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Revisiting viscosity from macroscopic to nanoscale regimes
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The response of a fluid to deformation by shear stress is known as shear viscosity. This concept arises from a macroscopic view and was
first introduced by Sir Isaac Newton. Nonetheless, a fluid is a series of moving molecules that are constrained by the shape of the container.
Such a view begs the treatment of viscosity from a microscopic or molecular view, a task undertaken by both Einstein and Smoluchowski
independently. Here we revisit the concept of viscosity and experimentally verify that the viscosity at a molecular level, which describes
the drag force, is the same as the macroscopic shear viscosity; hence, bridging different length- and time-scales. For capturing the shear
stress response of a fluid, we use classical rheometry; at a molecular level we use probe diffusion to determine the local viscosity from
the translational and rotational motions. In these cases, we use Fluorescence Correlation Spectroscopy and Time Resolved Fluorescence,
respectively. By increasing the osmolyte (Glucose-D) concentration, we change the viscosity and find that these methods provide a unified
view of viscosity, bridging the gap between the macroscopic and nanoscale regimes. Moreover, Glucose’s viscosity follows a scaling factor
more commonly associated to solutions of branched polymer because the probe dimensions are comparable to the dimensions of the osmolyte
that exerts the drag.

Keywords: Fluorescence correlation spectroscopy; rheometry; time-resolved fluorescence anisotropy; probe diffusion; macroviscosity; local
viscosity.
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1. Introduction

The viscosity of a fluid describes the internal drag forces
within the fluid as it is subjected to stress [1]. Accurate de-
scriptions of viscosity have a broad range of applications,
from the characterization of blood flow, as it relates to corol-
lary heart disease, to optimizing lubricants for mechanical
systems [2,3]. Isaac Newton first described fluid viscosity in
his 1687Principia, where he stated Newton’s Law of Viscos-
ity, describing the response of a continuous, incompressible
fluid to shear stress [4]. In the 1840s, the Navier-Stokes equa-
tion was derived and used to describe the diffusion of totally
conserved quantities through a continuous fluid [5]. In 1866,
James Maxwell reported experimental results which verified
his earlier calculations showing viscosity of a gas is depen-
dent on the mean free path of its particles [6]. Later, a micro-
scopic description of diffusion grounded in Robert Brown’s
1827 observations of pollen particles randomly moving was
independently developed by Albert Einstein in 1905 and by
Marian Smoluchowski in 1906, resulting in the Einstein-
Smoluchowski relation describing the probe diffusion coef-
ficient [7, 8]. Through George Stokes’ 1851 derivation of
Stokes’ Law, the diffusion coefficient is related back to the
fluid viscosity describing the frictional drag felt by individ-
ual particles in a continuous media [9].

In the broadest mathematical formalism, viscosity is
given by the viscosity tensor,µ, in

τ = 2µε, (1)

relating the viscous stress tensor for a fluid,τ , and strain rate
tensor,ε [10]. For Newtonian fluids,µ has three indepen-
dent components: the bulk, dynamic, and rotational viscosi-

ties which describe fluid response to compressive forces, re-
sistance to shear, and the coupling between flow and indi-
vidual particle rotations, respectively [10]. As was done his-
torically, compatible expressions for dynamic viscosity and
related quantities can be derived under two different theo-
retical models of fluids. The first model is a macroscopic,
continuum one relating diffusion to concentration gradients.
The second is a statistical, Brownian motion model of sin-
gle particle diffusion at local scales. Introduction of the term
viscosity from both perspectives is followed by three differ-
ent approaches to experimentally determine the viscosity of
a Newtonian fluid. These three experimental methods range
in scales from nm to cm and from ns to seconds. The shear
stress of solutions of glucose at different concentrations was
studied using a rheometer. For the probing of local viscosity,
translational and rotational diffusion of Rhodamine-110 were
observed in glucose solution utilizing Fluorescence Correla-
tion Spectroscopy (FCS) and time-resolved anisotropy mea-
surements, respectively.

