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Una propiedad importante de la compuéacclantica es su paralelismo imgito, que permite procesar urimero exponencial de trans-
formaciones Bsicas mediante unimero lineal de qubits en un sistemaaatico. El algoritmo de Deutsch y Jozsa ilustra la redueci
proporcionada por el@nputo ci@ntico, en la complejidad del procesamiento. Presentamddaaguplementadin y la ejecudn del al-
goritmo cluantico de Deutsch y Jozsa en GAMA, herramienta que hemos desarrollado para la simylanmnitorizacbn de algoritmos
cuanticos. La simulaéin permite explorar los detalles de sus componentes mediantedelorde depuradn de GAMA que permite mos-
trar las diferentes configuraciones que cada componente puede asumir.

Descriptores: Computaddn clantica; paralelismo; qubits; complejidad computacional; simaraciantica

An important feature of quantum computing is its inherent paralellism, allowing to process an exponential number of basic transforms
with just a linear number of qubits. The Deutsch-Jozsa algorithm exemplifies the computational complexity reduction. This work reports
the implementation and execution of the Deutsch-Josza quantum algoritm in GAMA, a programming language for quantum computing
simulation developed by ourselves. Through this simulation, it is possible to explore all the components involved by tracing all the different
configurations that each component may take.
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1. Introduccion zacbn del algoritmo de Deutsch y Jozsa ha sido propuesto
dentro del contexto del afisis de datos masivos [11].
La computadn clantica aprovecha fémenos de la mémi- Dada la importancia del algoritmo de Deutsch y Jozsa en

ca clantica para realizar computaciones, tales como la stgl entendimiento de algoritmos&aticos, presentamos su im-
perposiobn, el entrelazamiento o el paralelismo ifcfib. EI  plementadn en el lenguaje de programagiclantica GA-
computo cié@ntico permite desarrollar algoritmos para acele-MA (lenguaje de prosito espeitico diséiado para la simu-

rar procesos, o transmisiones de informdacd, incluso, en- lacion de algoritmos canticos [12]). En particular, tal imple-
contrar nuevas propiedades dida ciantica [1]. mentacbn esh orientada a la enBanza de algoritmos énti-
cos. Durante su desarollo encontramos que la parte medular

ver una tarea, y unouantico consiste en aplicar una serie de este algoritmo consiste en la constrénale la compuerta

finita de transformaciones @mpuertas canticad a un es- cuantically, introducida en la Sec. 2.5, con la cual es posible
tado inicial para producir un estado final. En la actualidad sé® evzluam)n de una sola funon para raltiples valores de

han desarrollado diversos algoritmosanticos en diferentes entrél a 0 tiene | on siquiente: en la Sec. 2
areas tales como criptogfaf lisqueda, optimizagn, reso-  =St€ ariculo tiene la composion siguiente: en la Sec.
lucion de sistemas lineales y simulaside sistemas @nti- introducimos brevemente los conceptos fundamentales de la

cos, entre otros [2]. El algoritmo de Deutsch y Jozsa es uno O(‘eomp_utacmn clantica, asi como Ia_d_eflnmn de un _alg,orlj[mo
los primeros algoritmos @nticos que surgieron [3]. Y aun- cuantico, en las Secs. 3y 4 describimos el algoritmantico

que se ha implementado y simulado usando diferebtest € Deutschy Jozsay suimplemenéacien la Sec. 5 presen-

cas [4-9], y ha demostrado obtener resultados en un solo palyN0s 10s resultados y una breve disonsile los resultados,
de tipo cléantico en compara@i con el algoritmo secuencial y, finalmente, en la Sec. 6 presentamos las conclusiones del

clasico que requiere uriimero exponencial, sus aplicaciones 2Pao-
han sido limitadas. Sin embargo, recientemente, este algorif: . L

mo ha sido utilizado para resolver distintos problemas, entré' Fundamentos de algoritmos canticos

ellos, en lenguajes formales para determinar diferentes part&h la computadin clantica se trabaja con sistemasaoti-

en una estructura de datos de tipo arreglo y aplicar funcioness finitos y se trata con espacios vectoriales complejos de
espedicas a cada una de las partes [10]. Tagnbia utili-  dimenson finita.

Un algoritmo es una sucedn finita de pasos para resol-
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2.1. Bits cuanticos

En el modelo de computdm clasica la unidad &sica de in-
formacibn es ebit, el cual asume uno de dos posibles valo-
res, ya sea 0 o 1. Aflogamente, el modelo de computati
cuantica tiene como unidadhbica efubit, que puede asumir
una superposion de dos valores, o estados, distintos, diga

mos|0) o |1), los cuales representan los dos valores de un biY

clasico.

