]. It is worth noting that in the limiting case of iNg how readily a solution’s viscosity changes with poly-
n = 2 we retrieve the standard form of the diffusion equation.mer solution and: is a scaling factor depending directly on
Again, the rotational version of Eq. (20) takes the same formthe effective radii of gyration of both the polymers and the
For intermediate cases, there is no known closed-form androbe [23,24]. Substituting — 2z = v, we finally obtain

lytic solution. Instead, for diffusion in polymer solutions, one .

may use a stretched exponential model function to describe Do = exp (—=pC"), (27)
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the empirically verified universal scaling law for diffusion in A ' T '
polymer solutions [24—26]. Such a scale-flexible relationship 1.0 Exc. 5% Glucose
has been suggested through experiments under several poly- I _Ejsi)z/o(gﬁfc?;
mer models, namely reptation-scaling treatment, hydrody- 08 Em 30% Glucose
namic screening, and hydrodynamic scaling [27-29]. Com- |

bining with Egs. (17), (18), and (19), we obtain the normal-
ized local viscosity as a function of osmolyte concentration,
given by

0.4 -

T~ exp (BCY), (28) 02|
Mo

Normalized Intensity

with 7, as the viscosity at infinite dilution of the solute poly- 0.0
mer. We use this key equation to determine the concentration : ' : . : .

. . o . 300 400 500 600
dependence of viscosity, which is compared through various
experimental methods that probe viscosity at various length- Wavelength [nm]
and time- scales.

- 0

w. res
-
22 o

2. Probing Viscosity Experimentally

IRF
5% Glucose
30% Glucose

To experimentally verify the theoretical agreement between 10°¢
the macroscopic and the local viscosity, and to test the valid-
ity of Eq. (27), we independently probe different timescales
and lengthscales associated with each treatment. The macro-
scopic view of viscosity was assessed using rheometer mea-
surements at a lengthscale of a few centimeters and a
timescale close to seconds. Single particle tracking meth- 10°
ods should be ideal to study viscosity from the microscopic L
perspective of Brownian motion; however, technical difficul- O s 30 35 a0 45 50
ties restrict most implementations of these methods for ran- Time [ns]

dom walks in two dimensions [30]. Therefore, alternative

.FIGURE 1. (A) Fluorescence excitation and emission spectra of

methods have been developed which simplify the detem.]l'Rhodamine-llo in 5% and 30% (w/v) D-Glucose solutions. In

nation of the diffusion .coefficient. One of these mgthods 'Spoth cases, the peak excitation wavelength was 487 nm with peak
Fluorescence Correlation Spectroscopy (FCS), which probegmission wavelength at 521 nm. (B) Corresponding time-resolved
the diffusion at sub-millisecond timescales and which camjuorescence decays and fit function Eq. (40). Lifetimes for the

be implemented using inexpensive Field Programmable Gatgey and 30% D-Glucose solutions exhibited the same behavior with
Array (FPGA) boards as FCS hardware correlators [31,32]lifetimes of 3.964 and 3.978 ns, respectively. Instrument response
FCS is accomplished by correlating the time dependent flutunction (IRF) is shown in gray.

orescence intensity as fluorescent markers diffuse through a

small detection volume. Another method, time-resolved flu-
orescence anisotropy, allows for the study of rotational dif-
fusion through the measurement of random re-orientations  Structure Name Molecular Weight
of the tracer particle. By considering the angular rotation

of the particle, a similar viscous effect is observed. Thus,

time-resolved anisotropy measures the tracer’s rotational dif- Rhodamine-110 366.80
fusion coefficient, allowing determination of viscosity at the
nm lengthscale and ns timescale [33]. Following is a brief

1035

10%

Intensity [cps]

