
EDUCATION Revista Mexicana de Fı́sica E64 (2018) 154–161 JULY–DECEMBER 2018
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e-mail: mijangos@cifus.uson.mx, ragal@cifus.uson.mx

Received 26 October 2016; accepted 11 January 2018

Estudiamos téoricamente la excitación de plasmones de superficie en esferas metálicas. Se supone que la esfera metálica es de tipo Drude. La
excitacíon de modos, para esferas metálicas, de igual forma que las dieléctricas, es observada como picos en la sección eficaz de esparcimiento
total. Bajo condiciones de excitación, el modo se comporta como una onda que se propaga a lo largo de la circunferencia pero en la esfera,
su intensidad es prominentemente confinada a la superficie. El número de modos observados depende del radio de la esfera.

Descriptores:Superficies; esferas metálicas; plasmones; propiedadesópticas.

The excitation of surface plasmons in metallic spheres is studied theoretically. The metallic sphere is supposed to be of the Drude type. The
modes excitations for metallic spheres, like the dielectric spheres are observed as peaks in the total scattering cross section. Under excitation
condition, the modes are behaved as waves that propagates along the circumference, but in the sphere, its intensity is highly confined to the
surface. The number of modes observed depends on the radius of the sphere.
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1. Introducción

La nanoplasḿonica se define como el estudio de las exci-
taciones en superficies metálicas localizadas en nanoestruc-
turas. Es un campo de investigación que ha tomado fuerza
desde la primera d́ecada del presente siglo [1], es de interés
su existencia en coloides cuya componente sólida posee si-
metŕıa esf́erica. El estudio de las propiedadesópticas de una
part́ıcula de forma esférica y estructuras esféricas ḿas com-
plejas comienza en el principio del siglo XX. En estaépoca,
G. Mie [2] estudia la difraccíon de una onda plana electro-
magńetica monocroḿatica por una esfera y encuentra una so-
lución exacta a este problema, también aplica la solución al
estudioóptico de coloides formados por partı́culas met́alicas.
Al mismo tiempo P. Debye resuelve un problema semejante e
innova introduciendo los llamados potenciales de Debye [3].
Poco antes J.C. Maxwell-Garnett [4] explicó los colores de
coloides met́alicos.

Recientemente publicamos un trabajo asociado a la di-
fracción de luz por esferas dieléctricas [5] y excitaciones pro-
ducidas en estas. La teorı́a general de la difracción de luz
en esferas es válida tanto para esferas dieléctricas como met
álicas, por lo cual la teorı́a b́asica que aparece en ese tra-
bajo seŕa utilizada aqúı, referencíandonos a las ecuaciones
que alĺı se presentan. También gran ńumero de referencias bi-
bliográficas que allı́ se muestran son de nuestro interés. Dos
magńıficos libros en el tema de agregados metálicos son el
de Kreibig and Vollmer [6] en 1995 y otro editado por Mish-
chenkoet al. [7] en el 2000. Un amplio resumen de resultados
para part́ıculas met́alicas se puede encontrar en el trabajo de
Mulvaney [8] y en el crecimiento de nano-partı́culas de pla-
ta en los trabajos de Slistan-Grijalvaet al., [9-10]. En 2007

Derkachova y Kolwas [11] obtienen las frecuencias comple-
jas de plasmones de Superficie (SP) en función del radio de
la esfera met́alica. Ancey et al., en 2009 calculan la sección
eficaz de esparcimiento y de absorción respecto a la energı́a
de excitacíon [12]. Es conocido que las frecuencias asociadas
a los modos SP dependen del tamaño, la forma, y composi-
ción de la part́ıcula, aśı como del medio en que se encuentra.
Además, no es necesario usar algún medio de acoplamiento
para excitarlos [13].

