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En este trabajo se analizara el problema de radiación de cuerpo negro en un escenario efectivo en cuatro dimensiones proveniente de un campo
de norma libre en cinco dimensiones, donde la quinta dimensión esta compactificada a un cı́rculo. El punto de partida es la descomposición de
Kaluza-Klein de la acción del campo de norma en 5 dimensiones en dos sectores en cuatro dimensiones: el primer sector contiene un campo
de norma sin masa, mientras el segundo sector produce un conjunto infinito de campo de norma con masa. Ambos sectores contribuyen a
la ley de Stefan-Boltzmann. Contrastando los datos experimentales con los obtenidos teóricamente se obtiene una cota para el parámetro
asociado al escenario.

Descriptores:Dimensiones extras; cuerpo negro.

In this paper we will analyze the problem of blackbody radiation in an effective 4D scenario that arises from the 5D free gauge field, where
the fifth dimension is compactified to a circle. The starting point is the Kaluza-Klein decomposition of the 5D gauge field action into two
sectors in four dimensions: the first sector contains a massless gauge field, while the second sector yields an infinite set of massive gauge
fields. Both sectors contribute to Stefan-Boltzmann’s law. By contrasting the experimental data with those obtained theoretically, a bound is
obtained for the parameter associated with the scenario.
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1. Introducción

El estudio del problema de la radiación electromagńetica
emitida por un cuerpo negro, jugo un papel importante a fina-
les del siglo XIX, debido a que el trabajo de Planck sobre la
radiacíon de cuerpo negro en 1901 condujo a los fundamen-
tos de la mećanica cúantica. En este trabajo, Planck postulo
que el intercambio de energı́a entre los osciladores de la ca-
vidad y el campo electromagnético en equilibrio t́ermico esta
cuantizado. Bajo esta suposición, Plack fue capaz de derivar
la distribucíon de frecuencias de la radiación de cuerpo negro
y adeḿas fue capaz de deducir la ley de Stefan-Boltzmann,
la cual establece que la potencia por unidad deárea de la ra-
diación de cuerpo negro crece con la cuarta potencia de la
temperatura. Hoy en dı́a es un tema que resulta interesante
debido al descubrimiento de la radiación ćosmica de fondo
(debido a que es la huella más antigua sobre el origen del
universo), la cual puede ser citado como un ejemplo de la
distribucíon de Planck de cuerpo negro.

Por otra parte, el aspecto termodinámico de la radiación
electromagńetica emitida por un cuerpo negro es un tema que
se estudia y discute en los cursos de termodinámica o mećani-
ca estad́ıstica.

Dada la importancia del tema de radiación de cuerpo ne-
gro en el contexto del proceso de aprendizaje-enseñanza, en
este trabajo se aborda un ejemplo del problema de radiación
de cuerpo negro en un escenario de dimensiones extras. El
cual puede servir como material de apoyo en algún curso de

termodińamica o f́ısica estad́ıstica. Adeḿas, sirve como pun-
to de partida o motivación para que los alumnos que ası́ lo
deseen se introduzcan a teorı́as de dimensiones extras.

Es bien sabido que postular la existencia de posibles di-
mensiones espaciales extras, han sido una propuesta intere-
sante en f́ısica téorica que intentan resolver problemas abier-
tos en f́ısica de partı́culas y en cosmologı́a, como el problema
de jerarqúıa [5,8], materia obscura y energı́a obscura entre
otros.

Particularmente, en este trabajo se considera un escena-
rio de cinco dimensiones, en donde la quinta coordenada po-
see una topologı́a S1. Aqúı se obtiene una teorı́a efectiva en
cuatro dimensiones proveniente de la acción de campo elec-
tromagńetico en 5 dimensiones, a través de un proceso de
compactificacíon. Cabe mencionar que el problema de radia-
ción de cuerpo negro ha sido considerado en escenarios de
dimensiones extras, compactas [13] y no compactas [1]. En
ambos casos el problema de radiación de cuerpo negro es tra-
tado como un gas de fotones sin masa a temperatura finita. En
el caso de dimensiones compactas, la potencia radiada toma
la formaR(T ) = σBT 4 + σDTD con D − 4 dimensiones
compactas, dondeσB es la constante de Stefan-Boltzmann
y σD es una constante, mientras que si las dimensiones ex-
tras son no compactas la potencia radiada se expresa como
R(T ) = cTD, conc una constante.