T

TABLE |. Compounds Used

introduction to these methods and brief descriptions of the o D-Glucose 180.16
materials used.
2.1. Glucose solutions and rhodamine-110 probe pH 7.5. The concentration was then verified using a refrac-

tometer to have a specific index of refraction that corresponds
To probe the viscosity at different timescales and lengthto the expected Glucose concentration.
scales, we created various solutions of D-Glucose (Table 1) For steady state fluorescence spectroscopy, Rhodamine-
ranging from0% to 30% concentration ir5% weight by vol- 110 (Table I) was brought into solution and used at 2 nM
ume increments in phosphate-buffered saline solution (PBS)r 100 nM solutions for FCS and time resolved measure-
containing 50 mM Phosphate buffer and 150 mM NaCl at ments. Rhodamine-110 is a particularly bright fluorophore
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with a well-characterized fluorescence lifetime, making it anplaced between the two plates of a T.A. Instruments (Rhe-
excellent candidate for these experiments [34]. olyst model) AR1000-N Rheometer and measured using mul-
For probe-based methods, the reporter molecules’ flutiple shear rates in order to determine the viscosity. The typ-
orescent properties must not change under the conditiorisal response of a Newtonian fluid whose shear rate and
of the experiments. Thus, the steady-state fluorescence eghear stress follow a linear relationship is seen when we
citation and emission spectra at all concentrations of gluplot the viscosity in Fig. 2 as a function of the shear rate.
cose were characterized. The excitation and emission wav&his observed response gives a constant viscosity, indicating
lengths for both the 5% and 30% D-Glucose solutions, seen lack of viscoelastic effects under varying levels of stress.
in Fig. 1A, were found to be 487 nm and 521 nm, respecAs expected, the viscosity increased with the increase of D-
tively. Glucose concentration, and eversa D-Glucose the solu-
No major difference is observed in the normalized spection still behaved as a Newtonian fluid.
tra, assuring that the fluorescence properties of Rhodamine-
110 are independent of the environment. 2.3. Fluorescence correlation spectroscopy

Spectral measurements are mostly insensitive to dynamic

quenching, particularly if the concentrations of the solutions’. luorescence correlation spectroscopy utilizes dilute solu-
of Rhodamine-110 are not carefully controlled. Thus, totions in the picomolar to micromolar range of diffusing parti-

show that quenching does not occur or is minimally presen?les to measure and correlate deviations from steady-state av-

in D-Glucose solutions, we measured the time-resolved fluotrage fluorescence intensity in a small confocal volume. The

rescence decays of Rhodamine-110 at all D-Glucose solutiotliffusing particles either are fluorophores or are labeled with

concentrations. Figure 1B shows representative normalizel#0rophores, which are excited by lasers and subsequently

fluorescence decay spectra at 5% and 30% D-Glucose soll-€Mit light, giving rise to the intensity fluctuations. The

tions, with the corresponding weighted residuals on top aftefOrelation allows the determination of average particle num-

the model function Eq. (40) is used for fitting. bers, photochemical effect timescales, dlffgsmn times, a_nd
The5% and30% solutions show very similar decays with other parameters at the nanoscale. Choosing concentrations

no major changes in the fluorescence lifetimes derived fronfor measurement relies on a balancing of the factors that fluc-

Eq. (40). Dynamic quenching would cause a shift towargduations from individual particles scale in the Poissonian dis-

shorter lifetimes as the concentration of the quencher intfiPution as1/\/(N), where{N) is the time-averaged par-
creased. This effect follows the Stern-Volmer relation [35].1iclé number in the confocal volume, and that the total fluo-
From this, it was concluded that Rhodamine-110 suffered€Scence signal must be sufficiently high compared to noise

minimal collision-induced deactivation processes. signal [36]. Therefore(\V) on the order of a fraction of a
particle to hundreds of particles is sufficient, depending on

2.2 Rheometer the used fluorophore.
The theory of FCS can be summarized as follows. Con-

Classical rheometry experiments consist of using a smabider a total-timeT') averaged fluorescence signal

amount of solution as a lubricant between two rotating plates.

T
By measuring the resistance to flow imparted on the plates 1
by the solution, the dynamic viscosity can be determined (F(t) = T /F(t)dt (29)
through Eq. (2). Small amounts of D-Glucose solutions were 0
Then, deviations from the average fluorescence are given by
10-2 B T T T T T T T ]
‘ e 5%Glucose ] OF(t) = F(t) — (F(t)). (30)
® 30% Glucose
I o | This can be re-written as and integral over the effective de-
iy beoo o o o O L e .
p tection volume
o
S R () = [ WERGENY, @D
‘0 [ ]
o L 14
(3]
§ wherer is the position vectodV (r) is a function describing
the geometry of the detection or confocal volume, afg
characterizes individual fluctuation contributions due to pa-
10* L

rameterss which can include fluctuations in quantum yield,

absorption cross-sections, and, in our case, local concen-
Shear rate [Hz] tration [36]. Plugging this into the autocorrelation function

FIGURE 2. Overlay of viscosity as a function of shear rate for Rho- which describes the self-similarity of a signal after a time

damine 110 in 5% and 30%(w/v) glucose solutions. A torque rangedefined by

of 107! to 102 mN-m, a frequency range do—* to 102 Hz, and

an angular velocity range abD~® to 102 (rad/s) were used.

