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Una propiedad importante de la computación cúantica es su paralelismo implı́cito, que permite procesar un número exponencial de trans-
formaciones b́asicas mediante un número lineal de qubits en un sistema cuántico. El algoritmo de Deutsch y Jozsa ilustra la reducción,
proporcionada por el ćomputo cúantico, en la complejidad del procesamiento. Presentamos aquı́ la implementacíon y la ejecucíon del al-
goritmo cúantico de Deutsch y Jozsa en GAMA, herramienta que hemos desarrollado para la simulación y monitorizacíon de algoritmos
cuánticos. La simulación permite explorar los detalles de sus componentes mediante el módulo de depuración de GAMA que permite mos-
trar las diferentes configuraciones que cada componente puede asumir.
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An important feature of quantum computing is its inherent paralellism, allowing to process an exponential number of basic transforms
with just a linear number of qubits. The Deutsch-Jozsa algorithm exemplifies the computational complexity reduction. This work reports
the implementation and execution of the Deutsch-Josza quantum algoritm in GAMA, a programming language for quantum computing
simulation developed by ourselves. Through this simulation, it is possible to explore all the components involved by tracing all the different
configurations that each component may take.

Keywords: Quantum computing; parallelism; qubits; computational complexity; quantum simulation.

PACS: 03.67.Ac; 03.67.Lx

1. Introducción

La computacíon cúantica aprovecha fenómenos de la mecáni-
ca cúantica para realizar computaciones, tales como la su-
perposicíon, el entrelazamiento o el paralelismo implı́cito. El
cómputo cúantico permite desarrollar algoritmos para acele-
rar procesos, o transmisiones de información o, incluso, en-
contrar nuevas propiedades de fı́sica cúantica [1].

Un algoritmoes una sucesión finita de pasos para resol-
ver una tarea, y unocuántico consiste en aplicar una serie
finita de transformaciones (ocompuertas cúanticas) a un es-
tado inicial para producir un estado final. En la actualidad se
han desarrollado diversos algoritmos cuánticos en diferentes
áreas tales como criptografı́a, b́usqueda, optimización, reso-
lución de sistemas lineales y simulación de sistemas cuánti-
cos, entre otros [2]. El algoritmo de Deutsch y Jozsa es uno de
los primeros algoritmos cuánticos que surgieron [3]. Y aun-
que se ha implementado y simulado usando diferentes técni-
cas [4-9], y ha demostrado obtener resultados en un solo paso
de tipo cúantico en comparación con el algoritmo secuencial
clásico que requiere un número exponencial, sus aplicaciones
han sido limitadas. Sin embargo, recientemente, este algorit-
mo ha sido utilizado para resolver distintos problemas, entre
ellos, en lenguajes formales para determinar diferentes partes
en una estructura de datos de tipo arreglo y aplicar funciones
espećıficas a cada una de las partes [10]. También la utili-

zacíon del algoritmo de Deutsch y Jozsa ha sido propuesto
dentro del contexto del análisis de datos masivos [11].

Dada la importancia del algoritmo de Deutsch y Jozsa en
el entendimiento de algoritmos cuánticos, presentamos su im-
plementacíon en el lenguaje de programación cúantica GA-
MA (lenguaje de proṕosito espećıfico disẽnado para la simu-
lación de algoritmos cúanticos [12]). En particular, tal imple-
mentacíon est́a orientada a la enseñanza de algoritmos cuánti-
cos. Durante su desarollo encontramos que la parte medular
de este algoritmo consiste en la construcción de la compuerta
cuánticaUf , introducida en la Sec. 2.5, con la cual es posible
la evaluacíon de una sola función para ḿultiples valores de
entrada.

Este art́ıculo tiene la composición siguiente: en la Sec. 2
introducimos brevemente los conceptos fundamentales de la
computacíon cúantica, asi como la definición de un algoritmo
cuántico, en las Secs. 3 y 4 describimos el algoritmo cuántico
de Deutsch y Jozsa y su implementación, en la Sec. 5 presen-
tamos los resultados y una breve discusión de los resultados,
y, finalmente, en la Sec. 6 presentamos las conclusiones del
trabajo.

2. Fundamentos de algoritmos cúanticos
En la computacíon cúantica se trabaja con sistemas cuánti-
cos finitos y se trata con espacios vectoriales complejos de
dimensíon finita.



182 M. PAREDES LÓPEZ, A. MENESES VIVEROS AND G. MORALES-LUNA

2.1. Bits cúanticos

En el modelo de computación cĺasica la unidad b́asica de in-
formacíon es elbit, el cual asume uno de dos posibles valo-
res, ya sea 0 o 1. Análogamente, el modelo de computación
cuántica tiene como unidad básica elqubit, que puede asumir
una superposición de dos valores, o estados, distintos, diga-
mos|0〉 o |1〉, los cuales representan los dos valores de un bit
clásico.

Los vectores|0〉 = [1 0]T y |1〉 = [0 1]T forman la
base cańonica enC2. Los covectores, o funcionales lineales
〈x| = |x〉H (el supeŕındiceH denota transposición conjuga-
da), conx ∈ {0, 1}, forman la base del espacio dual(C2)∗,
que al ser de Hilbert, es isomorfo aC2 mismo.