La estructura de este artı́culo, se organiza de la siguiente
forma: en la Sec. 2 se muestra las caracterı́sticas b́asicas de
la geometŕıa del espacio tiempo de cinco dimensiones y en-
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tonces se usa la compactificación de Kaluza-Klein para des-
componer la acción de Maxwell en 5D en un modo cero de
Kaluza-Klein y una torre masiva de Kaluza-Klein, los cua-
les son tratados como un campo de norma sin masa en 4D
y un conjunto de campos de norma masivos también en 4D,
respectivamente.

En la Sec. 3 se presenta el análisis de la radiación de cuer-
po negro para un campo de norma con y sin masa, especı́fi-
camente se calcula la ley efectiva de Stefan-Boltzmann para
un escenario de cinco dimensiones. Para el sector masivo, el
ańalisis emplea el resultado de [16], en la radiación de cuerpo
negro para fotones masivos. Al final de la sección se presen-
ta un ańalisis gŕafico y nuḿerico de los resultados obtenidos.
Finalmente, en la Sec. 4 se presenta la discusión de los resul-
tados obtenidos.

2. Descomposicíon de Kaluza-Klein de la ac-
ción de Maxwell en 5D

La métrica del espacio tiempo en cinco dimensiones es dado
por

ds2 = GMNdxMdxN = ηµνdxµdxν + R2dφ2 . (1)

Losı́ndicesM, N corren desde 0 hasta 4, los cuales represen-
tan un espacio tiempo con componentes(xµ, x4). Aqúı los
ı́ndices griegosµ, ν corren de 0 a 3 y láultima coordenada
espacial es compactificada a un circulo de radioR, conφ en
el intervalo[−π, π].

El punto de partida es la acción de Maxwell en cinco di-
mensiones

S =
∫

d4x

∫
dx4

[
−1

4
FMNFMN

]
, (2)

donde el tensor de campo electromagnético en 5 dimensiones
se define de la siguiente forma

FMN = ∂MAN − ∂NAM . (3)

Pasando a una notación cuatro-dimensional es fácil ver que
la Ec. (2) se puede escribir como

S =
∫

d4x

∫
dx4

[
−1

4
FµνFµν − 1

2
Fµ4F

µ4

]
. (4)

Integrando por partes la Ec. (4) en la coordenadax4, se tiene

S =
∫

d4x

∫
dx4

[
−1

4
FµνFµν+

1
2

(∂µA4)
2 +

1
2

(∂4Aµ)2

− ∂4

(
Aµ∂µA4

)
+ Aµ∂µ∂4A

4
]
, (5)

aqúı el cuarto t́ermino de la expresión anterior no contribuye
por ser un t́ermino de frontera.

Usando la libertad de norma que se tiene, se elige para
este caso la norma semiaxial, la cual está inspirada en la nor-
ma axial (ver [6] para ḿas detalle). En la norma semiaxial la

componenteA4 del campo de norma no depende dex4, es
decir,A4(x, φ) = A

(0)
4 (x).

