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En este trabajo se analizara el problema de raaled® cuerpo negro en un escenario efectivo en cuatro dimensiones proveniente de un campo

de norma libre en cinco dimensiones, donde la quinta dirbaresita compactificada a umaulo. El punto de partida es la descompdsiaile
Kaluza-Klein de la acéin del campo de norma en 5 dimensiones en dos sectores en cuatro dimensiones: el primer sector contiene un campo
de norma sin masa, mientras el segundo sector produce un conjunto infinito de campo de norma con masa. Ambos sectores contribuyen a
la ley de Stefan-Boltzmann. Contrastando los datos experimentales con los obtedid@stente se obtiene una cota para ehp@tro

asociado al escenario.

Descriptores: Dimensiones extras; cuerpo negro.

In this paper we will analyze the problem of blackbody radiation in an effective 4D scenario that arises from the 5D free gauge field, where
the fifth dimension is compactified to a circle. The starting point is the Kaluza-Klein decomposition of the 5D gauge field action into two
sectors in four dimensions: the first sector contains a massless gauge field, while the second sector yields an infinite set of massive gauge
fields. Both sectors contribute to Stefan-Boltzmann'’s law. By contrasting the experimental data with those obtained theoretically, a bound is
obtained for the parameter associated with the scenario.
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1. Introduccion termodiramica o fsica estatstica. Adenas, sirve como pun-
to de partida 0 motivabn para que los alumnos que &

El estudio del problema de la radiani electromaggtica  deseen se introduzcan a teearde dimensiones extras.
emitida por un cuerpo negro, jugo un papel importante afina- Es bien sabido que postular la existencia de posibles di-
les del siglo XIX, debido a que el trabajo de Planck sobre lanensiones espaciales extras, han sido una propuesta intere-
radiacbn de cuerpo negro en 1901 condujo a los fundamensante enisica térica que intentan resolver problemas abier-
tos de la me&nica c@ntica. En este trabajo, Planck postulo tos en fsica de paitulas y en cosmoldg, como el problema
gue el intercambio de enéegentre los osciladores de la ca- de jerarqia [5,8], materia obscura y enéagobscura entre
vidad y el campo electromagtico en equilibrio&rmico esta  otros.
cuantizado. Bajo esta suposini Plack fue capaz de derivar  particularmente, en este trabajo se considera un escena-
la distribucdn de frecuencias de la radi@nide cuerpo negro rig de cinco dimensiones, en donde la quinta coordenada po-
y adends fue capaz de deducir la ley de Stefan-Boltzmanngee una topoldg S*. Aqui se obtiene una tefa efectiva en
la cual establece que la potencia por unidadu® de lara-  cyatro dimensiones proveniente de la aoaile campo elec-
diacion de cuerpo negro crece con la cuarta potencia de lgomagretico en 5 dimensiones, a té de un proceso de
temperatura. Hoy enid es un tema que resulta interesantecompactificadin. Cabe mencionar que el problema de radia-
debido al descubrimiento de la radiagicdsmica de fondo  ¢jon de cuerpo negro ha sido considerado en escenarios de
(debido a que es la huellags antigua sobre el origen del gimensiones extras, compactas [13] y no compactas [1]. En
universo), la cual puede ser citado como un ejemplo de 13mhos casos el problema de radiacile cuerpo negro es tra-
distribucbn de Planck de cuerpo negro. tado como un gas de fotones sin masa a temperatura finita. En

Por otra parte, el aspecto terma@nico de la radiabn el caso de dimensiones compactas, la potencia radiada toma
electromagatica emitida por un cuerpo negro es un tema quéa forma R(T) = opT* + opT” con D — 4 dimensiones
se estudiay discute en los cursos de term@miica o meéni-  compactas, dondep es la constante de Stefan-Boltzmann
ca estatbtica. Yy op €s una constante, mientras que si las dimensiones ex-