Esta notacíon tiene la ventaja de poder especificar las
transformaciones cuánticas (ver Sec. 2.4) sobre estados
cuánticos en t́erminos de la base canónica. Por ejemplo, la
transformacíon que intercambia los estados|0〉 y |1〉 est́a da-
da por la matrizX = |0〉〈1|+ |1〉〈0|.

Un qubites una superposición de bits cĺasicos, es decir, es
una combinacíon lineala|0〉+ b|1〉, dondea y b son ńumeros
complejos tales que|a|+ |b| = 1. El espacio de Hilbert com-
plejo de dimensíon 2, con base ortonormalE = [|0〉, |1〉],
contiene a los qubits como sus vectores unitarios.

El mecanismo demedicíon (ver Sec. 2.3) de qubits se ha-
ce con respecto a una base ortonormal, en este casoE, la
probabilidad de que el valor medido sea|0〉 es|a| y la proba-
bilidad de que el valor medido sea|1〉 es|b|.

Aunque un qubit puede variar de manera continua entre
un conjunto de estados cuánticos, despúes de su medición es
posible que asuma uńunico estadodeterminista, es decir, ex-
trae un simple bit cĺasico. La medicíon de qubits es un proce-
so que solamente puede ser aplicada una vez, ya que un qubit
al ser medido pierde su estado de superposición.

2.2. Registros cúanticos

Dado un enterok ≥ 1, sean = 2k. Un sistema cúantico
dek-qubitsvaŕıa en un espacio de estados den dimensiones.
Cualquier vector de la forma

ψ =
n−1∑

i=0

µi|i〉 (1)

dondeµi ∈ C y
∑n−1

i=0 |µi|2 = 1, es un vector unita-
rio enCn. De hecho, al representar cadaı́ndice en base 2,
i = (ik−1 · · · i1i0)2 se podŕıa escribir

ψ =
1∑

ik−1,...,i1,i0=0

µik−1···i1i0 |ik−1 · · · i1i0〉 (2)

Tal vector unitarioψ es unquregistro.
La relacíon entrek y n es lo que determina el poder real

de la computación cúantica: unquregistropuede asumir, al
aplicar un operador de medición, un ńumero exponencial, en
términos dek, de estados deterministas. Ası́, la concatena-
ción dek qubits, produce vectores de dimensión2k. Desde el

punto de vista algebraico, los estados cuánticos se combinan
mediante elproducto tensorial(⊗): el producto tensorial de
k qubits es unk-quregistro.

Recordamos brevemente: seanV y W dos espacios com-
plejos de Hilbert, de dimensión finita, con bases ortonorma-
les respectivas{vi}n−1

i=0 y {wj}m−1
j=0 . El producto tensorial

V ⊗ W tiene como base{vi ⊗ wj}j=0,...,m−1
i=0,...,n−1 . Por tanto,

dim(V ⊗W ) = dim(V ) · dim(W ).

En la potencia tensorial
(
C2

)⊗k ≈ C2k

, se suele escribir

|ik−1 · · · i1i0〉 = |ik−1〉 ⊗ · · · ⊗ |i1〉 ⊗ |i0〉.

Tambíen se tiene que en la esfera unitaria del espacioC2k

existen vectores que no son productos tensoriales de vectores
de dimensíon menor. Estos son llamadosentrelazados.

El origen del poder del ćomputo cúantico se deriva de la
posibilidad de codificar procesos como la evolución de esta-
dos cúanticos.

2.3. Toma de mediciones

La medicíon de qubitsconstituye otra gran diferencia entre
el modelo cĺasico y el modelo cúantico, puesto que se pue-
de medir (leer) el valor que tiene un bit. Sin embargo, no se
puede leer el valor de un qubit sin alterarlo, ya queéste se
convierte en un estado determinista. Dado un qubit

ψ = µ0|0〉+ µ1|1〉 (3)

dondeµ0, µ1 ∈ C, |µ0|2 + |µ1|2 = 1, su medicíon proporcio-
naŕa |0〉 con probabilidad|µ0|2 o |1〉 con probabilidad|µ1|2.

De manera similar, al tener unk-quregistroψ como en
la ec. (1), para cadai = 0, . . . , 2k − 1, la probabilidad de
que tras la medición el estadoψ asuma el estado determinis-
ta |i2〉 = |ik−1 · · · i1i0〉 es |µi|2 = |µik−1···i1i0 |2 (véase la
Ec. (2)).