1 " I n 1 " 1 N 1
200 400 600 800 1000

(SF(t)5F(t + 7))
(F(1))? ’

G(r) = (32)
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yields where the detection volume is defined by the? radii de-

, , , noted in terms ofv,,, andw,. The ratio of(w,, /w.) is used
= JTWEIW ) {3(s(x))8(s(x")))dVdV (33)  incalibration given a known standard. This Gaussian geom-
(J W (r)((s(r)))dV)? etry is commonly used due to its ease of integration and ac-
curacy in estimating the confocal volume [39]. However, this

This equation can then be solved by quantifying the parame

terss for a given experimental setup, leading to the separabillS not necessary, and more complicated geometries can be in-

ity in 6(s) of contributing factors with sufficiently differing troduced de_pendlng on the experimental setup, leading to a
timescales and simplifying the problem [36]. more complicated form (?f Eq. (34) [A,'O]'. .

For these experiments we use a home built microscope Bqth fluores.cen.ce triplet state kmgtlcs and translatlonal
adapted for confocal FCS measurements consists of a singﬁjéﬁusf'on' resultmg in local co.n'centratlon fluctqatlons, were
diode laser (Model LDH-D-C- 485 at 485 nm; PicoQuant, considered, allowing separability 6fs) and leading to
Germany) operating at 40 MHz on an Olympus IX73 body.

Freely diffusing Rhodamine-110 molecules are excited as G(7) = GliftusionGriplet; (36)
they pass through the focal point of a 60X, 1.2 NA collar-

corrected (0.17) Olympus objective. The power at the obWhere Glipiet is the term in parentheses in Eq. (34) multi-
jective was set at 12pW. The emitted fluorescence signal Plying the term corresponding iitiusion. Thus, Eq. (34)
was collected through the same objective and spatially filfepresents the correlation function of a single tracer species
tered using a 7th pinho|e to deﬁne an eﬁective Confoca| diﬁusing in a Chemica”y equi”brated SO|uti0n deteCted in a
detection volume. The emitted fluorescence was divided int§onfocal volume described by a three-dimensional Gaussian
parallel and perpendicular polarization components througfunction.

band pass filters, ET525/50 for detecting “green” fluores-  Finally, the diffusion coefficient can be determined using
cence photons. Two green PMA Hybrid detectors (PMAthe diffusion timetgi as

40 PicoQuant, Germany) were used for photon counting.

A time-correlated single photon counting (TCSPC) module D= wiy/(zltdiﬁ). (37)
(HydraHarp 400, PicoQuant, Germany) with a Time-Tagged

Time-Resolved (TTTR) mode and two synchronized inputD is again related to the viscosity through Eq. (17) and (18).
channels were used for data registration and off-line fluores- we use FCS, with Rhodamine-110 as our tracer parti-
cence fluctuation analysis, similar to what has been used bete, to determine the diffusion coefficient as molecules travel
fore [37]. Software correlation of TTTR data files was carriedacross a confocal volume withlge? radius of~ 250 nm in

out to compute correlation curves that could cover over 12 orsyb millisecond timescales. As molecules traverse the confo-
ders of magnitude in time with a multi-tau algorithm [38].  calillumination volume, they emit light after being excited by

It can be shown that the analytic solution to describe flua pulsed laser. When they exit the confocal volume the signal

G(7)

orescence correlation in our confocal setup is givenas  for that molecule stops. This causes fluctuations in intensity,
1 1 which are recorded by the photon detectors. When the flu-

G(te) =1+ N1 = : 7 orescence intensity is correlated, these fluctuations generate
(L=wr) gy Lo a decay function that can be modeled with Eq. (34), from