Dada la importancia del tema de radéatide cuerpo ne- tras son no compactas la potencia radiada se expresa como
gro en el contexto del proceso de aprendizajefeamsea, en  R(T) = ¢I'P, conc una constante.
este trabajo se aborda un ejemplo del problema de radiaci La estructura de este @ilo, se organiza de la siguiente
de cuerpo negro en un escenario de dimensiones extras. fokma: en la Sec. 2 se muestra las carastieas fasicas de
cual puede servir como material de apoyo eriialgurso de la geometia del espacio tiempo de cinco dimensiones y en-
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tonces se usa la compactificacide Kaluza-Klein para des- componented, del campo de norma no dependexfe es
componer la acéin de Maxwell en 5D en un modo cero de decir, A4(z, ¢) = A (x).
Kaluza-Klein y una torre masiva de Kaluza-Klein, los cua-  Usando la norma semiaxial , la aoni(5) puede ser rees-
les son tratados como un campo de norma sin masa en 4®ita como
y un conjunto de campos de norma masivos té@mlan 4D, 1
respectivamente. S = / d*z / dz? [ — —F, F"
Enla Sec. 3 se presenta ebdinis de la radiaéin de cuer- 4
po negro para un campo de horma con y sin masa, gspec 1 0\2 1 9
camente se calcula la ley efectiva de Stefan-Boltzmann para T 92 (8“’44 ) + 9 (Gady) ] ) ®)
un escenario de cinco dimensiones. Para el sector masivo, el
aralisis emplea el resultado de [16], en la radiaxile cuerpo  Dado que la dimenéh extraz* esta compactificada en un
negro para fotones masivos. Al final de la séocse presen- circulo de radiaR, entonces podemos considerar un desarro-
ta un anlisis géfico y nunérico de los resultados obtenidos. /10 de Fourier en esta coordenada para el campo de norma de
Finalmente, en la Sec. 4 se presenta la digcude los resul-  la siguiente forma
tados obtenidos.

Au(a™,0) = A (@) + > [A%? (", §)e™?
2. Descomposi@n de Kaluza-Klein de la ac- =t
cion de Maxwell en 5D n A}Z)*(x#,gb)emﬂ,
La métrica del espacio tiempo en cinco dimensiones es dado () (n)s
por con A4 = A4 =0. (7)

ds® = GyndaeMdzN = Nuwdztdz? + R%d¢®. (1) Sustituyendo la Ec. (7) en la a6ai (6) e intggrando por par-
tes respecto de la coordenada extra, se tiene
LosindicesM, N corren desde 0 hasta 4, los cuales represen-
tan un espacio tiempo con componentes, 2*). Aqui los S = 271—R/d4;g
indices griegos:, v corren de 0 a 3 y l@ltima coordenada
espacial es compactificada a un circulo de ragij@on¢ en

1 » 1 0 2
_ gFﬁg)F’ ©0) 4 5 (%Ai ))

00 2
el intervalo[—, 7). +3 <_1 9, A — 9,AM L ‘ An) 2) . (8)
El punto de partida es la aéei de Maxwell en cinco di- i\ 2 l Rz
mensiones

Se puede ver entonces que la aochD de Maxwell se des-

4 4] 1 MN compone en un sector 4D sin masa, que contiene l®m@cci
5= /d x/dx {_4FMNF } ’ @) 4D de Maxwell mas un campo escalaﬁtflo) y en un sector
4D masivo definido por un conjunto infinito de campos de
norma 4DA(” y A" de masan,, = n/R, conR el radio
de compactificaéin de la dimeng$in compacta y: un ente-
ro positivo. Esta reescritura de la A6ai 5D se le llama la
descomposidin de Kaluza-Klein.

donde el tensor de campo electrométigp en 5 dimensiones
se define de la siguiente forma

Fyn =0mAN —ONAN . 3

Pasando a una notaéci cuatro-dimensional e&dil ver que
la Ec. (2) se puede escribir como 3. Ley de Estefan-Boltzmann modificada

g /d4x / dat {_iF"”FW B % “4F#4} . (4 Enestasecon se estudia el problema de radécte cuer-
po negro, en la te@a electromagetica efectiva de cuatro di-
mensiones considerada en la séncnterior. Como se men-
ciond anteriormente, este escenario efectivo cuatro dimensio-
1 1 1 nal contiene dos sectores: un sector sin masa y un sector ma-
S = /d493 / dz* [*ZFWFW+§ (0,A1)% + 3 (014,)>  sivo. El sector sin masa contiene un campo de norma sin masa
| AELO) y un campo escalar no masiytio), aqu campo de nor-
— 04 (A, 0" AY) + A,L@“azu‘lﬂ , (5) ma posee dos modos de libertad transversaksum grado
de libertad debido al campo escalar, por lo que en total se
aqu el cuarto érmino de la expresi anterior no contribuye tiene tres grados de libertad. Para el sector masivo, el campo