Esto propicia comportamientos particulares entre los qu-
registros entrelazados y los que no lo son. Por ejemplo, en un
k-quregistro de la formaψ = (a0|0〉+a1|1〉)⊗φ, dondeφ es
un (k − 1)-quregistro se tendrı́a que, al tomar una medición
en su primer qubit,́este transitarı́a a uno|ε〉, conε ∈ {0, 1},
con probabilidad|aε|2. Luegoψ transitaŕıa a|ε〉 ⊗ φ, es de-
cir, la medicíon del primer qubit no influye sobre las de los
deḿas. En cambio, para un estado maximalmente entrelaza-
do, digamosa0|0 · · · 0〉 + a1|1 · · · 1〉, con|a0|2 + |a1|2 = 1,
al hacer una medición en su primer qubit,́este transitarı́a a
uno |ε〉, con ε ∈ {0, 1}, con probabilidad|aε|2, y el qure-
gistro completo transitará a |ε · · · ε〉, es decir ¡al determinar
el primer qubit, los deḿas quedaŕan determinados también y,
en este caso, con el mismo valor! Esta es la célebre “accíon
escalofriante” (spooky action) que origińo la llamadapara-
doja ERP(por Einstein, Rosen y Podolsky), de los estados
entrelazados.
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2.4. Compuertas cúanticas

Aśı como una computadora clásica utiliza circuitos ĺogicos
que permiten la manipulación de informacíon mediante com-
puertas, en el ćomputo cúantico existen mecanismos para ma-
nipularquregistros. El ańalogo a los circuitos lógicos son las
compuertas cúanticaso bienqucompuertas. Las compuertas
cuánticas y las composiciones de ellas transforman lineal-
mente un estado inicialψ1 en un estado finalψ2, conservando
siempre sus normas yángulos, es decir, son transformaciones
unitarias[13]. Cuando se fija una base del espacio, cualquier
transformacíon unitaria queda descrita por una matriz. Sea
A† la conjugada transpuesta de la matrizA. Una matrizA
es unitaria si se cumple queAA† = I. Las compuertas son
transformaciones unitarias en espacios de Hilbert [13]. Dado
este hecho, una de las consecuencias más importantes de las
compuertas cúanticas es que sonreversibles, véase [1].

2.4.1. Transformaciones lineales sobre qubits

Para entender mejor el concepto de compuerta cuántica, vere-
mos algunos ejemplos muy sencillos que operan sobre qubits.
A continuacíon, mostramos las matrices de Pauli, las cuales
pueden generar cualquier transformación lineal de dimensión
2, a partir de una combinación lineal de ellas con coeficientes
complejos. En la primera columna aparece cada matriz y en
la segunda la transformación lineal correspondiente, especi-
ficada por su acción en la base canónica:

I =
(

1 0
0 1

)
I :

|0〉 7→ |0〉
|1〉 7→ |1〉

X =
(

0 1
1 0

)
X : |0〉 7→ |1〉

|1〉 7→ |0〉

Z =
(

1 0
0 −1

)
Z :

|0〉 7→ |0〉
|1〉 7→ −|1〉

Estas transformaciones tienen un nombre convencional.
I es la transformación identidad,X es la negación y Z es un
corrimiento de fase. Cualquiera deéstas cumple la propiedad
de ser transformaciones unitarias.

Otra compuerta muy coḿun esCnot (Controlled-NOT
gate), la cual “niega al segundo qubit siempre que el primero
est́e afirmado”. Actuando en la base de los 2-quregistros es

Cnot :
|0x〉 7→ |0〉 ⊗ |x〉
|1x〉 7→ |1〉 ⊗X|x〉,

y tiene como matriz

Cnot=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 =

(
I 0
0 X

)

dondeX es la compuerta de negación. El primer qubit es
de controly el segundode salida(se dice tambíen “target”).
Cnot es unitaria y no puede ser descompuesta como el pro-
ducto tensorial de dos transformaciones de qubits.

Otra transformación importante que opera sobre un qubit
es la deHadamard:

H :
|0〉 7→ 1√

2
(|0〉+ |1〉)

|1〉 7→ 1√
2
(|0〉 − |1〉)

la cual tiene importantes aplicaciones. Cuandoésta es aplica-
da a|0〉, H crea una superposición del estado(1/

√
2)(|0〉 +

|1〉). Aplicada an bits genera una superposición de2n posi-
bles estados:

(H ⊗H ⊗ · · · ⊗H)|00 · · · 0〉 =
1√
2n

2n−1∑
x=0

|x〉.

H⊗n = (H ⊗ H ⊗ · · · ⊗ H) es llamada deWalsh, o de
Walsh-Hadamard, y es pŕactica coḿun denotarla comoWn.
De manera recursiva:

W1 = H , Wn+1 = H ⊗Wn.

A diferencia de la computación cĺasica, en la que se pue-
de realizar la copia de información sin ninǵun problema, en la
computacíon cúantica la accesabilidad a la información tiene
una limitante importante. La mecánica cúantica no permite la
copia exacta de estados cuánticos.

Teorema de no-clonacíon. No es posible hacer una copia o
clonacíon de un estado cuántico[14].

Como un mero bosquejo, supongamos queU fuera
una transformación unitaria que clone estados, es decir
U(|a0〉) = |aa〉 cualquiera que sea|a〉. Si se considera un
par de estados cuánticos ortogonales, digamos|a〉 y |b〉, para
el estado|c〉 = (1/

√
2)(|a〉+ |b〉) resulta, por un lado

U(|c0〉) = U

(
1√
2
(|a0〉+ |b0〉)

)

=
1√
2
(U(|a0〉) + U(|b0〉))

=
1√
2
(|aa〉+ |bb〉)

y por otro lado, siendoU de clonacíon

U(|c0〉) = |cc〉

=
1√
2
(|a〉+ |b〉)⊗ 1√

2
(|a〉+ |b〉)

=
1√
2
(|aa〉+ |bb〉) +

1√
2
(|ab〉+ |ba〉)

lo que implica(1/
√

2)(|ab〉+|ba〉) = 0, lo cual no es posible.