Los vectores0) = [1 0]7 y |1) = [0 1]T forman la
base cabnica enC?. Los covectoreso funcionales lineales
(x| = |x) (el supeindice” denota transposigh conjuga-
da), conz € {0, 1}, forman la base del espacio dyal*)*,
que al ser de Hilbert, es isomorfdC mismo.

Esta notadin tiene la ventaja de poder especificar las
transformaciones @nticas (ver Sec. 2.4) sobre estados
cuanticos enérminos de la base canica. Por ejemplo, la
transformadn que intercambia los estado$ y |1) esé da-
da por la matrizX = |0)(1] + |1)(0|.

Un qubites una superposim de bits chsicos, es decir, es
una combinadin lineala|0) + b|1), dondea y b son umeros
complejos tales qui| + |b| = 1. El espacio de Hilbert com-
plejo de dimendin 2, con base ortonormd = [|0), |1)],
contiene a los qubits como sus vectores unitarios.

El mecanismo denedicbn (ver Sec. 2.3) de qubits se ha-
ce con respecto a una base ortonormal, en este Easa
probabilidad de que el valor medido §6aes|a| y la proba-
bilidad de que el valor medido s¢g es|b|.

Aunqgue un qubit puede variar de manera continua entr
un conjunto de estados @nticos, despes de su medibn es
posible que asuma umico estadaleterministaes decir, ex-
trae un simple bit ésico. La medid@n de qubits es un proce-
so que solamente puede ser aplicada una vez, ya que un qu
al ser medido pierde su estado de superposici

2.2. Registros canticos

Dado un enterd: > 1, sean = 2F. Un sistema céntico
de k-qubitsvaria en un espacio de estadosrddimensiones.
Cualquier vector de la forma

n—1
o= pili) 1)
=0
dondeu; € Cy 22;—01 wi]> = 1, es un vector unita-

rio en C". De hecho, al representar catfalice en base 2,
1= (ig—1 - -i1i0)2 Se podia escribir

1

>

Tk—1,.-0,81,50=0

(0 Wiy -iyiolik—1 " *i1i0) )

Tal vector unitaria) es unquregistra

La relacbn entrek y n es lo que determina el poder real
de la computaéin clantica: unquregistropuede asumir, al
aplicar un operador de medaei, un mimero exponencial, en
téerminos dek, de estados deterministas.iA& concatena-
cion dek qubits produce vectores de dimeasi2®. Desde el
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punto de vista algebraico, los estadoamticos se combinan
mediante eproducto tensoria[®): el producto tensorial de
k qubits es urk-quregistra

Recordamos brevemente: sdaly W dos espacios com-
plejos de Hilbert, de dimer@n finita, con bases ortonorma-
les respectivagv;}i=) y {w;}"". El producto tensorial

1=0
® W tiene como basdv; @ w;}/—0"™ ', Por tanto,

yeesn—1

dim(V @ W) = dim(V) - dim(W).
En la potencia tensorié[CQ)m ~ C2", se suele escribir

lig—1---i1i0) = |ir—1) ® - @ |i1) @ [io).

P . . . k
Tambin se tiene que en la esfera unitaria del esp&éio
existen vectores que no son productos tensoriales de vectores
de dimenshn menor. Estos son llamadestrelazados

El origen del poder delGmputo ciéntico se deriva de la
posibilidad de codificar procesos como la evolucide esta-
dos cuanticos.

2.3. Toma de mediciones

La medicbn de qubitsconstituye otra gran diferencia entre
el modelo chsico y el modelo cantico, puesto que se pue-
de medir (leer) el valor que tiene un bit. Sin embargo, no se
puede leer el valor de un qubit sin alterarlo, ya @sée se
gonvierte en un estado determinista. Dado un qubit

¥ = pol0) + pa[1) 3)
Bdndeyo, i1 € C, |po]? + |p1]? = 1, sumediobn proporcio-
na |0) con probabilidady|? o |1) con probabilidady |2.

De manera similar, al tener uaquregistroy) como en
la ec. (1), para cada= 0,...,2* — 1, la probabilidad de
que tras la mediéin el estada) asuma el estado determinis-
ta |l2> = |’L'k,1 . "i1i0> es|/m2 = |Mik71---i1i0|2 (Véase la
Ec. (2)).