Para el desarrollo de este estudio se utilizan los resultados
del trabajo [5] que introducen los armónicos esf́ericos para
resolver la ecuación de la onda esférica escalar con los cuales
se resuelven las ecuaciones de Maxwell mediante un desarro-
llo multipolar donde se usan los vectores armónicos esf́eri-
cos, comenzando con el desarrollo de una onda plana, para
posteriormente estudiar el problema del esparcimiento de la
esfera. Se utiliza la notación del libro Classical Electrodyna-
mics por D. Jackson [14], En el capı́tulo 10 trata de forma
breve el problema de Mie. Los vectores armónicos esf́ericos
son la parte medular de la expansión multipolar de un campo
electromagńetico.

En la siguiente sección se presentan los resultados
numéricos, criterio de convergencia, el campo cercano, la
seccíon de extincíon de una esfera metálica. En detalle se es-
tudia el caso de esferas metálicas y el plasḿon de superficie.
En laúltima seccíon vertemos nuestras conclusiones.

2. Difracción de Ondas Electromagńeticas por
Esferas Met́alicas

Se dan las ecuaciones de partida para calcular el campo elec-
tromagńetico de una onda plana difractada por una esfera,
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met́alica de radioa, suspendida dentro de un medio no ab-
sorbente. Para resolver las ecuaciones de Maxwell se utiliza
un desarrollo multipolar para representar a los campos, y se
divide el espacio en dos regiones, externa (medio 1) e inter-
na (medio2) de la esfera. Los medios se consideran lineales,
isotrópicos y homoǵeneos. La esfera puede ser dispersiva y
en este trabajo la supondremos tipo Drude.

Si se asume que la dependencia temporal de los campos
es arḿonica, es decir,

~H ′(~r, t) = ~H(~r) exp(−iωt)

y

~E′(~r, t) = ~E(~r) exp(−iωt).

La representación multipolar de los campos está dada por una
serie infinita de los denominados esféricos arḿonicos vecto-
riales,

~H =
∞∑
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dondel = 1, 2, , . . . ,∞, m = −l, . . . ,−1, 0, +1, . . . , +l, ε
es la constante dieléctrica yµ es la susceptibilidad magnéti-
ca,Z =

√
µ/ε es la impedancia,q =

√
µεω es el ńumero

de onda del medio,ω es la frecuencia angular,fl(qr) es la
función Bessel esférica de primera, segunda o tercera clase
de ordenl. Se ha introducido el arḿonico esf́erico vectorial
normalizado de orden (l, m)

~Xlm(θ, ϕ) =
1√

l(l + 1)
1
i
~r ×∇Ylm(θ, ϕ). (3)

Donde~L es el operador de momento angular y losYlm

son los arḿonicos esf́ericos. Se utiliza la teorı́a de Mie, el
desarrollo detallado valido tanto para esferas metálicas como
dieléctricas como se puede seguir en la Ref. 5. A continua-
ción se reproducen las expresiones de las secciones eficaces
esparcida, de absorción y total.

La seccíon eficaz de esparcimiento (SES) total de la esfe-
ra [15,16], es:

σs =
2π

q2
1

∑

l=1

(2l + 1)
[
| a(s)

l,1 |2 + | b(s)
l,1 |2

]
(4)

La seccíon eficaz de absorción es

σabs =
2π

q2
1

∑
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×
[
Re[a(s)

l,1 + b
(s)
l,1 ]− | a(s)
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]
(5)

La seccíon eficaz de extinción (SEE) es la suma de las
secciones eficaces de esparcimiento y de la absorción

σext =
2π

q2
1

∑

l=1

(2l + 1)Re
[
| a(s)

l,1 |2 + | b(s)
l,1 |2

]
(6)

Existen modos que pueden ser plasmones de superficie
para el caso de la esfera metálica se manifiestan en un máxi-
mo o ḿaximos en la sección eficaz de esparcimiento. Cuando
no hay absorción en la esfera, la sección eficaz de extinción
es igual a la sección eficaz de esparcimiento.