Tambíen es claro que clonar es imposible mediante la sola
toma de mediciones, pues estaúltima destruye estados.
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2.5. Algoritmos cúanticos

Un algoritmo cúanticoconsiste de la ejecución de una serie
de compuertas cuánticas sobre entidades, que pueden serqu-
bitso quregistros, seguida de una toma de medición.

Para simular un algoritmo cuántico, luego de una inicia-
lización de la ḿaquina de estados y de susqubits y qure-
gistros, se aplican las transformaciones unitarias indicadas.
Dado que latoma de medicioneses probabilista, se ha de dis-
poner de un generador de números aleatorios. Dependiendo
de la toma de medicionesse decide si acaso se concluye el
proceso, o bien, se lo reinicia.

El poder de la computación cúantica lo ocasiona supara-
lelismo inherentey el entrelazamiento.

Es posible, por ejemplo, dada una función f , la evalua-
ción simult́anea de valoresf(x) para muchos valores dex en
la simple aplicacíon de una compuerta cuánticaUf .

En efecto, una forma cuántica de llevar a cabo esto es con-
siderando una computadora de 2-quregistors que iniciando en
el estado|x, y〉, aplicaUf para llegar al estado|x, y⊕ f(x)〉,
donde⊕ es la adicíon módulo 2; el primer registrox denota
al registro de datos de entrada, el segundo registroy es de
salida. Ńotese que siy = 0 la operacíon⊕ deja el valor de
f(x). Si el registro de entrada es inicializado en la superpo-
sición |h〉 = (|0〉+ |1〉)/√2, la cual es creada aplicando la
compuerta de Hadamard al estado|0〉, al aplicarUf resulta

Uf |h0〉 =
|0, f(0)〉+ |1, f(1)〉√

2
.

Este estado contiene información de ambos valoresf(0) y
f(1), pero no da uno determinado, y, al tomar una medición,
se arribaŕa a cualquiera de los estados deterministas|0, f(0)〉,
|1, f(1)〉 con igual probabilidad.

3. Algoritmo cuántico de Deutsch y Jozsa

La idea de los algoritmos cuánticos es almacenar información
en una superposición de estados cuánticos, manipularlos me-
diante transformaciones unitarias y extraer información útil
del estado resultante.

Veamos el algoritmo deDeutsch y Jozsa, el cual fue de
los primeros algoritmos de tipo cuántico [15].Éste puede re-
solver ḿas ŕapido, usando efectos cuánticos [3], un problema
que una computadora clásica lo haŕıa en un ńumero exponen-
cial de exponencialmente.

Una funcíon booleanaf : Zn
2 → Z2 esconstantesi es

idénticamente 0 o 1, y esequilibradasi el número de veces
que asume el valor 0 es el mismo que el que asume el valor
1, es decir

card{x ∈ Zn
2 | f(x) = 0} = 2n−1

= card{x ∈ Zn
2 | f(x) = 1}.

Se ve f́acilmente que hay
(

2n

2n−1

)
= O(n2n−1

) funciones boo-
leanas equilibradas, lo cual es un crecimiento doblemente ex-
ponencial. Por ejemplo, los primeros valores son los siguien-
tes:

n 1 2 3 4 5(
2n

2n−1

)
2 6 70 12 870 601 080 390

TABLA I. Funciones constantes o equilibradas de dos entradas.

x1 x2 f0 f1 f2 f3 f4 f5 f6 f7

0 0 0 0 0 0 1 1 1 1

0 1 0 0 1 1 0 0 1 1

1 0 0 1 0 1 0 1 0 1

1 1 0 1 1 0 1 0 0 1

SeaDn el conjunto de todas las funciones booleanas
constantes o equilibradas. En el cuadro 3 se muestra el con-
junto D2 de las8 = 2 + 6 funciones constantes (f0 y f7) o
equilibradas (f1–f6).

El proṕosito del algoritmo de Deutsch y Jozsa es decidir,
para una funcíon dadaf : Zn

2 → Z2 que est́e enDn, f ∈ Dn,
si acaso es constante o equilibrada “utilizando un solo paso
de ćomputo”.

Clásicamente, habrı́a que evaluar los valoresf(x) de f
para todas las entradasx. En el peor caso se tendrı́a que re-
correr las2n posibilidades. Veamos el procedimiento del al-
goritmo cúantico, donde con una sola evaluación def se de-
termina si es constante o equilibrada.

Se considera el operador unitarioUf definido en el es-
pacio de los(n + 1)-quregistros, es decir, actúa en el espa-
cio complejo de dimensión 2n+1. En cada entrada|xy〉 =
|x〉⊗ |y〉, donde|x〉 es unn-quregistro e|y〉 es un qubit, pro-
duce el(n + 1)-quregistro

|Ψ〉 = Uf |xy〉 = |x〉 ⊗ |y ⊕ f(x)〉.