1.1. Continuous fluid

Empirically verified by Newton, Newton’s Law of Viscosity
is

F/A = η∇v, (2)

whereF is the force in contact with a liquid over a cross sec-
tional areaA, ∇v is the velocity gradient in the fluid, andη
is defined as the shear, or dynamic, element of the viscosity
tensor [11,12]. This expression is a special case of Eq. (1)
for shear stress applied to isotropic, incompressible Newto-
nian fluids, in which caseµ reduces to the dynamic viscosity,
η [13].
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The dynamics of fluids, including diffusive processes
which depend on the viscosity of the fluid, can also be de-
scribed using the Navier-Stokes equation. Let us begin from
the Cauchy Momentum Equation, a statement of conserva-
tion of momentum for a continuum:

∂p
∂t

+∇ · Jp = s, (3)

wherep = ρu is the momentum density defined by the mass
density (ρ) times velocity (u), t is time,Jp is the momentum
density flux out of the volume, ands is a source term cor-
responding to stresses and forces imparting momentum on
the system. Rewriting in terms ofρ, u, the material deriva-
tive D/Dt, the sum of externally-caused accelerations,g, the
pressure,p, and the stress tensor,τ , we obtain

Dρu
Dt

= ρg −∇p +∇ · τ. (4)

Plugging in Eq. (1), whereε = (1/2)(∇u+∇uT )−(1/3)∇·
uδij , Eq. (4) we obtain

Dρu
Dt

= ρg −∇p

+∇ ·
(

2µ

(
1
2
(∇u +∇uT )− 1

3
∇ · uδij

))
. (5)

Taking the limit of an incompressible, Newtonian fluid,ρ is a
constant and∇ · u = 0. Further, takingµ as a constant with
respect to position,∇ · τ reduces toµ∇2u and we are left
with

ρ
Du
Dt

= ρg −∇p + µ∇2u. (6)

Finally, we take the limits in which the external and hydro-
static force contributions are negligible and there is no net
fluid flow. The net result is that the material derivative re-
duces to the partial time derivative and the external force
terms become0, leaving

ρ
∂u
∂t

= µ∇2u. (7)

This is the linear Navier-Stokes momentum density equation
for an incompressible, non-convecting fluid subjected to vis-
cous forces [14]. Equation (7) is essentially the momentum
diffusion equation and is closely related to Eq. (2). A sim-
ilar analysis can be performed beginning from the conserva-
tion of amount of fluid in terms of concentration,C, with no
sources:

∂C

∂t
+∇ · Jfluid = 0. (8)

Making use of the empirically verified Fick’s First Law,

Jfluid = −D∇C, (9)

whereD is defined as the translational diffusion coefficient,
we obtain

∂C

∂t
= D∇2C. (10)

This is the non-convective, un-sourced diffusion equation in
terms of concentration, or Fick’s Second Law for constant
D [1, 15]. D describes the rate at which a substance (either
a continuum or a single particle) diffuses through medium.
D depends on the viscous drag force exerted by the fluid.
D can be explicitly related to the viscosity experienced by
a probe through the Stokes-Einstein relation discussed in the
next section [16].

1.2. Thermally-driven random walk

Viscosity can also be defined by considering individual par-
ticles undergoing Brownian motion in media. In Brownian
motion, each individual probe particle undergoes an effec-
tive random walk driven by thermal energy [17]. This model
allows a derivation of the diffusion equation from a micro-
scopic, statistical perspective which matches the continuum
case. Let us consider a particle randomly walking in space
with probabilitiesp andq to travel either right or left in thêx
direction a distanceδ during timestepτ . Then the probability
of finding the particle at positionx at timet + τ is given by

P (x, t + τ) = pP (x− δ, t) + qP (x + δ, t). (11)

By doing a Taylor expansion to first order int and second
order inx in the continuous limit (smallτ andδ), we obtain
that the first non-vanishing contribution leads to

∂P (x, t)
∂t

+ (p− q)
∂x

∂t

∂P (x, t)
∂x

= D
∂2P (x, t)

∂x2
, (12)

the convective diffusion equation, with translational diffusion
coefficientD = δ2/2τ [18]. In our case of unbiased walking,
p = q and this reduces to

∂P (x, t)
∂t

= D
∂2P (x, t)

∂x2
. (13)

Finally, assuming thatD is the same in each direction and
summing over the three Cartesian coordinates, we obtain

∂P (r, t)
∂t

= D∇2P (r, t), (14)

the analog of Eq. (10) for a single probe diffusing through a
fluid. These equations describe the same phenomena under
the substitutionP = C, or taking particle concentration for
many particles as a probability distribution. This is seen in
their shared solution

〈r2〉 = 6Dt, (15)

where〈r2〉 is the mean-square position for an ensemble of
particles at timet [1]. The ergodic principle assures us that
the ensemble average〈. . .〉 is equal to the time average [19].
An identically structured derivation can also be performed by
considering an angular random walk, or the random reorien-
tation of a probe molecule such that the probability of finding
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the particle in some orientation is given in an identical form
to Eq. (11). In this case the solution

〈θ2〉 = 2Dθt, (16)

is found, whereθ is the orientation angle andDθ is the rota-
tional diffusion coefficient with units rad2/s.