3. Cálculos y resultados

Para obtener resultados numéricos de la sección eficaz de es-
parcimiento (4) o del campo eléctrico (2), las sumatorias infi-
nitas se truncan hasta un valor L, tal que los datos calculados
con L-1 y con L no difieran en 1 %. Una regla gruesa es que
valores pequẽnos del radio de la esfera requiere L pequeños,
mientras que radios grandes requieren L grandes. Ası́ quel,
en (1) y (2), tomaŕa valores desde 1 hasta L.

En esta sección presentamos resultados numéricos de la
difracción de las ondas electromagnéticas por esferas metáli-
cas con funcíon dieĺectrica tipo Drude. Los radios fueron va-
riados seǵun fuera procedente.

El libro de Bohren y Huffman [16] tiene un apéndice con
un ćodigo en FORTRAN para el caso de una esfera con el
que se puede calcular la sección eficaz de extinción, de es-
parcimiento, aśı como la intensidad en la aproximación de
campo lejano, pero no se puede calcular el campo cercano,
aśı que este ćodigo fue modificado para la incluir el cálculo
del campo cercano. Este código modificado fue empleado pa-
ra obtener los resultados del campo cercano y sección eficaz
debido a la difraccíon por esferas dieléctricas [5]. Es perti-
nente mencionar que actualmente existen programas orien-
tados a realizar estos cálculos en el rango nanométrico tales
como el MieLab o Scantlay, basados en la teorı́a de Mie.

3.1. Plasmones de Superficie en Esferas Metálicas

En esta sección se estudiará la difraccíon de luz por esferas
met́alicas, una referenciáutil es [17]. Para poder comparar
con algunos resultados mostrados en la Ref. 12, se presenta
la constante dieléctrica tipo-Drude, Ec. (2) de la misma refe-
rencia, que ellos usaron en su artı́culo,

ε(ω) = ε∞

(
1− ω2

p

ω2 + iγωpω

)
. (7)

Los paŕametros empleados son la constante dieléctrica de
fondo ε∞ = 1, la frecuencia de plasma2πhωp = 10.0 eV
(λp = 124.0 nm), dondeh es la constante de Planck y (γωp)
es el inverso del tiempo medio de colisión de los electrones.
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Las frecuencias de los modos soportados por esferas
met́alicas con respuesta tipo Drude en el caso no-retardado
est́an dadas por una sencilla expresión, ver Engelman and
Ruppin en Ref. 18,

ωl = ωp

√
l/(2l + 1), l = 1, 2, . . . (8)

Estas frecuencias son aplicables para radios mucho me-
nores que la longitud de onda. En el caso retardado las fre-
cuencias de los modos son complejas, lo cual refleja el hecho
de que los plasmones de superficie tienen una vida media fi-
nita debido a su decaimiento radiativo y se calculan haciendo
cero el denominador de la Ec. (20) de la Ref. 5. Estas fre-
cuencias fueron calculadas en la Ref. 11.

Si el radio de esfera es muy pequeño comparado con la
longitud de onda (a ¿) o (q1a ¿), entonces solo el primer
término de la sumatoria (l = 1 = L) contribuye a la sección
eficaz de esparcimiento. Si usamos las formas asintóticas de
las funciones Bessel, la Ec. (23) de la Ref. 5 llega a ser,

b
(s)
1,1 = +

2
3
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2πa

√
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λ

)3

× +3ε1ε2i + i(2ε2
1 + ε1ε2r − ε2
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2i)

ε2
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. (9)

Dondeε2r y ε2i son la parte real e imaginaria de la cons-
tante de Drude, respectivamente. Se puede demostrar que la
parte imaginaria de (9) es casi cero, ası́ sustituyendob(s)

1,1 en
la Ec. (4) la SES es

q2
1

2π
σs = 12
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2π
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1ε

2
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(10)

Sustituyendo (10) en la Ec. (6) la SEE es

σext = 12
(

2π
√

ε1a

λ

)
(πa2)

ε1ε2i

ε2
2i + (2ε1 + ε2r)2

(11)

La derivacíon de (11) fue hecha por Genzel and Mar-
tin [19]. De (10) podemos obtener el valor de la frecuen-
cia para la cual (10) tiene un máximo ω = ωp/

√
1 + 2ε1,

el valor ḿaximo 12(q1a)6ε2
1/ε2

2i, aśı como su anchura
(8/10)2ε2i/(1 + 2ε1)3/2.