Uf aparece bosquejado en la Fig. 1.
Aśı pues

Uf : |xy〉 = |x〉 ⊗ |y〉 7→ |x〉 ⊗ |y ⊕ f(x)〉 (4)

FIGURA 1. Ilustracíon de la compuerta cuánticaUf utilizada en el
algoritmo de Deutsch y Jozsa.
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Inicialmente se considera el estado de entrada

|0〉 ⊗ . . .⊗ |0〉︸ ︷︷ ︸
n veces

⊗|1〉 = | 0 . . . 0︸ ︷︷ ︸
n veces

1〉 = |0n1〉. (5)

Luego, a cada qubit se le aplica la compuerta de Hadamard:

H ⊗ . . .⊗H︸ ︷︷ ︸
n+1 veces

|0n1〉 =
1

2n/2

∑

x∈Zn
2

|x〉 ⊗H|1〉. (6)

Observamos que para cadax ∈ Zn
2 , Uf act́ua como sigue

Uf : |x0〉 7→ |xf(x)〉 , |x1〉 7→ |x(1⊕ f(x))〉
y tambíen, puesto queH|1〉 = 1√

2
(|0〉 − |1〉),

Uf (|x〉 ⊗H|1〉) =
1√
2

{ |x0〉 − |x1〉 si f(x) = 0
|x1〉 − |x0〉 si f(x) = 1

=
1√
2
(−1)f(x)(|x0〉 − |x1〉).

De (6) se ha de tener

Uf ◦H⊗(n+1)|0n1〉 =
1

2(n+1)/2

∑

x∈Zn
2

(−1)f(x)(|x0〉− |x1〉).

Al aplicar H⊗(n+1) a cada(n + 1)-quregistro|xb〉, b ∈
{0, 1}:

H⊗(n+1)|xb〉 =
1

2(n+1)/2

(
n−1⊗

i=0

(|0〉+ (−1)xi |1〉)
)
⊗

(|0〉+ (−1)b|1〉)

=
1

2(n+1)/2


 ∑

z∈Zn
2

(−1)〈x|z〉|z〉

⊗

(|0〉+ (−1)b|1〉)
donde〈x|z〉 es el producto interno enZn

2 . Aśı,

H⊗(n+1)(|x0〉−|x1〉)= 2
2(n+1)/2


 ∑

z∈Zn
2

(−1)〈x|z〉|z〉

⊗|1〉

de donde se podrá expresar

H⊗(n+1) ◦ Uf ◦H⊗(n+1)|0n1〉 =
∑

z∈Zn
2

cz |z1〉

siendo, para cadaz ∈ Zn
2 ,

cz =
1
2n

∑

x∈Zn
2

(−1)f(x)+〈x|z〉.

La probabilidad de que al tomar una medición, respecto a la
base cańonica, quede el estado determinista|0n1〉 es enton-
ces |c0|2 y éste tiene como valor 1 sif es constante y va-
lor 0 si f es equilibrada. Por tanto, al tomar una medición a
H⊗(n+1) ◦Uf ◦H⊗(n+1)|0n1〉, si se obtiene|0n1〉, se decide
con toda certeza quef es constante, en otro caso,f es equili-
brada. Es decir, con la medición de los primerosn-qubits se
puede saber sif se trata de una función equilibrada o cons-
tante [15-17].

FIGURA 2. Algoritmo de Deutsch y Jozsa para un quregistro de
control|0〉⊗n y un estado|1〉.

4. Implementacíon del algoritmo de Deutsch y
Jozsa

Dada la definicíon del algoritmo de Deutsch y Jozsa en la
Sec. 3, a continuación introducimos el procedimiento para
llevar a cabo su implementación en el simulador de algorit-
mos cúanticos.

La Fig. 2 muestra esquemáticamente la serie de transfor-
maciones de tipo cúantica (|ψ1〉, |ψ2〉 y |ψ3〉) que se le apli-
can al estado inicial|ψ0〉 para resolver el problema de Deuts-
ch y Jozsa. Particularmente, estas tres transformaciones son
las que generan los estados intermedios|ψ1〉, |ψ2〉 y |ψ3〉 que
constituyen el algoritmo cúantico de Deutsch y Jozsa.

A continuacíon describimos la serie de transformaciones
necesarias en el algoritmo cuántico de Deutsch y Jozsa para
posteriormente introducir el pseudocódigo del algoritmo en
la Sec. 5.

El estado inicial,|ψ0〉, es generado a partir del producto
tensorial entre un quregistro de control|0⊗n〉 (usado para al-
macenar los argumentos de la función) y un qubit de funcíon
|1〉 (utilizado para evaluar la función) [6],

|ψ0〉 = |0〉⊗n ⊗ |1〉.

La primera transformación, |ψ1〉, consiste en aplicar la com-
puerta cúantica de Hadamard al estado inicial,|ψ0〉,

|ψ1〉 = H⊗n+1|ψ0〉
= H⊗n|0〉⊗n ⊗H|1〉

=
∑

x∈Zn
2

1√
2n
|x〉 ⊗

[ |0〉 − |1〉√
2

]
, (7)

dondex, es la representación binaria de un ńumero entero
entre[0, 2n−1], utilizandon qubits.

La segunda transformación consiste en aplicar la com-
puertaUf a |ψ1〉. El operadorUf se encarga de realizar el
mapeo de un quregistro de la siguiente manera:

Uf : |xa〉 = |x〉 ⊗ |a〉 → |x〉 ⊗ |a⊕ f(x)〉
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donde⊕ denota la suma entera módulo 2, es decir:

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0.