Esto propicia comportamientos particulares entre los qu-
registros entrelazados y los que no lo son. Por ejemplo, en un
k-quregistro de la formé = (ao|0) +a1|1)) ® ¢, dondep es
un (k — 1)-quregistro se tenth que, al tomar una medan
en su primer qubitéste transitda a unole), cone € {0, 1},
con probabilidada.|?. Luegoy transitafa ale) ® ¢, es de-
cir, la medicon del primer qubit no influye sobre las de los
demas. En cambio, para un estado maximalmente entrelaza-
do, digamosi|0---0) + a1 |1---1), conlag|? + |as|? = 1,
al hacer una medioh en su primer qubitgste transitaa a
uno e), cone € {0, 1}, con probabilidada.|?, y el qure-
gistro completo transitarale - - - €), es decir jal determinar
el primer qubit, los dem@s quedan determinados tarmém vy,
en este caso, con el mismo valor! Esta esdielore “acabn
escalofriante” §pooky actiohque origird la llamadapara-
doja ERP(por Einstein, Rosen y Podolsky), de los estados
entrelazados.
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2.4. Compuertas canticas Otra transformadin importante que opera sobre un qubit

. L . o es la deHadamard
Asi como una computadoraadica utiliza circuitosdgicos

que permiten la manipulam de informadn mediante com- 10)
puertas, en el@mputo cé@ntico existen mecanismos para ma- H: )
nipularquregistros El ardlogo a los circuitosdgicos son las

compuertas canticaso bienqucompuertasLas compuertas | i . licaci Cuabsia i
cuanticas y las composiciones de ellas transforman lineal® cua! tiene importantes aplicaciones. Cuaasia es aplica-

mente un estado inicial, en un estado finak,, conservando 9@ &|0), H crea una superposi del estad@1/v'2)(|0) +

siempre sus normasangulos, es decir, son transformaciones|1>)' Aplicada an bits genera una superposinide2™ posi-
unitarias[13]. Cuando se fija una base del espacio, cualquieP!€s estados:

transformadn unitaria queda descrita por una matriz. Sea

A' la conjugada transpuesta de la matdizUna matrizA

es unitaria si se cumple queAt = I. Las compuertas son
transformaciones unitarias en espacios de Hilbert [13]. Dado
este hecho, una de las consecuencias irmportantes de las Hon
compuertas canticas es que sarversiblesvéase [1].

(10) +11))
(10) = 1)

—
—

N

2" —1

(H@H@---@Hnoo-.-m:\/% S o).
x=0

= (H® H®---® H) es llamada d&Valsh o de
Walsh-Hadamardy es péctica coniin denotarla comaV/,,.

. . . De manera recursiva:
2.4.1. Transformaciones lineales sobre qubits

Para entender mejor el concepto de compuesatita, vere- Wi=H, Wy =HW,.
mos algunos ejemplos muy sencillos que operan sobre qubits.
A continuacon, mostramos las matrices de Pauli, las cuales

ueden generar cualquier transforn@adineal de dimenéin : . : LT
P g q de realizar la copia de informaixei sin ningin problema, en la

2, a partir de una combinam lineal de ellas con coeficientes . L . ) P
P computacbn clantica la accesabilidad a la informawitiene

complejos. En la primera columna aparece cada matrizyen _ . . : L L .
p'e) P L P : Y €lha limitante importante. La manoica ciéantica no permite la
la segunda la transformaci lineal correspondiente, especi-

. . - copia exacta de estadosartiicos.
ficada por su acon en la base camica: i . .
Teorema de no-clonadn. No es posible hacer una copia o

A diferencia de la computa@n clasica, en la que se pue-

I < 10 ) I |0) +— |0) clonacbn de un estado éntico[14].

0 1 ) = [ Como un mero bosquejo, supongamos duefuera
una transformaéin unitaria que clone estados, es decir

X = < 01 ) X : 0) = 1) U(]a0)) = |aa) cualquiera que sefa). Si se considera un

1.0 i = 10 par de estados émticos ortogonales, digamps y |b), para
1 0 0) — |0) el estaddc) = (1/v/2)(|a) + |b)) resulta, por un lado
Z = Z :
( 0 -1 ) 1) — —1)

1

V2

Estas transformaciones tienen un nombre convencional. U(|c0)) = U (
| es la transformathn identidad X es la negaéin y Z es un

UMHMQ

corrimiento de fase. Cualquiera éstas cumple la propiedad 1
de ser transformaciones unitarias. = E(U(mo» +U([00)))
Otra compuerta muy coam esC,,,; (Controlled-NOT
L ‘ot . 1
gate), la cual “niega al segundo qubit siempre que el primero = —(|aa) + |bb))
est afirmado”. Actuando en la base de los 2-quregistros es V2
Cnot: |0z) +— |0)® |z) y por otro lado, siend® de clonaddn
Clz) e 1) © Xz,
y tiene como matriz U(|c0)) = |cc)
1 1
1000 = —=(la) + b)) ® —=(la) + |b))
croe | 01 0 0 _<I 0> V2 V2
- 0 0 0 1 V0 X 1 1
0010 = 75 (laa) + [b8)) + —(lab) + o)

donde X es la compuerta de negéani El primer qubit es

de controly el segundale salida(se dice tamlgin “target). 10 que implica(1/+/2)(|ab)+[ba)) = 0, lo cual no es posible.
Cnotes unitaria y no puede ser descompuesta como el pro- Tambin es claro que clonar es imposible mediante la sola
ducto tensorial de dos transformaciones de qubits. toma de mediciones, pues eétima destruye estados.
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2.5. Algoritmos clanticos