Primero pasaremos a estudiar las convergencias de las so-
luciones, para esto en la Fig. 1 se muestra la intensidad del
campo cercano, el ḿodulo cuadrado del campo eléctrico, cal-
culado en el planoz − y para a)L = 1, b) L = 2, c) L = 3 y
d) L = 4. La esfera metálica tiene un radio de 10 nm. La on-

FIGURA 1. La intensidad de campo cercano proyectado en el plano z-y debido a una esfera metálica de radio 10 nm, para diferentes valores
deL: a) L = 1, b) L = 2, c) L = 3 y d) L = 4. La flecha indica la dirección de la onda incidente,λ = 633 nm, yγ = 0.001. Se aprecian
ligeras diferencias entre las gráficas calculadas conL = 1 y L = 2. Mientras que los datos obtenidos conL = 3 y L = 4 son iguales.
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FIGURE 2. La seccíon eficaz de esparcimiento total como función
de la frecuencia adimensionalω/ωp, para una esfera metálica de
radioa = 10 nm rodeada de aireε1 = n1 = 1.0, la curva de color
rojo corresponde aγ = 0.00, la negra aγ = 0.01, la curva mos-
trada en color azul fue calculada usando la forma aproximada (10).
Junto a estáultima curva se muestra la expresión para la frecuencia
de resonancia, el ḿaximo y el ancho de las SES.

da electromagńetica incidente está linealmente polarizada y
se propaga en la dirección z. La longitud de onda es de 633
nm, la cual corresponde a una frecuencia de2πhω = 1.96 eV.
Para esta longitud de onda, la constante dieléctrica de la es-
fera tiene el siguiente valorε(ω) = −25.0 + i1.33.

De las figuras se puede apreciar que la convergencia se al-
canźo paraL = 4, esto se verifićo nuḿericamente de acuerdo
al criterio establecido en la sección anterior.

En las iḿagenes se puede observar que la esfera presenta
un comportamiento tipo dipolar con orientación en el eje-y,
que coincide con la dirección de oscilacíon del campo eléctri-
co incidente. Este es un comportamiento tı́pico de la difrac-
ción de luz por nano-esferas metálicas. Tambíen se observa
que los dos ḿaximos de intensidad del campo se localizan
muy cerca de la superficie, tı́picamente del orden dea/10.

En la Fig. 2 se muestra la sección eficaz de esparcimiento
(SES) como funcíon de la frecuencia dividida entre la fre-
cuencia de plasma para una esfera metálica de 10 nm de ra-
dio. La funcíon dieĺectrica de la esfera metálica se supone
tipo Drude. La curva de color rojo corresponde aγ = 0, la
de color negro aγ = 0.001 y la de color azul a la aproxima-
ción dada por (10), calculada para esteúltimo valor deγ, en
la Fig. 2. La SES despliega tres máximos, en el caso exacto.
Para poder resolver uno de los picos la resolución espectral
fue de∆λ = 0.001 nm. Para el caso de la solución aproxi-
mada (10) se muestra en la gráfica la frecuencia de resonan-
cia, que corresponde al primer valor de la fórmula de Rupin,
el máximo valor de SES y su anchura. El máximo de me-
nor frecuencia muestra un comportamiento tipo Lorentziana
y est́a localizado a una frecuencia deω1,1 = 0.55918ωp,
(λ = 221.7533), el cual corresponde a la excitación del

plasḿon de superficie y se le asocia la onda parcialb1,1 (mo-
do tipo TM). El segundo ḿaximo a una frecuencia interme-
dia muestra un comportamiento tipo delta de Dirac a una fre-
cuencia deω2,1 = 0.62773, ωp(λ = 197.5372) y se le asocia
la onda parcialb2,1 (modo tipo TM), esta ḿaximo casi desa-
parece en el caso queγ = 0.01. Porúltimo el máximo locali-
zado a una frecuencia deω3,1 = 0.65251, ωp(λ = 190.0354)
que corresponde a la excitación del plasḿon de superficie y
se le asocia la onda parcialb3,1 (modo tipo TM). Este ḿaxi-
mo desaparece completamente cuandoγ = 0.001.