Laif which the diffusion coefficient can be extracted. From this

. 1 diffusion coefficient, the viscosity of the solution as sensed
\/ w2t by the probe is found. Fig. 3 shows the correlation func-
()

tion and the model fits for Rhodamine-11046% and 30%
glucose solutions. The decrease in the diffusion constant,
(1= zp + zpexp(—t./tr)), (34) orincrease in viscosity, at higher concentrations of glucose

_ _ ~causes a shift in the characteristic correlation time towards
where N is the mean number of molecules in the detectionionger correlation times.

volume,z is the fraction of molecules exerting triplet state

kinetics with characteristic timgr, t.. is the correlation time, . .

tair = w2,/(4D) is the diffusion time related to the geomet- 2-4- Time-resolved anisotropy

rical parametetv,,,, which describes the detection volume . S ]

along withw,, D is the diffusion coefficient, and 1 is used as The rotational diffusion is affected by the rc_>tat|onal drag
the no-correlation baseline value [39]. The detection volumdorce exerted on the probe by D-Glucose. This effect can be
is assumed to be a three-dimensional Gaussian in cartesigienitored by studying the rotational correlation time in time-

W, Laift

coordinates of the form resolved fluorescence anisotropy measurements. A brief
theoretical treatment of this technique is as follows: con-
W (z,y, 2) = exp (_2(332 + y2)/w§y) sider a population of fluorophores,, of species.. Then
‘ ni.4+ + nio = n;, Wheren; . is the number of particles in
x exp (=227 /w?) (35) ‘ it . ;
p z) the excited state and, ¢ is the number in the ground state.
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5 rary Gl | LA | ¥ e i | ¥ e LA o 1 1
m ] pgrpendmular components of the fluorescence decayis
E o foimhpmon oy ovenby
E ] Fyv(t) — GFyg(t
12 r(t) = 440 vir(f) : (43)
B Fyy(t)+ 2GFy g (t)
o 5% Glucose . . .
= 1.0 30% Glucose whereG is an instrumental correction factor to account for
g changes in the the detection efficiency given wavelength and
5 0&r polarization. HereFy and Fyy are Fj and F, , respec-
g 0.6 tively, after a correction for the differences in detection ef-
8 ' ficiency G is made [41]. This G factor is easily measured
w® 04} using horizontally polarized excitation and the fluorescence
% decay in both polarization conditions. Generally, it is pos-
=z 02 sible to model the time-dependent anisotropy decay using a
0ol multi-exponential decay similar to Eq. (40) given as
-3 -2 -1 0 1 2 3 7t
10° 102 10" 10° 10" 10° 10 F(t) = Sibi exp () 7 (a4)
Correlation time t_ [ms] Pi

FIGURE 3. Overlay of Fluorescence Correlation Spectroscopy whererq = X;b; is the fundamental anisotropy and are
curves and the corresponding fit model function Eq. (34) for the fractional anisotropies that decay with correlation times
Rhodmaine-110 in 5% and 30% (w/v) D-Glucose solutions. The . ‘which in turn are related to the rotational diffusion coef-

confocal volume’s ratio of its height to its waist is given as a fjsjent Dq. In the case of a sphere where there is only one
constant 4.609 for both concentrations. The time of diffusion for rotational correlation timey, this relation is given by

Rhodamine-110 was 0.192 ms for the 5% solution and 0.597 ms
for the 30% solution. The fraction of triplet states, givenay, 1 4nnR3
was 0.093 for 5% and 0.130 for 30%. The relaxation timeor p= 6D = 3T’
5% and 30% are 0.003 to 0.008 ms, respectively. 4 B

(45)

_ . o thus, relating the rotational correlation time directly to the
Given the fluorescence lifetime;, and the excitation inten- dynamic viscosity as the particle rotates. More complex ex-
sity, I(¢), the rate of change in the excited state population i,ressions are predicted for nonsymmetric probe particles, but
given by the well-known rate equation, this goes beyond the scope of the exercise. In our case, we

dn; + N 4+ assume that the tracer particle, Rhodamine-110, is a sphere.
a + 140l (2). (38) To assure that photophysical factors do not affect our
Solving this equation for decay after an excitation pulse (suclP"oP€ experiments, we first measured the steady state fluores-
thatZ(t > 0) = 0 and we need only consider> 0) yields cence spectra, followed by ensgmble time-correlated single-
photon-counting (eTCSPC) using a Fluorolog3 spectrofiu-
ni 4 (t) = ni 4 (0) exp (_t> _ (39) orometer in T-shape_with a PDX detector (Horiba Yvon,
’ ’ Ti USA) system. The light from a xenon lamp was used to