Un algoritmo clantico consiste de la ejecumn de una serie n 112 3 4 5
de compuertas @nticas sobre entidades, que puederyger (,Z7) [2]6]70] 12870 | 601080390
bits o quregistros seguida de una toma de medici

Para simular un algoritmo énmtico, luego de una inicia-
lizacibn de la nquina de estados y de sgsbitsy qure-  TasLA I. Funciones constantes o equilibradas de dos entradas.
gistros se aplican las transformaciones unitarias indicadas
Dado que ldoma de medicioness probabilista, sehadedis- 21 %2 fo i fo fs fu fs fo  fr

poner de un generador démeros aleatorios. Dependiendo 0 0 0 0 0 0 1 1 1 1
de latoma dg medicion@g _decide si acaso se concluye el ¢ 1 0 0 1 1 0 0 1 1
proceso, o bien, se lo re|n|9|_a. o . 1 0 0 1 0 1 0 1 0 1

El poder de la computan clantica lo ocasiona spara- 1 1 0 1 1 0 1 0 0 1
lelismo inherentg el entrelazamiento.

Es posible, por ejemplo, dada una fusrif, la evalua- ) _
cion simulénea de valoreg(z) para muchos valores deen SeaD, el conjunto de todas las funciones booleanas
la simple aplicadéin de una compuerta aatical/;. constantes o equilibradas. En el cuadro 3 se muestra el con-

En efecto, una forma éntica de llevar a cabo esto es con-JUNto Dz de las8 = 2 + 6 funciones constanteg(y f7) o
siderando una computadora de 2-quregistors que iniciando &fluilibradas f1—fs).
el estaddz, y), aplicalU; para llegar al estade, y @ f(x)), El proposito del algoritmo de Deutsch y Jozsa es decidir,
dondes es la adigdbn mbdulo 2; el primer registra: denota ~ Para una fundin dadaf : Z3 — Z que estenD,,, f € D,
al registro de datos de entrada, el segundo registes de  Si acaso es constante o equilibrada “utilizando un solo paso
salida. Notese que si = 0 la operaddn & deja el valor de  de @mputo”.

f(z). Si el registro de entrada es inicializado en la superpo- Clasicamente, halar que evaluar los valore§x) de f
sicion |h) = (]0) + |1))/v/2, la cual es creada aplicando la para todas las entradas En el peor caso se teridrque re-
compuerta de Hadamard al estddp al aplicarU; resulta correr las2™ posibilidades. Veamos el procedimiento del al-
goritmo ciantico, donde con una sola evaluactie f se de-
Uy|h0) = 0. f(o»\gl’ S termina si es constante o equilibrada.

Se considera el operador unitailiy definido en el es-
pacio de logn + 1)-quregistros, es decir, d@ en el espa-
cio complejo de dimenén 2"*!. En cada entradary) =
|z) ® |y}, donde|z) es unn-quregistro dy) es un qubit, pro-
duce el(n + 1)-quregistro

Este estado contiene informéni de ambos valoreg(0) y
f(1), pero no da uno determinado, y, al tomar una médici
se arribaa a cualquiera de los estados determinigtas(0)),
|1, f(1)) con igual probabilidad.

3. Algoritmo cuantico de Deutsch y Jozsa |U) = Uylzy) = |z) @ [y & f(x)).

Laidea de los algoritmos énticos es almacenar informani
en una superpositn de estados é@nticos, manipularlos me-
diante transformaciones unitarias y extraer inforroaditil
del estado resultante.
Veamos el algoritmo d®eutsch y Jozseel cual fue de Uy :lzy) = lz) @ y) = [2) @ |y & f()) (4)
los primeros algoritmos de tipo &ntico [15].Este puede re-
solver nés apido, usando efectos@nticos [3], un problema
gue una computadoraédica lo hdia en un mero exponen-
cial de exponencialmente. |0 _— 00}
Una funcbn booleanaf : Z3 — Z» esconstantesi es
idénticamente 0 o 1, y esquilibradasi el nimero de veces
gue asume el valor 0 es el mismo que el que asume el valor
1, es decir Uy | W)

card{x € Z3| f(x) =0} =271
= card{x € 23| f(x) = 1}. 1) y  y®f()
Se ve fcilmente que ha{/;:) = O(nQ"_l) funciones boo-
leanas equilibradas, lo cual es un crecimiento doblemente ex-
ponencial. Por ejemplo, los primeros valores son los siguienFicura 1. llustracbn de la compuerta éntical/; utilizada en el
tes: algoritmo de Deutsch y Jozsa.