Usando la norma semiaxial , la acción (5) puede ser rees-
crita como

S =
∫

d4x

∫
dx4

[
− 1

4
FµνFµν

+
1
2

(
∂µA

(0)
4

)2

+
1
2

(∂4Aµ)2
]

. (6)

Dado que la dimensión extrax4 esta compactificada en un
ćırculo de radioR, entonces podemos considerar un desarro-
llo de Fourier en esta coordenada para el campo de norma de
la siguiente forma

AM (xµ, φ) = A
(0)
M (xµ) +

∞∑
n=1

[
A

(n)
M (xµ, φ)einφ

+ A
(n)∗
M (xµ, φ)e−inφ

]
,

con A
(n)
4 = A

(n)∗
4 = 0 . (7)

Sustituyendo la Ec. (7) en la acción (6) e integrando por par-
tes respecto de la coordenada extra, se tiene

S = 2πR

∫
d4x

[
− 1

4
F (0)

µν Fµν(0) +
1
2

(
∂µA

(0)
4

)2

+
∞∑

n=1

(
−1

2

∣∣∣∂µA(n)
ν − ∂νA(n)

µ

∣∣∣
2

+
n2

R2

∣∣∣A(n)
µ

∣∣∣
2
) ]

. (8)

Se puede ver entonces que la acción 5D de Maxwell se des-
compone en un sector 4D sin masa, que contiene la acción
4D de Maxwell ḿas un campo escalarA(0)

4 y en un sector
4D masivo definido por un conjunto infinito de campos de
norma 4DA

(n)
µ y A

(n)∗
µ de masamn = n/R, conR el radio

de compactificación de la dimensión compacta yn un ente-
ro positivo. Esta reescritura de la Acción 5D se le llama la
descomposición de Kaluza-Klein.

3. Ley de Estefan-Boltzmann modificada

En esta sección se estudia el problema de radiación de cuer-
po negro, en la teorı́a electromagńetica efectiva de cuatro di-
mensiones considerada en la sección anterior. Como se men-
cionó anteriormente, este escenario efectivo cuatro dimensio-
nal contiene dos sectores: un sector sin masa y un sector ma-
sivo. El sector sin masa contiene un campo de norma sin masa
A

(0)
µ y un campo escalar no masivoA

(0)
4 , aqúı campo de nor-

ma posee dos modos de libertad transversales más un grado
de libertad debido al campo escalar, por lo que en total se
tiene tres grados de libertad. Para el sector masivo, el campo
de normaA(n)

µ con masam2 = n2/R2 posee dos grados de
libertad transversales y un grado de libertad longitudinal.

Para un campo de norma masivo, Bass y Schrödinger [3]
argumentaron que la interacción del modo longitudinal del
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fotón con la materia serı́a tan d́ebil que pŕacticamente son
irrelevantes para el equilibrio térmico de la radiación en la
cavidad. La raźon es la tremenda contracción de Lorentz de
los campos longitudinales cuando pasan del marco de refe-
rencia del fot́on masivo al marco de referencia de la cavidad.

Para el estudio de la radiación de cuerpo negro, se con-
sidera un ensamble de fotones con masam en una cavidad
de volumenV con paredes reflectantes ideales a una tempe-
raturaT , este sistema se vincula con el exterior a través de
un pequẽno orificio. Por tanto las ondas electromagnéticas en
el interior pueden ser tratadas como ondas estacionarias. Por
simplicidad se considera que la cavidad sea una caja cúbica
de ladosL con el origen del sistema coordenado en uno de
los vértices de la cavidad.

Los dos modos trasversales deA
(n)
µ son modos discretos

que satisfacen las mismas condiciones de frontera queA
(0)
µ

(las componentes del campo eléctrico deben anularse en las
paredes de la cavidad). Ası́ las componentes del vector de
onda son

ki =
πni

L
, (9)

donde lasni son enteros y representan los posibles modos de
vibración. Luego, el ńumero de modos conk en el intervalo
[k, k + dk] es dado por

N(k,m)dk =
V

π2
k
√

k2 −m2 dk, m2 =
n2

R2
, (10)

la ecuacíon anterior considera las dos direcciones de polari-
zacíon y aqúı m es la masa efectiva de los fotones. Ahora,
expresando la ecuación de arriba en el espacioν, podemos
escribir entonces

N(k, m)dν =
8πV

c3
ν2

√
1− c2m2

4π2ν2
dν . (11)