Through the considerations of random forces acting on
particles undergoing Brownian motion, Einstein and Smolu-
chowski independently arrived at the fluctuation-dissipation
relation

D(θ) =
kBT

f(θ)
, (17)

whereD(θ) can be either the translational or rotational diffu-
sion coefficient,kB is the Boltzmann constant,T is the tem-
perature, andf(θ) can be either the translational or rotational
drag coefficient [7, 8]. Under the simplifying assumption of
spherical particles, Stokes relatedf(θ) to the dynamic viscos-
ity η by

f = 6πηR, (18)

and by
fθ = 8πηR3, (19)

whereR is the probe particle’s radius [13,16,20]. Combina-
tion of Eq. (18) or (19) with Eq. (17) directly relatesD or Dθ

to η, yielding the well-known Stokes-Einstein relation [I20].

1.3. Scaling Law

At lengthscales associated with individual random walkers,
scaling laws for diffusion become suitable. Such is the case
in crowded and disordered intracellular environments, where
additional effective drag interactions between the probe and
the individual solution molecules become important. Thus,
the definition of an effective local viscosity, described by the
diffusion coefficient and which accounts for these interac-
tions, becomes relevant [21]. To introduce this effect and
the introduction of active transport effects or Levy flights at
the probe level and bridge the gap between the macroscopic
and local viscosity scales, it is useful to consider the space-
fractional version of the diffusion equation, Eq. (13), given
by

∂P (~r, t)
∂t

= D∇nP (~r, t). (20)

Here,P (~r, t) is the probability of finding a particle at a po-
sition ~r at time t, andn > 0 is a numerical factor which
accounts for microscopic effects and alters the scaling of par-
ticle diffusion, where the fractional derivative is still a scalar
operator [22]. It is worth noting that in the limiting case of
n = 2 we retrieve the standard form of the diffusion equation.
Again, the rotational version of Eq. (20) takes the same form.
For intermediate cases, there is no known closed-form ana-
lytic solution. Instead, for diffusion in polymer solutions, one
may use a stretched exponential model function to describe

such intermediate cases. This function is found through con-
siderations of the kinds of drag exerted by polymers on dif-
fusing probes and on each other. Other variations of the dif-
fusion equations are also use to describe the sub diffusive be-
havior with at time dependent form of the diffusivity, but this
goes beyond the current work. For our purposes, we are inter-
est in describing scaling laws that pertain to the relationship
of the probe and the solution, as explained further.

Considerf0, the drag experienced by a probe diffusing
in an infinitely dilute polymer solution. As polymers are
more rigid than the solvent, their presence in solution pro-
vides an additional drag term depending on their diffusion
characteristics. Additionally, this increase is magnified at
higher concentrations since the presence of polymers will ef-
fectively increase the drag experienced by other polymers as
well. If we now consider two increments in polymer con-
centration,dC, then we can make the assumption that each
increment increasesf by an amounta(C)fdC, wherea(C)
is a concentration-dependent modifier tof . After the first
increment,f = f0 is then modified such that

f0 → f0 + af0dC = f(C). (21)

Then after the second increment,

f0 + af0dC → (f0 + af0dC)

+ a(f0 + af0dC)dC = f(C + dC), (22)

or
f0 → f0(1 + adC) → f0(1 + adC)2. (23)

Rearrangingf(C + dC) = f(C)(1 + adC), and taking
df = f(C + dC)− f(C), we obtain

df

dC
= af(C). (24)

Finally, taking the limitdC → 0, this integrates to

f(C) = f0 exp




C∫

0

dCa(C)


 . (25)

Substituting this into Eq. (17) yields

D(C) = D0 exp


−

C∫

0

dCa(C)


 , (26)

whereD0 is the probe diffusion coefficient corresponding to
f0 at infinite polymer dilution. Assuming the hydrodynamic
interactions between polymers to scale similarly to those for
hard spheres described by Mazur and van Saarloos, the in-
tegral in Eq. (26) can be shown to scale withβC1−2x [23].
Here,β is an average of higher-order interactions determin-
ing how readily a solution’s viscosity changes with poly-
mer solution andx is a scaling factor depending directly on
the effective radii of gyration of both the polymers and the
probe [23,24]. Substituting1− 2x = ν, we finally obtain

D

D0
= exp (−βCν) , (27)
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the empirically verified universal scaling law for diffusion in
polymer solutions [24–26]. Such a scale-flexible relationship
has been suggested through experiments under several poly-
mer models, namely reptation-scaling treatment, hydrody-
namic screening, and hydrodynamic scaling [27-29]. Com-
bining with Eqs. (17), (18), and (19), we obtain the normal-
ized local viscosity as a function of osmolyte concentration,
given by

η

η0
= exp (βCν) , (28)

with η0 as the viscosity at infinite dilution of the solute poly-
mer. We use this key equation to determine the concentration
dependence of viscosity, which is compared through various
experimental methods that probe viscosity at various length-
and time- scales.