El valor asint́otico de la frecuencia cuandol tiende a in-
finito en la f́ormula de Ruppin es la frecuencia del plasmón
de superficie en una interfaz plana meta-aire o seaω/ωp =
1/
√

2.
La SEE total cuandoγ = 0 tiene un valor ḿaximo ḿas

grande que cuandoγ = 0.001, pero una anchura menor, esto
se debe a la absorción del medio.

Una consecuencia de la excitación de un plasḿon de su-
perficie es el incremento del campo eléctrico muy cerca de
la superficie. Para observar este efecto se estudia el campo
cercano de la esfera metálica a la frecuencia de resonancia.

En la Fig. 3 se muestra los resultados para SEE, enfati-
zando la variacíon del radio de la esfera metálica: a)10− 30
nm, b)40−60 nm, c)70−90 nm, d)100−120 nm. Se obser-
va la tendencia a obtener varias excitaciones de SP, conforme
el radio aumenta.

En la Fig. 4 se muestra la intensidad del campo cerca-
no calculada en el plano a)z − y y a)z − y paraL = 4,
a = 10 nm, γ = 0.01 y a la frecuencia de resonancia
ω1,1 = 0.55918ωp. Se puede observar de nuevo el compor-
tamiento dipolar anteriormente descrito. Los máximos de in-
tensidad del campo eléctrico est́an muy cerca de la superficie,
pero son aproximadamente 1000 veces mayor que los máxi-
mos mostrado en la Fig. 1, además la intensidad es notable a
distancias del orden del radio, al menos a lo largo del eje-y.

En la Fig. 5 se muestra el ḿodulo cuadrado de la com-
ponenteϕ del campo eĺectrico como funcíon del ángulo de
esparcimiento, paraa = 10 nm y γ = 0.01, la curva de co-
lor rojo corresponde al caso resonante y la negra al caso no
resonante.

Observamos que la magnitud del campo cuando hay reso-
nancia es mayor que cuando no la hay, la distribución angular
es la misma. Śolo hay un ḿınimo alrededor de 90◦.

La intensidad muestra un comportamiento cuasi-
lambertiano sin ninguna otra caracterı́stica importante.

En el caso retardado, varios autores como Ruppin [18],
Martinos [17], Anceyet al. [12] reportaron varias resonan-
cias, aśı que para observarlas escogemos un radio mayor con
el objetivo de reproducir los resultados de la Fig. 1 a 1a mos-
trada en [12].

En la Fig. 6 se muestra la sección eficaz de esparcimien-
to total como funcíon deωa/c, de una esfera con un radio
a = 2πc/ωp, L = 9. La curva de color rojo fue calculada
conγ = 0.0, mientras que la curva negra conγ = 0.001. Los
datos mostrados en la Fig. 5 están en ḿaximos relacionados
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FIGURA 3. Se muestra los resultados graficados para SEE, al variar el radio de la esfera metálica desde 10 nm a 120 nm: a) 10-30 nm, b)
40-60 nm, c) 70-90 nm, d) 100-120 nm. Las imágenes ilustran claramente la tendencia a una correlación entre el ńumero de excitaciones de
SP y el incremento del radio de la esfera bajo estudio.

FIGURA 4. La intensidad del campo cercano calculada en el plano a)z − y y b) z − x producida por una esfera metálica con valores de
radio a = 10 nm, γ = 0.01, L = 4 y a la frecuencia de resonanciaω1,1 = 0.55918ωp, la cual corresponde a una longitud de onda
λ = 221.7660 n.

con resonancia y a seis de ellos se les pueden asociar las on-
das parcialesb31, b41, b51, b61, b71, b81 y b91. Para el caso
γ = 0.001, la SEE total disminuye en intensidad y dos de las

resonancias,b81, y b91, desaparecen por completo.