Por tanto la densidad de energı́a es

U(T,m) =
8πh

c3

∞∫

u

ν3
√

1− u2

ν2

ehν/kBT − 1
dν, u =

cm

2π
. (12)

Como es bien sabido en mecánica cúantica, la relacíon entre
la enerǵıa emitida por un cuerpo negro por unidad deárea por
unidad de tiempoR(T,m) y la densidad de energı́aU(T ) es
solo un factor geoḿetrico, aśı tenemos que

R(T, m) =
c

4
U(T,m) =

2πh

c2

∞∫

u

ν3
√

1− u2

ν2

ehν/kBT − 1
dν . (13)

Para poder evaluar esta integral, se emplea siguiente expre-
sión

1
ex − 1

=
∞∑

q=1

e−qx , (14)

usando esta identidad, la Ec. (13) toma la forma

R(T,m) =
∞∑

q=1

2πh

c2

∞∫

u

ν2e−hνq/kBT
√

ν2 − u2 dν . (15)

El siguiente paso en el cálculo, es notar que la integral pue-
de ser reescrita en términos de la derivada de la variable
β = 1/kBT , aśı se tiene

R(T,m) = −
∞∑

q=1

2π

c2q

d

dβ

∞∫

u

νe−hνqβ
√

ν2 − u2 dν . (16)

Esta integral se puede realizar usando la siguiente identidad

∞∫

u

x
(
x2 − u2

)η−1
e−µx dx

=
2η− 1

2 µ
1
2−ηuη+ 1

2 Γ (η)√
π

Kη+ 1
2

(uµ) , (17)

aqúı Kν(z) es la funcíon de Bessel modificada de ordenν y
Γ(z) es la funcíon Gamma. Por tanto (16) toma la siguiente
forma

R (T, m) = −
∞∑

q=1

m2

2πhq2

d

dβ

[
1
β

K2

(
βqhcm

2π

)]
. (18)

Empleando la identidadz∂zKν(z) = −zKν−1(z)−νKν(z),
se tiene finalmente

R (T,m) =
∞∑

q=1

m2

2π

[
3k2

BT 2

hq2
K2

(
qhcm

2πkBT

)

+
kBTcm

2πq
K1

(
qhcm

2πkBT

) ]
, (19)

considerando quem = n/R, entonces (19) se puede escribir
como

R (T,R) =
∞∑

q=1

n2

2πR2

[
3k2

BT 2

hq2
K2

(
qhcn

2πkBTR

)

+
kBTcn

2πqR
K1

(
qhcn

2πkBTR

)]
. (20)

Esta expresión es la contribución del sector masivo de la
teoŕıa electromagńetica efectiva al problema de radiación
cuerpo negro.

Tomando el limite cuandom → 0 en (19), se tiene

R(T ) = σBT 4,

σB =
2π5k4

B

15h3c2
= 5.67× 10−8 W

m2K4 . (21)

A este resultado se le conoce como la ley de Stefan-
Boltzmann yσB como la constante de Stefan-Boltzmann. La
Ec. (21) es la contribución del sector sin masa al problema de
radiacíon de cuerpo negro .
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Por lo tanto la ley de Stefan-Boltzmann en este escena-
rio, deriva de las contribuciones de ambos sectoresR(T ) y
R(T, R), lo cual produce

RT (T,R) = σBT 4 +
∞∑

n=1

∞∑
q=1

n2

2πR2

[
3k2

BT 2

hq2
K2

×
(

qhcn

2πkBTR

)
+

kBTcn

2πqR
K1

(
qhcn

2πkBTR

)]
. (22)

Esta expresión es la ley modificada de Stefan-Boltzmann,
donde el primer t́ermino de esta expresión proviene de la con-
tribución del modo cero, mientras que el segundo término
viene de la torre de Kaluza-Klein.