2. Probing Viscosity Experimentally

To experimentally verify the theoretical agreement between
the macroscopic and the local viscosity, and to test the valid-
ity of Eq. (27), we independently probe different timescales
and lengthscales associated with each treatment. The macro-
scopic view of viscosity was assessed using rheometer mea-
surements at a lengthscale of a few centimeters and a
timescale close to seconds. Single particle tracking meth-
ods should be ideal to study viscosity from the microscopic
perspective of Brownian motion; however, technical difficul-
ties restrict most implementations of these methods for ran-
dom walks in two dimensions [30]. Therefore, alternative
methods have been developed which simplify the determi-
nation of the diffusion coefficient. One of these methods is
Fluorescence Correlation Spectroscopy (FCS), which probes
the diffusion at sub-millisecond timescales and which can
be implemented using inexpensive Field Programmable Gate
Array (FPGA) boards as FCS hardware correlators [31,32].
FCS is accomplished by correlating the time dependent flu-
orescence intensity as fluorescent markers diffuse through a
small detection volume. Another method, time-resolved flu-
orescence anisotropy, allows for the study of rotational dif-
fusion through the measurement of random re-orientations
of the tracer particle. By considering the angular rotation
of the particle, a similar viscous effect is observed. Thus,
time-resolved anisotropy measures the tracer’s rotational dif-
fusion coefficient, allowing determination of viscosity at the
nm lengthscale and ns timescale [33]. Following is a brief
introduction to these methods and brief descriptions of the
materials used.

2.1. Glucose solutions and rhodamine-110 probe

To probe the viscosity at different timescales and length-
scales, we created various solutions of D-Glucose (Table I)
ranging from0% to 30% concentration in5% weight by vol-
ume increments in phosphate-buffered saline solution (PBS)
containing 50 mM Phosphate buffer and 150 mM NaCl at

FIGURE 1. (A) Fluorescence excitation and emission spectra of
Rhodamine-110 in 5% and 30% (w/v) D-Glucose solutions. In
both cases, the peak excitation wavelength was 487 nm with peak
emission wavelength at 521 nm. (B) Corresponding time-resolved
fluorescence decays and fit function Eq. (40). Lifetimes for the
5% and 30% D-Glucose solutions exhibited the same behavior with
lifetimes of 3.964 and 3.978 ns, respectively. Instrument response
function (IRF) is shown in gray.

TABLE I. Compounds Used

Structure Name Molecular Weight

Rhodamine-110 366.80

D-Glucose 180.16

pH 7.5. The concentration was then verified using a refrac-
tometer to have a specific index of refraction that corresponds
to the expected Glucose concentration.

For steady state fluorescence spectroscopy, Rhodamine-
110 (Table I) was brought into solution and used at 2 nM
or 100 nM solutions for FCS and time resolved measure-
ments. Rhodamine-110 is a particularly bright fluorophore
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with a well-characterized fluorescence lifetime, making it an
excellent candidate for these experiments [34].

For probe-based methods, the reporter molecules’ flu-
orescent properties must not change under the conditions
of the experiments. Thus, the steady-state fluorescence ex-
citation and emission spectra at all concentrations of glu-
cose were characterized. The excitation and emission wave-
lengths for both the 5% and 30% D-Glucose solutions, seen
in Fig. 1A, were found to be 487 nm and 521 nm, respec-
tively.

No major difference is observed in the normalized spec-
tra, assuring that the fluorescence properties of Rhodamine-
110 are independent of the environment.

Spectral measurements are mostly insensitive to dynamic
quenching, particularly if the concentrations of the solutions
of Rhodamine-110 are not carefully controlled. Thus, to
show that quenching does not occur or is minimally present
in D-Glucose solutions, we measured the time-resolved fluo-
rescence decays of Rhodamine-110 at all D-Glucose solution
concentrations. Figure 1B shows representative normalized
fluorescence decay spectra at 5% and 30% D-Glucose solu-
tions, with the corresponding weighted residuals on top after
the model function Eq. (40) is used for fitting.