Uy aparece bosquejado en la Fig. 1.
Asi pues
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Inicialmente se considera el estado de entrada - ‘
|U>l>§ H®71 T T H®n,
0 ...®10 H=10...01) =10"1). 5
0)®...©0)®[1)=[0...01) =1[0"1) (5) U,
Luego, a cada qubit se le aplica la compuerta de Hadamard: |1) H yooydfla) H

" 1
He. . 9H(0M) =7 > lx)®HIL).  (6)

n+1 veces €Ly

Observamos que para cada& Z%, Uy actia como sigue
Uy : |20) = [zf(2)) , [21) — [z(1 f(x)))
y tambien, puesto qué/|1) = %(|0> — 1)),

L [ ]20) — |21) sif(z)=0
Uf(|$>®H|1>):ﬂ{ z1) = |z0) sif(z) =1
_ L —1D7@(120) — |2
\/5( 1)@ (|z0) — |21)).

De (6) se ha de tener

n n 1 (x
Upo H® V0" 1) = PICE=E) > (1) D(|20) — [21)).

TELY

Al aplicar H®("+1) a cada(n + 1)-quregistro|zb), b €

{0,1}:
1 n
2(nt+1)72 | \

3

1

HEU) ) — (10) + ()" 1>>> @

Il
<

(10) + (=1)°[1))

:W S (=)@ | @
z€Ly
(10) + (=1)°[1))

donde(z|z) es el producto interno €. Asi,

2

HEOD ([a0) — 1) = 575

> (D) | @)

2€7ZY

de donde se podrexpresar
H® D o Up o HEMHD|0"1) = Y~ ¢, |21)

2€ZY
siendo, para cadac Z7,
e = = S (1) @tale)
2n ,
TELY

La probabilidad de que al tomar una mediti respecto a la
base cafnica, quede el estado determinigial) es enton-
ces|co|? y éste tiene como valor 1 gi es constante y va-
lor O si f es equilibrada. Por tanto, al tomar una methca
H® D oUpo H®(H1|071), si se obtiendd” 1), se decide
con toda certeza quges constante, en otro cagoes equili-
brada. Es decir, con la mediei de los primeros-qubits se
puede saber §f se trata de una fun@n equilibrada o cons-
tante [15-17].

185

f ! ! !

0) |41) [1)2) |3)

FIGURA 2. Algoritmo de Deutsch y Jozsa para un quregistro de
control |0)®™ y un estaddl).

4. Implementacibn del algoritmo de Deutschy
Jozsa

Dada la definiddn del algoritmo de Deutsch y Jozsa en la
Sec. 3, a continuagn introducimos el procedimiento para
llevar a cabo su implementdei en el simulador de algorit-
mos clanticos.

La Fig. 2 muestra esqueaticamente la serie de transfor-
maciones de tipo @ntica (v1), [¢2) ¥ |13)) que se le apli-
can al estado inicidl)y) para resolver el problema de Deuts-

ch y Jozsa. Particularmente, estas tres transformaciones son

las que generan los estados intermedig$, =) y |¢s) que
constituyen el algoritmo é@ntico de Deutsch y Jozsa.

A continuacon describimos la serie de transformaciones
necesarias en el algoritmoamntico de Deutsch y Jozsa para
posteriormente introducir el pseuduatigo del algoritmo en
la Sec. 5.

El estado inicial|t), es generado a partir del producto
tensorial entre un quregistro de contj@f™) (usado para al-
macenar los argumentos de la fumtj y un qubit de fundéin
|1) (utilizado para evaluar la funin) [6],

[$0) =10)°" @ |1).

La primera transformaén, |1, ), consiste en aplicar la com-
puerta cantica de Hadamard al estado inicialy),

1) = HE" )
= H®"0)*" @ H|1)

S SEIN LEIT |

)
Ty V2

dondez, es la representam binaria de un iimero entero
entre[0, 2"~ 1], utilizandon qubits.

La segunda transformai consiste en aplicar la com-
puertal; a |¢1). El operadorU; se encarga de realizar el
mapeo de un quregistro de la siguiente manera:

Us : [za) = [z) @ la) — |2) @ la ® f(z))
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donde® denota la suma enteragaiulo 2, es decir:

0p0=0, 001=1, 1®0=1, 1®1=0.