El operadorUf tiene el efecto de introducir la fase(−1)f(x)

al estado|x〉. Aśı al aplicarUf al estado|ψ1〉, de la Ec. (7)
tenemos

|ψ2〉 =
1√
2n

∑

x∈Zn
2

(−1)f(x)|x〉 ⊗
[ |0〉 − |1〉√

2

]
, (8)

Finalmente, la tercera transformación consiste en aplicar
el operador de Hadamard a|ψ2〉, de lo que obtenemos

|ψ3〉 =
1√
2n

∑

x,z∈Zn
2

(−1)f(x)+〈x|z〉|z〉 ⊗ |1〉, (9)

El estado resultante es|ψ3〉. Para conocer si la función es
equilibrada o constante, es necesario interpretar la medición
del estado|ψ3〉. Si el resultado de la medición es el estado
determinista|0⊗n1〉 entonces sabemos que se trata de una
función constante, en cualquier otro caso la función es equi-
librada.

4.1. El operadorUf

Como se aprecia en la Ec. (8), toda la información de la fun-
ción a evaluarf se incluye en el quregistro|ψ2〉 al aplicar el
operadorUf . En esta sección veremos la manera de expre-
sar aUf en forma matricial, con el propósito de tener una
representación que se pueda utilizar en la simulación.

Retomemos brevemente el comportamiento del algorit-
mo. Notemos que el qubit de función debe ser|1〉, debido a
que al aplicarle una compuerta de Hadamard a tal qubit apa-
rece un signo negativo, como se aprecia en la Ec. (7). Este
signo se distribuye hacia la mitad de los elementos del qure-
gistro|ψ0〉 durante la primera transformación. Este signo

negativo es el que dispersa hacia los estados|x〉 de la Ec.(8)
al aplicarle el operadorUf al estado|ψ1〉 y que en la ope-
ración de medicíon ayuda a determinar si la función f(x) es
constante o equilibrada.

Cuando el operadorUf se aplica al estado

|x〉 ⊗H|1〉 = |x〉 ⊗ 1√
2

(|0〉 − |1〉) ,

se tiene

Uf (|x〉 ⊗H|1〉) = Uf

(
|x〉 ⊗ 1√

2
(|0〉 − |1〉)

)

=
1√
2

{ |x0〉 − |x1〉 si f(x) = 0
|x1〉 − |x0〉 si f(x) = 1

= (−1)f(x)|x〉 ⊗H|1〉.

Y podemos ver que el signo negativo, para cada estado|x〉,
depende del valor def(x).

Para expresar matricialmente el operadorUf , es necesario
definirlo en t́erminos de submatricesUf(x). Podemos escribir
a la matrizUf(x) de tamãno2× 2 como:

Uf(x) =
(

1⊕ f(x) f(x)
f(x) 1⊕ f(x)

)
. (10)

La forma general al operadorUf como una matriz2n+1×
2n+1 es definida como

Uf =




Uf(0) 0 · · · 0
0 Uf(1) · · · 0
...

...
. . .

...
0 0 · · · Uf(2n−1)


 . (11)

Entonces otra forma de escribir la Ec. (8) es:Uf (2n − 1)

|ψ3〉 =




Uf(0) 0 · · · 0
0 Uf(1) · · · 0
...

...
. ..

...
0 0 · · · Uf(2n−1)


 (H⊗n|0〉⊗n ⊗H|1〉) . (12)

Para el caso den = 2, la matrizUf se escribe como

Uf =




1⊕ f00 f00 0 0 0 0 0 0
f00 1⊕ f00 0 0 0 0 0 0
0 0 1⊕ f01 f01 0 0 0 0
0 0 f01 1⊕ f01 0 0 0 0
0 0 0 0 1⊕ f10 f10 0 0
0 0 0 0 f10 1⊕ f10 0 0
0 0 0 0 0 0 1⊕ f11 f11

0 0 0 0 0 0 f11 1⊕ f11




, (13)
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donde

f00 =f(0, 0) (14)

f01 =f(0, 1) (15)

f10 =f(1, 0) (16)

f11 =f(1, 1). (17)

Se puede ver en las matrices (11) y (13) que si la fun-
ción f es constante, entonces se tiene a la matriz unitaria
2n+1 × 2n+1 o a una matriz con submatricesUf(x) antidia-
gonales en su diagonal principal. Por lo que al aplicar esta
matriz a|ψ1〉 se obtendŕa a±|ψ1〉, y al aplicar la compuer-
ta de Hadamard, delúltimo paso del algoritmo de Deutsch y
Jozsa se tiene±|0〉⊗n⊗ |1〉. Entonces al realizar la medición
sobre los primerosn-qbuits obtenemos que la amplitud del
estado|0〉⊗n es uno.

Si la funcíon es equilibrada, entoncesUf se expresa como
una combinacíon de matricesUf(x) diagonales y antidiago-
nales. De esta forma, el estado resultante|ψ3〉 = |z〉 ⊗H|1〉
contiene al elemento|z〉, el cual es cualquier estado distinto
de |0〉⊗n. Aśı, la medicíon final daŕa como resultado que la
amplitud de|0〉⊗n es 0.