The5% and30% solutions show very similar decays with
no major changes in the fluorescence lifetimes derived from
Eq. (40). Dynamic quenching would cause a shift towards
shorter lifetimes as the concentration of the quencher in-
creased. This effect follows the Stern-Volmer relation [35].
From this, it was concluded that Rhodamine-110 suffered
minimal collision-induced deactivation processes.

2.2. Rheometer

Classical rheometry experiments consist of using a small
amount of solution as a lubricant between two rotating plates.
By measuring the resistance to flow imparted on the plates
by the solution, the dynamic viscosity can be determined
through Eq. (2). Small amounts of D-Glucose solutions were

FIGURE 2. Overlay of viscosity as a function of shear rate for Rho-
damine 110 in 5% and 30%(w/v) glucose solutions. A torque range
of 10−1 to 102 mN·m, a frequency range of10−4 to 102 Hz, and
an angular velocity range of10−8 to 102 (rad/s) were used.

placed between the two plates of a T.A. Instruments (Rhe-
olyst model) AR1000-N Rheometer and measured using mul-
tiple shear rates in order to determine the viscosity. The typ-
ical response of a Newtonian fluid whose shear rate and
shear stress follow a linear relationship is seen when we
plot the viscosity in Fig. 2 as a function of the shear rate.
This observed response gives a constant viscosity, indicating
a lack of viscoelastic effects under varying levels of stress.
As expected, the viscosity increased with the increase of D-
Glucose concentration, and even at30% D-Glucose the solu-
tion still behaved as a Newtonian fluid.

2.3. Fluorescence correlation spectroscopy

Fluorescence correlation spectroscopy utilizes dilute solu-
tions in the picomolar to micromolar range of diffusing parti-
cles to measure and correlate deviations from steady-state av-
erage fluorescence intensity in a small confocal volume. The
diffusing particles either are fluorophores or are labeled with
fluorophores, which are excited by lasers and subsequently
re-emit light, giving rise to the intensity fluctuations. The
correlation allows the determination of average particle num-
bers, photochemical effect timescales, diffusion times, and
other parameters at the nanoscale. Choosing concentrations
for measurement relies on a balancing of the factors that fluc-
tuations from individual particles scale in the Poissonian dis-
tribution as1/

√
〈N〉, where〈N〉 is the time-averaged par-

ticle number in the confocal volume, and that the total fluo-
rescence signal must be sufficiently high compared to noise
signal [36]. Therefore,〈N〉 on the order of a fraction of a
particle to hundreds of particles is sufficient, depending on
the used fluorophore.

The theory of FCS can be summarized as follows. Con-
sider a total-time (T ) averaged fluorescence signal

〈F (t)〉 =
1
T

T∫

0

F (t)dt. (29)

Then, deviations from the average fluorescence are given by

δF (t) = F (t)− 〈F (t)〉. (30)

This can be re-written as and integral over the effective de-
tection volume

δF (t) = κ

∫

V

W (r)δ(s(r))dV, (31)

wherer is the position vector,W (r) is a function describing
the geometry of the detection or confocal volume, andδ(s)
characterizes individual fluctuation contributions due to pa-
rameterss which can include fluctuations in quantum yield,
absorption cross-sections, and, in our case, local concen-
tration [36]. Plugging this into the autocorrelation function
which describes the self-similarity of a signal after a timeτ ,
defined by

G(τ) =
〈δF (t)δF (t + τ)〉

〈F (t)〉2 , (32)
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yields

G(τ) =
∫ ∫

W (r)W (r′)〈δ(s(r))δ(s(r′))〉dV dV ′

(
∫

W (r)〈δ(s(r))〉dV )2
. (33)

This equation can then be solved by quantifying the parame-
terss for a given experimental setup, leading to the separabil-
ity in δ(s) of contributing factors with sufficiently differing
timescales and simplifying the problem [36].

For these experiments we use a home built microscope
adapted for confocal FCS measurements consists of a single
diode laser (Model LDH-D-C- 485 at 485 nm; PicoQuant,
Germany) operating at 40 MHz on an Olympus IX73 body.
Freely diffusing Rhodamine-110 molecules are excited as
they pass through the focal point of a 60X, 1.2 NA collar-
corrected (0.17) Olympus objective. The power at the ob-
jective was set at 120µW. The emitted fluorescence signal
was collected through the same objective and spatially fil-
tered using a 70µm pinhole to define an effective confocal
detection volume. The emitted fluorescence was divided into
parallel and perpendicular polarization components through
band pass filters, ET525/50 for detecting “green” fluores-
cence photons. Two green PMA Hybrid detectors (PMA
40 PicoQuant, Germany) were used for photon counting.
A time-correlated single photon counting (TCSPC) module
(HydraHarp 400, PicoQuant, Germany) with a Time-Tagged
Time-Resolved (TTTR) mode and two synchronized input
channels were used for data registration and off-line fluores-
cence fluctuation analysis, similar to what has been used be-
fore [37]. Software correlation of TTTR data files was carried
out to compute correlation curves that could cover over 12 or-
ders of magnitude in time with a multi-tau algorithm [38].