El operadotU; tiene el efecto de introducir la fage-1)/(®)
al estaddz). Asi al aplicarUy al estaddy,), de la Ec. (7)

tenemos
1)@z 0) — 1)
" e [P @

Finalmente, la tercera transformawiconsiste en aplicar
el operador de Hadamarq@), de lo que obtenemos

> (=

x,2€7LY

|Y2) =

> (-

TELY

|3) = /@)1 @ (1), (9)

\ﬁ

El estado resultante é8;). Para conocer si la furion es
equilibrada o constante, es necesario interpretar la néedici
del estadds). Si el resultado de la medam es el estado

VIVEROS AND G. MORALES-LUNA

negativo es el que dispersa hacia los estégpde la Ec.(8)
al aplicarle el operadal/; al estadoy) y que en la ope-
racion de mediddn ayuda a determinar si la fulei f(z) es
constante o equilibrada.

Cuando el operaddr; se aplica al estado

1
lz) @ H[1) = |) © 7 (10) = 1)),

se tiene

Uy (12)  HILY) = U, (|x> © 5 (0) - |1>>)

_ { [20) — [&1) si f(z) =0
V2 | |z1) = |z0) si f(z) =1
= (-1)/@|2) @ H1).

deterministal0®"1) entonces sabemos que se trata de uny podemos ver que el signo negativo, para cada estado

funciobn constante, en cualquier otro caso la fonoes equi-
librada.

4.1. EloperadorUy

Como se aprecia en la Ec. (8), toda la inforndaaile la fun-
cibn a evaluayf se incluye en el quregisti@,) al aplicar el
operadorUs. En esta secon veremos la manera de expre-
sar aU; en forma matricial, con el prd@sito de tener una
representadin que se pueda utilizar en la simufaci

depende del valor dé(z).

Para expresar matricialmente el operadpres necesario
definirlo en érminos de submatricés; ). Podemos escribir
alamatrizUy(,, de tam&o 2 x 2 como:

(1ef@)  f@)
Uf<m>—< flr) 18 f(x)

La forma general al operaddl; como una matri2" ! x
27+ es definida como

(10)

Retomemos brevemente el comportamiento del algorit-

mo. Notemos que el qubit de fuidei debe sefl), debido a

gue al aplicarle una compuerta de Hadamard a tal qubit apa-
rece un signo negativo, como se aprecia en la Ec. (7). Este
signo se distribuye hacia la mitad de los elementos del qure-

gistro|¢) durante la primera transformaci. Este signo
|

Uroy 0 0
0 U 0
U, = ) (11)
0 0 Ugan—1)

Entonces otra forma de escribir la Ec. (8) E$(2" — 1)

Uf(o) 0 0
0 U 0 ®n|g)en
[ws) = o : (HE"|0)®" & H]|1)) . (12)
0 O Uf(2n 1)
Para el caso de = 2, la matrizU; se escribe como
1® foo  foo 0 0 0 0 0 0
Jfoo 1 foo 0 0 0 0 0 0
0 0 1 for fo1 0 0 0 0
0 0 for 1® for 0 0 0 0
Ur = 0 0 0 0 1® fio  fio 0 0 ’ 13)
0 0 0 0 J1o 1® fio 0 0
0 0 0 0 0 0 1 fin f11
0 0 0 0 0 0 fu 1a&fn
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donde
ALGORITMO 1. Algoritmo cuantico de Deutsch y Jozsa para la
foo =£(0,0) (14) funcion f(z1, z2).
for =f(0,1) (15) Uy = Initialize();
—£(1,0 16 Yo = |00) ® [1);
fio =1(1,0) (16) S
fi=f(1,1). 7 W1 = H3 % bo;
Se puede ver en las matrices (11) y (13) que si la fun- Y2 = Uy *u3
cibn f es constante, entonces se tiene a la matriz unitaria 3 = H3 * )g;
271 % 271 0 a una matriz con submatricés,, antidia- ¥ = measure(ys, 0);
gonales en su diagonal principal. Por lo que al aplicar esta return 1,

matriz al¢;) se obtendx a+|vy1), y al aplicar la compuer-
ta de Hadamard, délltimo paso del algoritmo de Deutsch y
Jozsa se tieng|0)®" @ |1). Entonces al realizar la medari
sobre los primeros-gbuits obtenemos que la amplitud del  Ensure: Una qucompuertaf que representa el operaddy
estadd0)®” es uno. Quate uf ={

Si Iafl;nc'bn ez equilibrada, entgncé@ sle expresadcomo {(1 + £(0,0)) %2, £(0,0),0,0,0,0,0,0},
una combinadn de matriced/,(,, diagonales y antidiago-
nales. De esta forma, el estadfé r)esultamge = |z) ® H|1) {7(0,0), @ + £(0,0))%2,0,0,0,0,0,03,
contiene al elementf), el cual es cualquier estado distinto {0,0,(1 + £(0,1)) %2, £(0,1),0,0,0,03,

ALGORITMO 2. Funcbn Initialize().