Utilizing the facts that the fluorescence intensity is directlycollect excitation and emission spectra using an excitation
proportional to the number of excited states of fluorophoregnonochromator set at 494 nm and an emission monochro-
and that the total intensity is the sum of species contributionghator at 520 nm, accordingly. The scanning monochroma-
the fluorescence intensity decay can be generally treated ad@ Slit was set to 1 nm while the fixed monochromator slit

multi-exponential decay function using was set to 5 nm. Spectra measurements were collected un-
der magic angle conditions by using a vertical polarized ex-
F(t) = Sz; exp (t) ) (40) citation source and placing an emission polarizer to 94.7
i For time-resolved fluorescence and time-resolved anisotropy
Herez; are the pre-exponential intensity factors. measurements, the excitation source was a NanoLED 485 nm

For time-resolved anisotropy, the parallel and perpendicdiode laser (NanoLED 485L, Horiba, Country) operating at
ular decay components of the fluorescer¢gt) andF, (t), 1 MHz. The emission monochromator slit was set to 16 nm

are considered by (emission path). The signal of the photon counting unit was
1 sent to a FluoroHub-B with a bin width of 55 ps. Fluores-

Fy(t) = gF(t) 14 2r(t)], (41)  cence intensity decays in all polarizations were collected to

determine the proper detection efficiency factor and deter-

Fi(t) = lF(t) [1—r(t)], (42)  mine time-resolved anisotropy. Figure 4 shows the time-

3 resolved anisotropy decays of Rhodamine-110 in 5% and

whereF'(t) is the time-resolved fluorescence decay at magi30% D-Glucose solutions. As expected, the rotational dif-
angle conditions following Eqg. (40) and(t) is the time-  fusion shows a slowing behavior in the anisotropy decay as
dependent anisotropy. In terms of the measured parallel arttie concentration of D-Glucose increases. By analyzing the
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T

To evaluate the conditions of the experiments and how
_g:ﬁ%ec';’lﬁzzze - that introduces potential errors, we used the data collected

with the Rheometer at different shear frequencies. Frequen-
cies ranging from 0-1000 Hz were used to evaluate the mean
i determined viscosity and standard deviation as representa-
tions of uncertainty in the methodology.

0.3 |

Anisotropy
o
N

4
-

T 3. Discussion

Different methodologies capture the drag frictional force at
T — various time and length scales. For example, Fig. 5A shows

20 22 a linear correlation between the rotational and translational
Time [ns] diffusion time. These measurements show a link between the
FIGURE 4. Overlay of time-dependent anisotropy decays and theinteractions that occur at the nanoscale range to the intera_c-
corresponding fit model function Eq. (44) for Rhodmaine-110 in tions that occur over the span of hundreds of nanometers in
5% and 30% (w/v) D-Glucose solutions. From this specific correla- the confocal illumination volume. This relationship between
tion, the rotational speeds in the 5% and 30% D-Glucose solutiongotational and translational diffusion can further be seen
were 100+0.002 ps and 385:0.001 ps, respectively.

0.0

A 2 (Fotational vs. Translational Viscosity

TABLE Il. Fit Parameters. . AN B —
Experiment 15 v 3.6 ]
Rheometer 0.0133 1.32 3.2+ .
Translational 0.0079 1.47 28l i
Rotational 0.0026 1.81 r 1
o 241 |
Average 0.0079 1.53 \g-_ 20l i .
Fit of Averaged Data 0.0049 1.62 al ]
1.6 | .
: L . 121 -
the decay function and fitting it with the model function, I l

Eg. (44), the average rotational correlation time is found. 08t . . o+ . v .0
Then, Eqg. (45) is used to calculate the viscosity. 1.0 1.5 2.0 2.5 3.0 3.5