It can be shown that the analytic solution to describe flu-
orescence correlation in our confocal setup is given as

G(tc) = 1 +
1

N(1− xT )
· 1

1 +
tc
tdiff

· 1√
1 +

(
ωxy

ωz

)2

· tc
tdiff

· (1− xT + xT exp(−tc/tT )), (34)

whereN is the mean number of molecules in the detection
volume,xT is the fraction of molecules exerting triplet state
kinetics with characteristic timetT , tc is the correlation time,
tdiff = ω2

xy/(4D) is the diffusion time related to the geomet-
rical parameterωxy, which describes the detection volume
along withωz, D is the diffusion coefficient, and 1 is used as
the no-correlation baseline value [39]. The detection volume
is assumed to be a three-dimensional Gaussian in cartesian
coordinates of the form

W (x, y, z) = exp
(−2(x2 + y2)/ω2

xy

)

× exp
(−2z2/ω2

z

)
, (35)

where the detection volume is defined by the1/e2 radii de-
noted in terms ofωxy andωz. The ratio of(ωxy/ωz) is used
in calibration given a known standard. This Gaussian geom-
etry is commonly used due to its ease of integration and ac-
curacy in estimating the confocal volume [39]. However, this
is not necessary, and more complicated geometries can be in-
troduced depending on the experimental setup, leading to a
more complicated form of Eq. (34) [40].

Both fluorescence triplet state kinetics and translational
diffusion, resulting in local concentration fluctuations, were
considered, allowing separability ofδ(s) and leading to

G(τ) = GdiffusionGtriplet, (36)

whereGtriplet is the term in parentheses in Eq. (34) multi-
plying the term corresponding toGdiffusion. Thus, Eq. (34)
represents the correlation function of a single tracer species
diffusing in a chemically equilibrated solution detected in a
confocal volume described by a three-dimensional Gaussian
function.

Finally, the diffusion coefficient can be determined using
the diffusion timetdiff as

D = ω2
xy/(4tdiff ). (37)

D is again related to the viscosity through Eq. (17) and (18).
We use FCS, with Rhodamine-110 as our tracer parti-

cle, to determine the diffusion coefficient as molecules travel
across a confocal volume with a1/e2 radius of∼ 250 nm in
sub millisecond timescales. As molecules traverse the confo-
cal illumination volume, they emit light after being excited by
a pulsed laser. When they exit the confocal volume the signal
for that molecule stops. This causes fluctuations in intensity,
which are recorded by the photon detectors. When the flu-
orescence intensity is correlated, these fluctuations generate
a decay function that can be modeled with Eq. (34), from
which the diffusion coefficient can be extracted. From this
diffusion coefficient, the viscosity of the solution as sensed
by the probe is found. Fig. 3 shows the correlation func-
tion and the model fits for Rhodamine-110 in5% and30%
glucose solutions. The decrease in the diffusion constant,
or increase in viscosity, at higher concentrations of glucose
causes a shift in the characteristic correlation time towards
longer correlation times.

2.4. Time-resolved anisotropy

The rotational diffusion is affected by the rotational drag
force exerted on the probe by D-Glucose. This effect can be
monitored by studying the rotational correlation time in time-
resolved fluorescence anisotropy measurements. A brief
theoretical treatment of this technique is as follows: con-
sider a population of fluorophores,ni, of speciesi. Then
ni,+ + ni,0 = ni, whereni,+ is the number of particles in
the excited state andni,0 is the number in the ground state.
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FIGURE 3. Overlay of Fluorescence Correlation Spectroscopy
curves and the corresponding fit model function Eq. (34) for
Rhodmaine-110 in 5% and 30% (w/v) D-Glucose solutions. The
confocal volume’s ratio of its height to its waist is given as a
constant 4.609 for both concentrations. The time of diffusion for
Rhodamine-110 was 0.192 ms for the 5% solution and 0.597 ms
for the 30% solution. The fraction of triplet states, given byxT ,
was 0.093 for 5% and 0.130 for 30%. The relaxation timetT for
5% and 30% are 0.003 to 0.008 ms, respectively.