En la Fig. 7 se incluye el sı́mbolo del coeficiente de la on-
da parcial relacionado con cada resonancia. Para lograr aso-
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FIGURA 5. La intensidad del campo cercano calculada en el plano
a) z − y y b) z − x producida por una esfera metálica con valores
de radioa = 10 nm, γ = 0.01, L = 4 y a la frecuencia de reso-
nanciaω1,1 = 0.55918ωp, la cual corresponde a una longitud de
ondaλ = 221.7660 n.

TABLA I. Valores de la frecuencia reducida obtenida de la SEE y
los valores dados por la fórmula de Ruppin.

l ωl,1/ωp ωl/ωp =
√

l/(2l + 1)

1 0.55918 0.57735

2 0.62773 0.63246

3 0.65251 0.65465

ciar a cada resonancia una onda parcial se encontró el ḿıni-
mo del denominador, que debe ser aproximadamente cero,
asociado con cada una de ellas. Los modos excitados son del
tipo TM solamente.

En la Tabla I se muestra el valor de la frecuencia reduci-
da obtenida de la SES y los valores dados por la fórmula de
Ruppin. Los valores de las frecuencias, son aproximadamen-
te iguales, lo cual establece que la aproximación no-retardada
es v́alida para radio de esferas mucho menores que la longi-
tud de onda.

TABLA II. Se muestran valores de la frecuencia reducida obtenida
de la SES total y los valores dados por la fórmula de Ruppin.

L ωl,1a/c ωla/c = 2π
√

l/(2l + 1)

1 1.13969 3.62759

2 1.93870 3.97383

3 2.55968 4.11331

4 3.04265 4.18879

5 3.41612 4.23610

6 3.68358 4.26850

7 3.86358 4.29223

8 3.98219 4.31002

9 4.06520 4.32438

FIGURA 6. Seccíon eficaz de esparcimiento total como función de
la frecuenciaωa/c. El radio de la esfera esa = 2πc/ωp. La curva
solida de color negro se calculó conγ = 0.00 y la curva en co-
lor rojo conγ = 0.01. La SEE despliega 9 picos asociados con la
excitacíon de plasmones de superficie esféricos.

En la Tabla II se muestra el valor de la frecuencia reduci-
da obtenida de la SEE total y los valores dados por la fórmula
de Ruppin.

En este caso no hay coincidencia alguna entre las frecuen-
cias de los modos, obtenida de la SEE de la Fig. 6, con aque-
llas dadas por la fórmula cuasi-estática de Ruppin.

Ahora pasaremos a estudiar la luz esparcida y el campo
cercano producidas por la esfera metálica a dos frecuencias
distintas, una resonanteωa/c = 3.416 y la otra no resonante
ωa/c = 2.180, ambas marcadas con flechas de color azul en
la figura anterior.

En la Fig. 7 se muestra|Esϕ| como funcíon delángulo de
esparcimiento para una esfera metálica de radioa = 2πc/ωp,
L = 9, a) γ = 0.0 y b) γ = 0.01. La curva en color ro-
jo es para el caso de resonancia 228 nm (ωa/c = 3.416) y
la curva en color negro es para el caso no resonante 356 nm
(ωa/c = 2.18). De nuevo es posible apreciar que el campo
eléctrico en resonancia es mayor que fuera de ella al menos
paraángulos grandes

La intensidad del campo lejano presenta máximos y ḿıni-
mos relacionado con el radio de la esfera. A mayor tamaño
mayor ńumero de ḿaximos. De estas curvas no es posible de-
terminar si la luz ha excitado a uno de los modos del sistema.