Integrando por partes la Ec. (4) en la coordenatjase tiene

por ser unérmino de frontera. de normaAL”) con masan? = n?/R? posee dos grados de
Usando la libertad de norma que se tiene, se elige paréertad transversales y un grado de libertad longitudinal.
este caso la norma semiaxial, la cuabasspirada en la nor- Para un campo de norma masivo, Bass y &dimger [3]

ma axial (ver [6] para i@s detalle). En la norma semiaxial la argumentaron que la interadai del modo longitudinal del
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foton con la materia s& tan @&bil que pacticamente son El siguiente paso en ehtculo, es notar que la integral pue-
irrelevantes para el equilibri@tmico de la radiabin en la  de ser reescrita erétminos de la derivada de la variable
cavidad. La raén es la tremenda contradai de Lorentz de (= 1/kgT, ad se tiene
los campos longitudinales cuando pasan del marco de refe-
rencia del fobn masivo al marco de referencia de la cavidad. oo

Para el estudio de la radiéci de cuerpo negro, se con- Z / e aB\/u2 —u2dy. (16)
sidera un ensamble de fotones con masan una cavidad q=1 c*q dﬁ
de volumenl” con paredes reflectantes ideales a una tempe-
raturaT’, este sistema se vincula con el exterior aésde Esta integral se puede realizar usando la siguiente identidad
un pequdo orificio. Por tanto las ondas electrométjoas en
el interior pueden ser tratadas como ondas estacionarias. Por 7

simplicidad se considera que la cavidad sea una cdjza Tt —u e M dx
de ladosL con el origen del sistema coordenado en uno de
los vértices de la cavidad. L1 .
Los dos modos trasversales 4§ son modos discretos _ 2R () (up) | (17)
que satisfacen las mismas condiciones de fronteraA;ij.Pe VT e

(las componentes del campelrico deben anularse en las . -
paredes de la cavidad). Aas componentes del vector de @du K, (2) es la funcdn de Bessel modificada de ordety

onda son . ]F( z) es la funobn Gamma. Por tanto (16) toma la siguiente
ki _ 9 orma
= ©)
donde las:; son enteros y representan los posibles modos de > m?2 dTI1 Bghem
vibracion. Luego, el amero de modos coh en el intervalo R(T,m) = - Z orhg?dp |32\ on (18)
qg=1

[k, k + dk] es dado por

1% n? Empleando laidentidaeh, K, (z) = —2K, _1(2)—vK,(z)
— A2 2 2 _ " z Ay v—1 v ,
Nk, m)dk = 2 RV —m*dk,  m” = R2’ (10) se tiene finalmente
la ecuaddn anterior considera las dos direcciones de polari- S P
zachn . ; m~ | 3k5T qhcem
y aqu m es la masa efectiva de los fotones. Ahora, R(T,m) = Z - 32 K
expresando la ecudxi de arriba en el espacig podemos 2m | hg 2nkpT
escribir entonces

kgTcm ( ghem ) }
2,2 + K , (29)
N(k,m)dv = WVZWdV. (11 2mq 27kpT
c? 4722

Por tanto la densidad de ene@s considerando quex = n/R, entonces (19) se puede escribir
como
_ 8mh - 72 cm o
U(T,m) = / - u=—. (12) n? [3k%T? ghen
ehv/ksT _ 1 R(T,R) = K
e 27 (T, R) ; orR2| hqgz 2 \2rkpTR
IComo es bie_n. jabido en né&@tca cantica, la r_zlag‘: entre kpTen ghen 0)
a enerda emitida por un cuerpo negro por unidadadea por 9maR kTR

unidad de tiempd® (T, m) y la densidad de engigU (T') es

solo un factor geoktrico, astenemos que Esta expredéin es la contribuéin del sector masivo de la

" ﬁ teoia electromaggtica efectiva al problema de radiani
2 _u?
R(T,m) = SU(T,m) = = / i cuerpo negro.
4 errine Tomando el limite cuandor — 0 en (19), se tiene
Para poder evaluar esta integral, se emplea siguiente expre- R(T) = opT*
sion - B-
_ —qz 27T5k‘4B g W
e ) DL (14) o8 = el =56TX 107 (2Y)

usando esta identidad, la Ec. (13) toma la forma A este resultado se le conoce como la ley de Stefan-

> o n o0 Boltzmann yo g como la constante de Stefan-Boltzmann. La
R(T,m) = Z il /z/?e*’“’Q/kBT\/mdy, (15)  Ec. (21) es la contribubh del sector sin masa al problema de