Given the fluorescence lifetime,τi, and the excitation inten-
sity, I(t), the rate of change in the excited state population is
given by the well-known rate equation,

dni,+

dt
= −ni,+

τ
+ ni,0I(t). (38)

Solving this equation for decay after an excitation pulse (such
thatI(t > 0) = 0 and we need only considert > 0) yields

ni,+(t) = ni,+(0) exp
(
− t

τi

)
. (39)

Utilizing the facts that the fluorescence intensity is directly
proportional to the number of excited states of fluorophores
and that the total intensity is the sum of species contributions,
the fluorescence intensity decay can be generally treated as a
multi-exponential decay function using

F (t) = Σixi exp
(−t

τi

)
. (40)

Herexi are the pre-exponential intensity factors.
For time-resolved anisotropy, the parallel and perpendic-

ular decay components of the fluorescence,F‖(t) andF⊥(t),
are considered by

F‖(t) =
1
3
F (t) [1 + 2r(t)] , (41)

F⊥(t) =
1
3
F (t) [1− r(t)] , (42)

whereF (t) is the time-resolved fluorescence decay at magic
angle conditions following Eq. (40) andr(t) is the time-
dependent anisotropy. In terms of the measured parallel and

perpendicular components of the fluorescence decay,r(t) is
given by

r(t) =
FV V (t)−GFV H(t)
FV V (t) + 2GFV H(t)

, (43)

whereG is an instrumental correction factor to account for
changes in the the detection efficiency given wavelength and
polarization. Here,FV V andFV H areF‖ andF⊥, respec-
tively, after a correction for the differences in detection ef-
ficiency G is made [41]. This G factor is easily measured
using horizontally polarized excitation and the fluorescence
decay in both polarization conditions. Generally, it is pos-
sible to model the time-dependent anisotropy decay using a
multi-exponential decay similar to Eq. (40) given as

r(t) = Σibi exp
(−t

ρi

)
, (44)

wherer0 = Σibi is the fundamental anisotropy andbi are
the fractional anisotropies that decay with correlation times
ρi, which in turn are related to the rotational diffusion coef-
ficient Dθ. In the case of a sphere where there is only one
rotational correlation time,ρ, this relation is given by

ρ =
1

6Dθ
=

4πηR3

3kBT
, (45)

thus, relating the rotational correlation time directly to the
dynamic viscosity as the particle rotates. More complex ex-
pressions are predicted for nonsymmetric probe particles, but
this goes beyond the scope of the exercise. In our case, we
assume that the tracer particle, Rhodamine-110, is a sphere.

To assure that photophysical factors do not affect our
probe experiments, we first measured the steady state fluores-
cence spectra, followed by ensemble time-correlated single-
photon-counting (eTCSPC) using a Fluorolog3 spectroflu-
orometer in T-shape with a PDX detector (Horiba Yvon,
USA) system. The light from a xenon lamp was used to
collect excitation and emission spectra using an excitation
monochromator set at 494 nm and an emission monochro-
mator at 520 nm, accordingly. The scanning monochroma-
tor slit was set to 1 nm while the fixed monochromator slit
was set to 5 nm. Spectra measurements were collected un-
der magic angle conditions by using a vertical polarized ex-
citation source and placing an emission polarizer to 54.7◦.
For time-resolved fluorescence and time-resolved anisotropy
measurements, the excitation source was a NanoLED 485 nm
diode laser (NanoLED 485L, Horiba, Country) operating at
1 MHz. The emission monochromator slit was set to 16 nm
(emission path). The signal of the photon counting unit was
sent to a FluoroHub-B with a bin width of 55 ps. Fluores-
cence intensity decays in all polarizations were collected to
determine the proper detection efficiency factor and deter-
mine time-resolved anisotropy. Figure 4 shows the time-
resolved anisotropy decays of Rhodamine-110 in 5% and
30% D-Glucose solutions. As expected, the rotational dif-
fusion shows a slowing behavior in the anisotropy decay as
the concentration of D-Glucose increases. By analyzing the
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FIGURE 4. Overlay of time-dependent anisotropy decays and the
corresponding fit model function Eq. (44) for Rhodmaine-110 in
5% and 30% (w/v) D-Glucose solutions. From this specific correla-
tion, the rotational speeds in the 5% and 30% D-Glucose solutions
were 100±0.002 ps and 385±0.001 ps, respectively.

TABLE II. Fit Parameters.

Experiment β ν

Rheometer 0.0133 1.32

Translational 0.0079 1.47

Rotational 0.0026 1.81

Average 0.0079 1.53

Fit of Averaged Data 0.0049 1.62

the decay function and fitting it with the model function,
Eq. (44), the average rotational correlation time is found.
Then, Eq. (45) is used to calculate the viscosity.