de [0)®". Asi, la medicbn final daé como resultado que la {0,0, f(0,1), (1 + £(0,1)) %2,0,0,0,0},
amplitud dej0)®™ es 0. {0,0,0,0, (1 + £(1,0)) %2, £(1,0),0,0},

{0,0,0,0, f(1,0), (1 + f(1,0)) %2,0,0},
4.2. Metodo experimental {0,0,0,0,0,0, (1 + f(1,1)) %2, f(1, 1)},

Como plataforma experimental utilizamos GAMA, el cual es {0,0,0,0,0,0,7(1,1), (1 + f(1,1)) %2}

un lenguaje de programdxi para simular la ejecum de h
algoritmos canticos en una computadoraasica [12]. Este return uf ;

lenguaje es de tipo imperativo, estructurado y de @sp  (aqu, z%2 denota % modulo 27, es decir el residuo deal ser dividido
espedico. GAMA cuenta con un iddulo de depurabn que  entre 2.)

permite llevar la secuencia de los diferentes cambios de los
estados de las variables en las diferentes entidades de un alcgoriTmo 3. Funcbn f(z1, z2).
goritmo cuantico, incluyendo qubits, quregisters, qugates, asi
como las operaciones entre ellas: mediciones, producto inte-

Require: Dos valores de entrada y x».

rior (-) y productor exterior®). Ensure: El resultado de la funén evaluada en los valores
de entrada.
5. Resultados y discugin Int f(int @1, Int 22) {
if Tl == T2 then
5.1. Pseudoédigo return O:
Ahora explicaremos el pseudmtigo del algoritmo cuando end if
n = 2 con el fin de ilustrarlo, implementarlo y probar- return 1; }
lo en nuestro simulador de algoritmosaaticos. El estado
inicial |1o) se expresa comdyy) = |00) ® |1) y el es-  del algoritmo, seleccionamos una de las funciones presenta-

tado final |1/3) se obtiene, como hemos mencionado, desdas anteriormente en el Cuadro 3. En este caso, ladfanci
pués de la aplicadin de una serie de transformaciones de laequilibradaf; del Cuadro 3 fue implementada y su pseu-
compuerta de Hadamardly; a dicho estado inicial como doadddigo se muestra en el algoritmo 3. Los siguientes pasos
[v3) = HE3U s H®3|1hy) dondeH®® = H ® H ® Hy U;  corresponden a las transformaciones hechas al estado inicial
esh definido como en la Ec.(13). 1. La primera equivale a aplicarle la compuekt&?®. La se-

El algoritmo 1 muestra el pseudmtigo de los pa- gunda consiste en la aplicaoidel operadol/; y finalmente
S0s necesarios para resolver este ejemplo. Primero, se llie-tercera en aplicarle la compuef#&®? nuevamente.
va a cabo la inicializaéin del operadof/; con la funcon Finalmente, el estado es el estado resultante, al cual se
Initialize() descrita en el algoritmo 2. Como hemos le realizad una toma de median, hacéndolo por cualquier
mencionado el operadéf; est conformado de evaluaciones qubit que corresponda al quregistro de control, que en este
de la funcén f(xz1,x2). Para demostrar el funcionamiento caso tomamos el qubitpara medirlo.
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5.2. Simulacbn en GAMA M Tiempo

Algoritmo de Deutsch-Jozsa
0.25

Presentamos elbdigo GAMA para llevar a cabo la simula-
cion del algoritmo. Por ahora, estamos interesaosamen-
te en obtener el resultado de la simudacy no en el de esta-
dos intermedios durante una depudaciDe tal manera que
el estado resultante de cada una de las variables involucrade g °'°
se puede observar en la pésanferior Configurations en
donde el quregistrpsi contiene la informaéin de si acaso 0.1
la funcion se trata de una constante o bien de una equilibra-
da. En la Sec. 5.3 veremos la interprebacal resultado del
algoritmo dado un tal quregistro.

Segund

0.05

5.3. Resultados 2 S 4 5

NUmero de qubits
Como resultado de la simula@ci anterior, para el caso= 2 FIGURA 3. Grafica de tiempos del algoritmo Deutsch y Jozsa con
y la funcion equilibradaf; del Cuadro 3, obtuvimos que respecto al amero de qubits.
la medicbn del quregistroys geneb el quregistroy =
(1.0 + 0.04)|111). Considerando que el valor del quregistro
1o de entrada ef)01), diremos por un lado que si el qu- TABLE II. Tamdio de las compuertas &nticas en el algoritmo de
registro resultante arroja el mismo valor del quregistro ini-Deutsch y Jozsa.
cial se trata de una furfm constante y por otro lado, si se