La intensidad del campo lejano presenta máximos y ḿıni-
mos relacionado con el radio de la esfera. A mayor tamaño
mayor ńumero de ḿaximos. De estas curvas no es posible de-
terminar si la luz ha excitado a uno de los modos del sistema.

En la Fig. 8 se muestra el campo cercano proyectado en el
planoz − y paraL = 9, radioa = 2πc/ωp, y a la frecuencia
de resonanciaωa/c = 3.416, para a) casosγ = 0 y b) caso
γ = 0.01.
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FIGURA 7. El módulo de la componenteϕ del campo eĺectrico esparcido|Es
ϕ| como funcíon delángulo de esparcimiento, para una esfera

de radioa = 10 nm. La curva de color rojo corresponde al caso resonante y la negra al caso no resonante.

FIGURA 8. La intensidad del campo cercano proyectada en planoz − y por una esfera de radioa = 2πc/ωp, paraγ = 0.00 y γ = 0.01

calculado a la frecuencia de resonanciaωa/c = 3.416.

FIGURA 9. Se gŕafica lo mismo que en la Fig. 8 pero a una frecuencia no resonanteωa/c = 2.180.
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El plasḿon de superficie excitado despliega diez lóbulos
que rodean a la esfera. El número de estos corresponde ade-
cuadamente al orden multipolar asociado con la onda parcial
b5,1.

La extensíon del campo fuera de la superficie de la esfera
met́alica es aproximadamente dea/10, por otro lado se obser-
va que el campo cercano es ligeramente más intenso cuando
γ = 0, debido a que no hay absorción.

En las Figs. 8 aparecen dos máximos de intensidad que no
hemos podido explicar su naturaleza, solo un análisis detalla-
do de la onda parcial asociada podrá tal vez dar la respuesta
al punto. Aunque se intentó encontrar una relación entre el
número de oscilaciones o lóbulos dentro de esfera con los
paŕametros involucrados, como por ejemplo el radio, la lon-
gitud de onda, etc., no encontramos alguna relación.

En la Fig. 9 se muestra el campo cercano proyectado en
el planoz − y conL = 9, radioa = 2πc/ωp, para los casos
a) γ = 0.00 y b) γ = 0.01 para una frecuencia no resonan-
te. El comportamiento del campo es completamente diferente
comparado con el caso de la excitación del PS.

Al igual que en la Fig. 8, en la Fig. 9 se puede observar
dos ḿaximos de intensidad, por lo que se puede decir que es
un feńomeno que no depende de la resonancia.

4. Conclusiones

Estudiamos téoricamente la excitación de modos electro-
magńeticos en esferas metálicas. Se asume que tiene un com-

portamiento tipo Drude [20, 21], modelo representativo de
los metales, que ha resistido la auscultación por ḿas de un
siglo, todav́ıa muy utilizado para el estudio de propiedades
ópticas de metales [21]. La sección eficaz de esparcimiento
total est́a en excelente acuerdo con el resultado mostrado en
la Ref. 12.

La SEE tiene asociado mayor número de excitaciones PS
seǵun varia el radio de la esfera metálica.

Se excit́o un plasḿon de superficie y se observa que los
máximos de intensidad del campo eléctrico est́an muy cerca
de la superficie, y son aproximadamente 1000 veces mayores
que los que los encontrados cuando no hay excitación. Este
comportamiento se observa también en el campo lejano.

Cuando el paŕametroγ aumenta, las resonancias en la
seccíon eficaz de esparcimiento total disminuyen su ampli-
tud, e incluso desaparecen y el campo cercano es menos in-
tenso; lo anterior se debe a que la esfera metálica absorbe
enerǵıa en tales condiciones. Los modos asociados a una es-
fera met́alica son TMúnicamente.

Las perspectivas a futuro es el estudio de una esfera cerca
de una interfaz plana que divide a dos medios semi-infinitos.

El tema aqúı tratado puede serútil en programas de mate-
rias avanzadas de licenciaturas en Fı́sica e Ingenierı́as o pos-
grados en estos mismos campos.
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