4.2. Método experimental

Como plataforma experimental utilizamos GAMA, el cual es
un lenguaje de programación para simular la ejecución de
algoritmos cúanticos en una computadora clásica [12]. Este
lenguaje es de tipo imperativo, estructurado y de propósito
espećıfico. GAMA cuenta con un ḿodulo de depuración que
permite llevar la secuencia de los diferentes cambios de los
estados de las variables en las diferentes entidades de un al-
goritmo cúantico, incluyendo qubits, quregisters, qugates, asi
como las operaciones entre ellas: mediciones, producto inte-
rior (·) y productor exterior (⊗).

5. Resultados y discusíon

5.1. Pseudoćodigo

Ahora explicaremos el pseudocódigo del algoritmo cuando
n = 2 con el fin de ilustrarlo, implementarlo y probar-
lo en nuestro simulador de algoritmos cuánticos. El estado
inicial |ψ0〉 se expresa como:|ψ0〉 = |00〉 ⊗ |1〉 y el es-
tado final |ψ3〉 se obtiene, como hemos mencionado, des-
pués de la aplicación de una serie de transformaciones de la
compuerta de Hadamard yUf a dicho estado inicial como
|ψ3〉 = H⊗3UfH⊗3|ψ0〉 dondeH⊗3 = H ⊗ H ⊗ H y Uf

est́a definido como en la Ec.(13).
El algoritmo 1 muestra el pseudocódigo de los pa-

sos necesarios para resolver este ejemplo. Primero, se lle-
va a cabo la inicialización del operadorUf con la funcíon
Initialize() descrita en el algoritmo 2. Como hemos
mencionado el operadorUf est́a conformado de evaluaciones
de la funcíon f(x1, x2). Para demostrar el funcionamiento

ALGORITMO 1. Algoritmo cúantico de Deutsch y Jozsa para la
funciónf(x1, x2).

Uf = Initialize();

ψ0 = |00〉 ⊗ |1〉;
H3 = H⊗3;

ψ1 = H3 ∗ ψ0;

ψ2 = Uf ∗ ψ1;

ψ3 = H3 ∗ ψ2;

ψ = measure(ψ3, 0);

return ψ;

ALGORITMO 2. Funcíon Initialize().

Ensure: Una qucompuertauf que representa el operadorUf

Qgate uf ={
{(1 + f(0, 0)) %2, f(0, 0), 0, 0, 0, 0, 0, 0},
{f(0, 0), (1 + f(0, 0))%2, 0, 0, 0, 0, 0, 0},
{0, 0, (1 + f(0, 1))%2, f(0, 1), 0, 0, 0, 0},
{0, 0, f(0, 1), (1 + f(0, 1))%2, 0, 0, 0, 0},
{0, 0, 0, 0, (1 + f(1, 0))%2, f(1, 0), 0, 0},
{0, 0, 0, 0, f(1, 0), (1 + f(1, 0))%2, 0, 0},
{0, 0, 0, 0, 0, 0, (1 + f(1, 1))%2, f(1, 1)},
{0, 0, 0, 0, 0, 0, f(1, 1), (1 + f(1, 1))%2}

};
return uf ;

(aqúı, z %2 denota “z módulo 2”, es decir el residuo dez al ser dividido

entre 2.)

ALGORITMO 3. Funcíonf(x1, x2).

Require: Dos valores de entradax1 y x2.

Ensure: El resultado de la función evaluada en los valores

de entrada.

Int f(Int x1, Int x2) {
if x1 == x2 then

return 0;

end if

return 1; }

del algoritmo, seleccionamos una de las funciones presenta-
das anteriormente en el Cuadro 3. En este caso, la función
equilibradaf3 del Cuadro 3 fue implementada y su pseu-
doćodigo se muestra en el algoritmo 3. Los siguientes pasos
corresponden a las transformaciones hechas al estado inicial
ψ0. La primera equivale a aplicarle la compuertaH⊗3. La se-
gunda consiste en la aplicación del operadorUf y finalmente
la tercera en aplicarle la compuertaH⊗3 nuevamente.

Finalmente, el estadoψ es el estado resultante, al cual se
le realizaŕa una toma de medición, hacíendolo por cualquier
qubit que corresponda al quregistro de control, que en este
caso tomamos el qubit0 para medirlo.
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5.2. Simulacíon en GAMA

Presentamos el código GAMA para llevar a cabo la simula-
ción del algoritmo. Por ahora, estamos interesadosúnicamen-
te en obtener el resultado de la simulación y no en el de esta-
dos intermedios durante una depuración. De tal manera que
el estado resultante de cada una de las variables involucradas
se puede observar en la pestaña inferiorConfigurations, en
donde el quregistropsi contiene la información de si acaso
la función se trata de una constante o bien de una equilibra-
da. En la Sec. 5.3 veremos la interpretación al resultado del
algoritmo dado un tal quregistro.