2 ..
= ¢ radiacbn de cuerpo negro .
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Por lo tanto la ley de Stefan-Boltzmann en este escena- 5.67036

rio, deriva de las contribuciones de ambos sect®€E) y
R(T, R), lo cual produce

Parametro efectivo de Stefan-Boltzmann s, (R) I

5.67034

5.67032

ot 505 [T sy’
T \4, =O0B 2 X 1
n=1g=1 2nR? | hg? “E 567030~~~ 000077 i o,
h kT h ? ' [T
y ghen 4 FB cn K, qhen 22 ‘92 567028 -+ 0,40,
2rkpTR 2mqR 2nkgTR o Banda de error experimental |
5.67026 T=2.725 K

Esta expreséin es la ley modificada de Stefan-Boltzmann,
donde el primerérmino de esta exprési proviene de la con-
tribucion del modo cero, mientras que el segunéiomino
viene de la torre de Kaluza-Klein.

Rescribiendo la expresm (22) se tiene

5.67024

56102 4——F——7—T T T T T T T 1
40 41 42 43 44 45 46 47 48 49 50

R (um)
e n? 3kQB FIGURA 1. Comparaddn entre los datos experimentales paga
Br (T, R) = {UB t Z Z o R2 [;quTz 2 y el paémetro efectivo de Stefan-Boltzmasm;. La regbn som-
n=1g=1 breada corresponde a la banda de error experimentatde
qhen kgen qhen 4
X - K 7. (23
<2kaTR) T omqRTE ! (QWkBTR> ” (23)

4. Conclusiones

3k2,
hq?T? Kz

Ahora, definiendo arp; como el paametro efectivo de
o oo ) quinta dimengin esta compactificada. Se analirimero el
om(T,R) =op +ZZ =
2m R2

teoria efectiva de cuatro dimensiones. Dicho espectro es dis-
Se puede ver directamente, que eljmaetro efectivo de Desde el punto de vista de la temefectiva en cuatro di-
cia en latemperatura y tan@ni del radio de compactificdzi  campos de normflft"). Este érmino de masa contribuye a la
sibles valores del pametro libre asociado al escenario derio, espeficamente, la ley modificada de Stefan-Boltzmann
el pametro efectivo de Stefan-Boltzmann con el valor ex-términos que contiene la furizi de Bessel.
embargo es necesario fijar el valor de la temperafu@ara  incertidumbre4 x 10713 W/m?K* a una temperatura de
so. La temperatura de la radiani dsmica de fondo es de Stefan-Boltzmann no es una de las mejores cantidades me-
Ec. (24) como una funon del radio de compactificam se  de radiaddn de cuerpo negro pueda servir como material de

Stefan-Boltzmann, la cual codifica los efectos de la dimenEn este trabajo se estddél problema de radia@n de cuer-
sibn extra compacta, se tiene po negro en un escenario de cinco dimensiones, en donde la
campo de norma en cinco dimensiones y entonces sedsriv
1 g=1 espectro de Kaluza-Klein del campo electront&t@o en la
% ( ghen > + chn3K1 ( ghen )} . (24) cretoy en donde el modo cefe = 0) reproduce laifica
2rkpTR 2mqRT 2rkpTR usual en cuatro dimensiones.
Stefan-Boltzmann en esta témefectiva de cuatro dimensio- mensiones, el espectro de Kaluza-Klein se puede ver como
nes no es contante como tal, debido a que tiene una dependétia como una masa efectivé = n°/R* de un conjunto de
R. densidad de enei@emitida por el cuerpo negro y por lo tan-
La Ec. (24) puede ser usada para fijatimdimite a po- to, la ley de Stefan-Boltzmann es modificada en este escena-
dimensiones extras, es decir, el radio de compactificaci es funcén de la temperatura y adésidel radio de compacti-
de la quinta coordenada. Ela@isis consiste en comparar ficacion R. El efecto de la dimensh extra es incluido en los
perimental para la constate de Stefan-Boltzmann, el cual es Cuando se impone la condici de que el resultadog-
op = (5.670277968 x 1078 +4 x 10~13) W/m?K* [11], sin  co reproduzca las mediciones experimentales, dentro de la
ello consideramos a la radiéci ddsmica de fondo, debido 2.725 K, se encuentra que < 47.7 pm.
a que est muestra un espectro de cuerpo negro muy preci- Cabe mencionar que a pesar de que la constante de
T =2.725K. didas enfsica, esta puede proveer umite superior pard.
De acuerdo a los datos experimentales y usando la Para finalizar, esperamos que este ejemplo del problema
tiene una cota superior pafaalrededor de 47.7Zm, como
se ve de la Fig. 1.

apoyo en algunos cursoédicos de termodamica o me&éni-
ca estatbtica.
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