trata de cualquier otro estado sabemos que es unadfunci Namero de qubits Dimensh deUy y Hadamard
equilibrada. Bajo esta premisa observamos que el quregistro 2 8X8
1 = |111) indica que la fundn f(z1, x2) es equilibrada. 3 16X16
En este trabajo hemos realizado la sim@adiel algorit- 4 32X32
mo clantico de Deutsch y Jozsa en el lenguaje GAMA. Para 5 64X64

ello, hemos establecido un mecanismo para construir la com=

puerta cantical/y en forma matricial, que ayuda a obtener la , vector. Lo que implica que la complejidad del algoritmo
simulacdbn de su comportamiento. Se puede apreciar que &/, yna computadoraaica es 3 vecad(m?), dondem es la
qubit de funcdn|1) de entrada se utiliza para induggilase-  gimenson de la matriz y del vector. En el algoritmoani-
cuencia de signos negativos, necesarios para que el algoritrag |5 dimensin de las compuertas es de = 2", y su

fgpcione, y para que el registro de control alcancg la dime”c‘:omplejidad desps de simularlo en una computadoras
sion apropiada para operarse con la compuerdmiicalU;. 5 eg deO((2"~1)?). Esto ocasiona que la inicializéci de

Por ofro lado, y tal vez as delicado, es el hecho de que la|5 compuerta cantical/; consuma mayor tiempo debido a
compuertal; debe inicializarse para cada una de las funC|o-que el rimero de funciones a evaluar crece tambiSin em-

nes que el algoritmo de Deutsch y Jozsa tenga de entradap¥go, no solo el tiempo de procesamiento tiene un impacto
si lainicializacbn no es tomada en cuenta en la complejidadsing tamben la capacidad de almacenamiento de dguina

el algoritmo cantico resulta ser &s eficiente que elasico.  ,ede llegar a ser crucial si se trata de una simoiecdn un
Sin embargo, si este mecanismo de inicialiaacie toma co-  gmero de qubits muy alto.

mo parte de la ejecun del algoritmo, la complejidad pdar La Fig. 3 muestra la @fica de tiempos de las corridas

ser igual o mayor a la del algortimoasiico ya que GAMA g 450ritmo de Deustch-Jozsa, utilizando una computadora

lleva a cabo una simulamn de ®mputo cantico dentro de 4o 35 pits para funciones de dos a cinco qubits de entrada,

una computadora sica. . de lo que podemos apreciar un crecimiento exponencial. Co-
Ademas, tambgn implementamos el algoritmo de Deuts- g mencionamos anteriormente esto se debe al tiempo que

ch y Jozsa para los siguientes valores= 3,4,5. El ob-  congume la inicializadin de la compuert&;. Una de las li-

jetivo de este experimento es conocer su comportamiento Witantes del simulador es que @mero naximo de qubits

sus implicaciones. Al incrementar éimero de qubits, la di- que se pueden utilizar en un algoritmoéeimitado al ime-

menson de la compuert&; aumenta de acuerdo a l0s de- 1 ge matrices que se puedan crear dentro delfianda la
talles mostrados en el Cuadro 5.3. En general, la dir0ansi amoria de la computadora.

de la compuert&/; para resolver un problema dequbits es

2n—1 x 27~1 Para cualquier tanfi@ de quregistro, el algo-

ritmo de Deutsch y Jozsa aplica una vez la compuerta Had&, Conclusiones

mard al registro inicial, una vez la compueliay finalmente

una compuerta Hadamard. Aplicar una compuerémtioaa En este trabajo hemos realizado la simadilel algoritmo

un guregistro equivale a la multiplicéci de una matriz por cuantico de Deutsch y Jozsa en el lenguaje GAMA con el fin
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de explorar sus diferentes componentes. Para ello, hemos ese parte de la ejecuan del algoritmo, la complejidad pddr

tablecido un mecanismo para construir la compueréatica
Uy en forma matricial, que ayuda a obtener la simdlade

su comportamiento. Se puede apreciar que el qubit de fun- o
cion |1) se utiliza para inducon de la secuencia de signos Agradecimientos
negativos, necesarios para que el algoritmo funcione, y para
Los autores agradecen al apoyo financiero proporcionado por

ra operarse con la compuertaaaticall;. Por otro lado, la €l Consejo Nacional de Ciencia y TecndiadCONACYT),
compuertd/; debe inicializarse para cada una de las funcio2d como tamben a ABACUS, laboratorio de Mateiticas
nes que el algoritmo de Deutsch y Jozsa tenga de entrada/Aplicadas y Supe@mputo de alto rendimiento. Evidente-
si la inicializacbn no es tomada en cuenta en la complejidadnente, nuestra institumh de adscripén, el Centro de In-

que el registro de control alcance la dimémsapropiada pa-

el algoritmo cé@ntico resulta ser &s eficiente que el &bico.
Sin embargo, si este mecanismo de inicialiaage toma co-

ser igual o mayor a la del algortimaoadico.
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