5.3. Resultados

Como resultado de la simulación anterior, para el cason = 2
y la función equilibradaf3 del Cuadro 3, obtuvimos que
la medicíon del quregistroψ3 geneŕo el quregistroψ =
(1.0 + 0.0i)|111〉. Considerando que el valor del quregistro
ψ0 de entrada es|001〉, diremos por un lado que si el qu-
registro resultante arroja el mismo valor del quregistro ini-
cial se trata de una función constante y por otro lado, si se
trata de cualquier otro estado sabemos que es una función
equilibrada. Bajo esta premisa observamos que el quregistro
ψ = |111〉 indica que la funcíonf(x1, x2) es equilibrada.

En este trabajo hemos realizado la simulación del algorit-
mo cúantico de Deutsch y Jozsa en el lenguaje GAMA. Para
ello, hemos establecido un mecanismo para construir la com-
puerta cúanticaUf en forma matricial, que ayuda a obtener la
simulacíon de su comportamiento. Se puede apreciar que el
qubit de funcíon |1〉 de entrada se utiliza para inducción la se-
cuencia de signos negativos, necesarios para que el algoritmo
funcione, y para que el registro de control alcance la dimen-
sión apropiada para operarse con la compuerta cuánticaUf .
Por otro lado, y tal vez ḿas delicado, es el hecho de que la
compuertaUf debe inicializarse para cada una de las funcio-
nes que el algoritmo de Deutsch y Jozsa tenga de entrada, y
si la inicializacíon no es tomada en cuenta en la complejidad
el algoritmo cúantico resulta ser ḿas eficiente que el clásico.
Sin embargo, si este mecanismo de inicialización se toma co-
mo parte de la ejecución del algoritmo, la complejidad podrı́a
ser igual o mayor a la del algortimo clásico ya que GAMA
lleva a cabo una simulación de ćomputo cúantico dentro de
una computadora clásica.

Además, tambíen implementamos el algoritmo de Deuts-
ch y Jozsa para los siguientes valoresn = 3, 4, 5. El ob-
jetivo de este experimento es conocer su comportamiento y
sus implicaciones. Al incrementar el número de qubits, la di-
mensíon de la compuertaUf aumenta de acuerdo a los de-
talles mostrados en el Cuadro 5.3. En general, la dimensión
de la compuertaUf para resolver un problema den qubits es
2n−1 × 2n−1. Para cualquier tamaño de quregistro, el algo-
ritmo de Deutsch y Jozsa aplica una vez la compuerta Hada-
mard al registro inicial, una vez la compuertaUf y finalmente
una compuerta Hadamard. Aplicar una compuerta cuántica a
un quregistro equivale a la multiplicación de una matriz por

FIGURA 3. Gráfica de tiempos del algoritmo Deutsch y Jozsa con
respecto al ńumero de qubits.

TABLE II. Tamãno de las compuertas cuánticas en el algoritmo de
Deutsch y Jozsa.

Número de qubits Dimensión deUf y Hadamard

2 8X8

3 16X16

4 32X32

5 64X64

un vector. Lo que implica que la complejidad del algoritmo
en una computadora clásica es 3 vecesO(m2), dondem es la
dimensíon de la matriz y del vector. En el algoritmo cuánti-
co, la dimensíon de las compuertas es dem = 2n−1, y su
complejidad despúes de simularlo en una computadora clási-
ca es deO((2n−1)2). Esto ocasiona que la inicialización de
la compuerta cúanticaUf consuma mayor tiempo debido a
que el ńumero de funciones a evaluar crece también. Sin em-
bargo, no solo el tiempo de procesamiento tiene un impacto
sino tambíen la capacidad de almacenamiento de la máquina
puede llegar a ser crucial si se trata de una simulación con un
número de qubits muy alto.

La Fig. 3 muestra la gráfica de tiempos de las corridas
del algoritmo de Deustch-Jozsa, utilizando una computadora
de 32-bits para funciones de dos a cinco qubits de entrada,
de lo que podemos apreciar un crecimiento exponencial. Co-
mo mencionamos anteriormente esto se debe al tiempo que
consume la inicialización de la compuertaUf . Una de las li-
mitantes del simulador es que el número ḿaximo de qubits
que se pueden utilizar en un algoritmo está limitado al ńume-
ro de matrices que se puedan crear dentro del tamaño de la
memoria de la computadora.

6. Conclusiones

En este trabajo hemos realizado la simulación del algoritmo
cuántico de Deutsch y Jozsa en el lenguaje GAMA con el fin
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de explorar sus diferentes componentes. Para ello, hemos es-
tablecido un mecanismo para construir la compuerta cuántica
Uf en forma matricial, que ayuda a obtener la simulación de
su comportamiento. Se puede apreciar que el qubit de fun-
ción |1〉 se utiliza para inducción de la secuencia de signos
negativos, necesarios para que el algoritmo funcione, y para
que el registro de control alcance la dimensión apropiada pa-
ra operarse con la compuerta cuánticaUf . Por otro lado, la
compuertaUf debe inicializarse para cada una de las funcio-
nes que el algoritmo de Deutsch y Jozsa tenga de entrada, y
si la inicializacíon no es tomada en cuenta en la complejidad
el algoritmo cúantico resulta ser ḿas eficiente que el clásico.
Sin embargo, si este mecanismo de inicialización se toma co-

mo parte de la ejecución del algoritmo, la complejidad podrı́a
ser igual o mayor a la del algortimo clásico.
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