, taifr/tdiff(o)
2.5. Error analysis B
Experimental reproducibility was evaluated using triplicated 4.0 — Y'slco.s'tly I\lllelaslure;m'en'ts‘ :
solutions of Rhodamine-110 in the FCS experiments. Each I . ) T
3.6 - o Rheometer Viscosity &

measurement was carried out at different times and with dif- i o Translatonal
ferent starting stock conditions. The mean and standard devi- 3.2+ " R;a::n';’l a 0
ation amongst these results was used to report our parameter: 28l l

. ) ) . - Eqg.28 =
The uncertainty of experimental error was manifested using A .
24 -

the standard deviation. =i 7

The statistical uncertainties of the fits from the time- & o[ 4
resolved anisotropy decays were estimated by exploring the -
x2-surface of the model function given by Eq. (46). The 16 i ]
error-margins of the individual fitting parameters are the pro- 12 -
jections from the individual parameter-dimensions. The max- o8l & ]
imum allowedy? .., for alo confidence interval is given by ) 0 5 10 15 20 25 30

Glucose Concentration
X?n i = X?n . 3 (46) FIGURE 5. Viscosity comparisons. A) A direct comparison of the
’ ’ N measurement rotational motion with that of the translational motion

of Rhodamine-110. B) A representation of the normalized viscos-
whereN is the number of fit points ang? ;. is the reduced  jty change as a function of D-Glucose concentration for all three
chi-squared value of the best fit [42]. All free fit parametersexperiments. The red curve represents the fit for averaged data,
are varied simultaneously in a random manner. given by Eq. (28).
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through the fact that both measurements sense the same sheaert stress while moving through the media; thus, no turbu-
viscosity. Both methods do not exert significant stress on théent or convective effects must be accounted for, consistent
fluid, thus it can be considered the ideal shear-less conditiowith fluid behavior for low Reynolds number hydrodynam-
of a Newtonian fluid. While the rheomtery does induce sheaics. Combining classical rheology, FCS, and time-resolved
stress, we noted that there is no dependence of the viscosinisotropy allows us to show that probe diffusion senses an
on this stress. effective local viscosity consistent with the macroscopic def-
inition of shear viscosity. A similar approach can be applied
to complex fluids, where the scaling behavior is relevant, and
thus characterize the possible divergence between the local

To reduce errors in calibration, the viscosity at different CON-4d macroscopic viscosities. Furthermore, these methodolo-

centrations of Glucose was normalized to the viscosity of thgjies should be viable for future measurements of viscosities

buffer solution /7o) (Fig. 5B). Comparing the viscosity ;, compressible or other non-Newtonian fluids with either no
as derived from different experimental measurement, we ob

) or only small modifications to the experimental setup, assum-
served that all values follow an exponential growth curve as g, those materials are otherwise suitable for fluorescence

function of the concentration of D-Glucose. The exponentiakg hniques. For example, an external pressure source could
growth in Fig. 5B was fit with Eq. (28) to evaluate the ex- pq introquced to compress a sample in a T-shaped confocal
pected sce_llmg law dependgnce of viscosity. _F|tt|n_g the thregetup for FCS and anisotropy measurements without inter-
data sets mdependently y',eld,s the results given '_n Tgble IIfering with the paths of the lasers to the sample or of light
Due to the apparent similarity in the data as shown in Fig. 5Aqqm the sample to the detectors. To this end, the modularity
the average of the fit parameters was calculated and the ayz ooy setups is a great aid. Additionally, classical rheom-
eraged data was also fit all together, yielding similar value%try experiments for comparison are also usable in pressure-

allso found in Table Il. Note that is specific to the dimen- sensitive experiments and, in fact, Maxwell's study of gas
sions and type of solute osmolyte and probe used, given thagqgities utilized such a setup with glass disks [6].
assumptions of Eqg. (28) such as the dependence on the radii

of gyration inz. However, we determined that this parameter
is actually independent of dimensionality because the probd. Acknowledgements
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In summary, for a non-compressible Newtonian fluid, in

which viscosity is independent of stress, probe viscosity (lo-

cal microscopic) and shear viscosity (macroscopic) are iden-

tical. While probing the local viscosity, the probe does not

3.1. Power law of viscosity
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