2.5. Error analysis

Experimental reproducibility was evaluated using triplicated
solutions of Rhodamine-110 in the FCS experiments. Each
measurement was carried out at different times and with dif-
ferent starting stock conditions. The mean and standard devi-
ation amongst these results was used to report our parameters.
The uncertainty of experimental error was manifested using
the standard deviation.

The statistical uncertainties of the fits from the time-
resolved anisotropy decays were estimated by exploring the
χ2-surface of the model function given by Eq. (46). The
error-margins of the individual fitting parameters are the pro-
jections from the individual parameter-dimensions. The max-
imum allowedχ2

r,max for a1σ confidence interval is given by

χ2
r,max = χ2

r,min +

√
2
N

(46)

whereN is the number of fit points andχ2
r,min is the reduced

chi-squared value of the best fit [42]. All free fit parameters
are varied simultaneously in a random manner.

To evaluate the conditions of the experiments and how
that introduces potential errors, we used the data collected
with the Rheometer at different shear frequencies. Frequen-
cies ranging from 0-1000 Hz were used to evaluate the mean
determined viscosity and standard deviation as representa-
tions of uncertainty in the methodology.

3. Discussion

Different methodologies capture the drag frictional force at
various time and length scales. For example, Fig. 5A shows
a linear correlation between the rotational and translational
diffusion time. These measurements show a link between the
interactions that occur at the nanoscale range to the interac-
tions that occur over the span of hundreds of nanometers in
the confocal illumination volume. This relationship between
rotational and translational diffusion can further be seen

FIGURE 5. Viscosity comparisons. A) A direct comparison of the
measurement rotational motion with that of the translational motion
of Rhodamine-110. B) A representation of the normalized viscos-
ity change as a function of D-Glucose concentration for all three
experiments. The red curve represents the fit for averaged data,
given by Eq. (28).
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through the fact that both measurements sense the same shear
viscosity. Both methods do not exert significant stress on the
fluid, thus it can be considered the ideal shear-less condition
of a Newtonian fluid. While the rheomtery does induce shear
stress, we noted that there is no dependence of the viscosity
on this stress.

3.1. Power law of viscosity

To reduce errors in calibration, the viscosity at different con-
centrations of Glucose was normalized to the viscosity of the
buffer solution (η/η0) (Fig. 5B). Comparing the viscosity
as derived from different experimental measurement, we ob-
served that all values follow an exponential growth curve as a
function of the concentration of D-Glucose. The exponential
growth in Fig. 5B was fit with Eq. (28) to evaluate the ex-
pected scaling law dependence of viscosity. Fitting the three
data sets independently yields the results given in Table II.
Due to the apparent similarity in the data as shown in Fig. 5A,
the average of the fit parameters was calculated and the av-
eraged data was also fit all together, yielding similar values
also found in Table II. Note thatν is specific to the dimen-
sions and type of solute osmolyte and probe used, given the
assumptions of Eq. (28) such as the dependence on the radii
of gyration inx. However, we determined that this parameter
is actually independent of dimensionality because the probe
and probeless methodologies were able to show similar val-
ues for viscosity. The beta value is a measure of how readily
the solution changes in viscosity based on its concentration.

3.2. Closing Remarks

In summary, for a non-compressible Newtonian fluid, in
which viscosity is independent of stress, probe viscosity (lo-
cal microscopic) and shear viscosity (macroscopic) are iden-
tical. While probing the local viscosity, the probe does not

exert stress while moving through the media; thus, no turbu-
lent or convective effects must be accounted for, consistent
with fluid behavior for low Reynolds number hydrodynam-
ics. Combining classical rheology, FCS, and time-resolved
anisotropy allows us to show that probe diffusion senses an
effective local viscosity consistent with the macroscopic def-
inition of shear viscosity. A similar approach can be applied
to complex fluids, where the scaling behavior is relevant, and
thus characterize the possible divergence between the local
and macroscopic viscosities. Furthermore, these methodolo-
gies should be viable for future measurements of viscosities
in compressible or other non-Newtonian fluids with either no
or only small modifications to the experimental setup, assum-
ing those materials are otherwise suitable for fluorescence
techniques. For example, an external pressure source could
be introduced to compress a sample in a T-shaped confocal
setup for FCS and anisotropy measurements without inter-
fering with the paths of the lasers to the sample or of light
from the sample to the detectors. To this end, the modularity
of such setups is a great aid. Additionally, classical rheom-
etry experiments for comparison are also usable in pressure-
sensitive experiments and, in fact, Maxwell’s study of gas
viscosities utilized such a setup with glass disks [6].
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