Rescribiendo la expresión (22) se tiene

RT (T, R) =

{
σB +

∞∑
n=1

∞∑
q=1

n2

2πR2

[
3k2

B

hq2T 2
K2

×
(

qhcn

2πkBTR

)
+

kBcn

2πqRT 3
K1

(
qhcn

2πkBTR

)]}
T 4 . (23)

Ahora, definiendo aσM como el paŕametro efectivo de
Stefan-Boltzmann, la cual codifica los efectos de la dimen-
sión extra compacta, se tiene

σM (T,R) = σB +
∞∑

n=1

∞∑
q=1

n2

2πR2

[
3k2

B

hq2T 2
K2

×
(

qhcn

2πkBTR

)
+

kBcn

2πqRT 3
K1

(
qhcn

2πkBTR

)]
. (24)

Se puede ver directamente, que el parámetro efectivo de
Stefan-Boltzmann en esta teorı́a efectiva de cuatro dimensio-
nes no es contante como tal, debido a que tiene una dependen-
cia en la temperatura y también del radio de compactificación
R.

La Ec. (24) puede ser usada para fijar algún ĺımite a po-
sibles valores del parámetro libre asociado al escenario de
dimensiones extras, es decir, el radio de compactificación
de la quinta coordenada. El análisis consiste en comparar
el paŕametro efectivo de Stefan-Boltzmann con el valor ex-
perimental para la constate de Stefan-Boltzmann, el cual es
σB = (5.670277968×10−8±4×10−13) W/m2K4 [11], sin
embargo es necesario fijar el valor de la temperaturaT . Para
ello consideramos a la radiación ćosmica de fondo, debido
a que est́a muestra un espectro de cuerpo negro muy preci-
so. La temperatura de la radiación ćosmica de fondo es de
T = 2.725 K.

De acuerdo a los datos experimentales y usando la
Ec. (24) como una función del radio de compactificación se
tiene una cota superior paraR alrededor de 47.7µm, como
se ve de la Fig. 1.

FIGURA 1. Comparacíon entre los datos experimentales paraσB

y el paŕametro efectivo de Stefan-BoltzmannσM . La regíon som-
breada corresponde a la banda de error experimental deσB .

4. Conclusiones

En este trabajo se estudió el problema de radiación de cuer-
po negro en un escenario de cinco dimensiones, en donde la
quinta dimensíon esta compactificada. Se analizó primero el
campo de norma en cinco dimensiones y entonces se derivó el
espectro de Kaluza-Klein del campo electromagnético en la
teoŕıa efectiva de cuatro dimensiones. Dicho espectro es dis-
creto y en donde el modo cero(n = 0) reproduce la f́ısica
usual en cuatro dimensiones.

Desde el punto de vista de la teorı́a efectiva en cuatro di-
mensiones, el espectro de Kaluza-Klein se puede ver como
una como una masa efectivam2 = n2/R2 de un conjunto de
campos de normaA(n)

µ . Este t́ermino de masa contribuye a la
densidad de energı́a emitida por el cuerpo negro y por lo tan-
to, la ley de Stefan-Boltzmann es modificada en este escena-
rio, espećıficamente, la ley modificada de Stefan-Boltzmann
es funcíon de la temperatura y además del radio de compacti-
ficaciónR. El efecto de la dimensión extra es incluido en los
términos que contiene la función de Bessel.

Cuando se impone la condición de que el resultado teóri-
co reproduzca las mediciones experimentales, dentro de la
incertidumbre4 × 10−13 W/m2K4 a una temperatura de
2.725 K, se encuentra queR ≤ 47.7 µm.

Cabe mencionar que a pesar de que la constante de
Stefan-Boltzmann no es una de las mejores cantidades me-
didas en f́ısica, esta puede proveer un lı́mite superior paraR.

Para finalizar, esperamos que este ejemplo del problema
de radiacíon de cuerpo negro pueda servir como material de
apoyo en algunos cursos básicos de termodińamica o mećani-
ca estad́ıstica.
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