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Se presenta una breve rewisidel formalisma3 + 1 en Relatividad General, y se introducen algunas novedosas convenciooesas
elementos de notamn que permiten facilitar el tratamiento de las expresiones de todas las proyecciones tensoriales involucradas en este
formalismo. Tamk&n se obtienen expresiongst 1 (tiles para la manipulagn deindices (contracéin, simetrizadn, antisimetrizadn),

productos tensoriales y derivaai covariante de tensores arbitrarios.

Descriptores: Relatividad general; formalismo en relatividad general; gedmd# subvariedades.

A brief review of3 + 1 formalism in General Relativity is presented, introducing innovative conventions and notation elements which make
it easier to deal with all of the tensorial projections involved in this formalism. Also, u8efull expressions for manipulation of indexes
(contraction, symmetrization, anti-symmetrization), tensorial producs and the covariant derivative of arbitrary tensors are obtained.
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1. Introduccion pueden foliar por hipesuperficies de Cauéky Esto quiere
decir que se cuenta con una familia de hipersuperficies ho-
La separacdn o formalismo3 + 1 es la descripéin de un  meomorfas entreisparametrizadas por una fubai tiempo
espaciotiempo cuadridimension@\t, g.;), en Brminos de  globalt, y éstas cubren toda la variedad. A su vezésto im-
una foliacbn dada por hipersuperficies tridimensionales ti-plica que la topolo@ de la variedad es la & x R. Es claro
po espacio, de modo que leetnica inducida sobréstas sea que un mismo espaciotiempo se puede foliar ééptes ma-
Riemanniana [1]. Esta separaaies el punto de partida de la nerasy que en particular la fubei tiempo global no esnica.
formulacbn hamiltoniana de la Relatividad General de Ar- Esta libertad de elegir la foliacion esta asociadamamente
nowitt, Deser y Misner [2], [3], dscomo de la Relatividad  con la noobn de invarianica de norma de la teor
Numerica. En el presente tratamiento se supéngue la foliachn y
Aunque en la literatura existen referencie@sdetalladas |3 funcion tiempo estn dadas priori, y se limitaé a espa-
y extensas sobre este formalismo, como [1] y [4] por citarigtiempos globalmente hipedlicos, para los cuales es posi-
algunas, en este trabajo se enfatiza su utilidad como herrie tener una buena formulaci de valores iniciales, que en
mienta anatica, obteniendo las expresiongs+ 1 mas ge- ocas palabrasse refiere a que el espaciotiempcaeséter-
nerales para operaciones como productos, trazas y deriVaO@#nado ufivocamente por los datos sobre una hipersuperficie

de tensores arbitrarios. Con este fin, se introduce una notgg Cauchy, que son el equivalente relativista de datos a un
cion especial para las proyecciones tensoriales, que permimpo inicial

sistematizar la manipulam de las expresionefptcamente
engorrosas que aparecen en esta semaraPior lo deras,

la notacon y convenciones son consistentes con Wald [5]
en particular la ratrica del espaciotiempg,;, con signatura
(—,+,+,+),y el signo de la curvatura ektiseca.

La métrica del espaciotiempg,, determina el tanfzo de
vectores, y para el caso de vectores tangentes a curvas defi-
nidas sobre hipersuperficies de Caughyésta es una canti-
dad positiva. Esta no@n de longitud determina entonces una
métrica Riemanniana sobre cabla

Para completar el punto de vista dimico para el espa-
2. Nociones generales ciotiempo, es necesario definir una riocapropiada de evo-
lucion, es decir, establecer una manera de identificablwo s
La idea intuitiva defas de la descripon 3 + 1 es la deinter- ~ puntos en una hipersuperficie de la fol@ticon puntos en
pretar el espaciotiempo como un objeto 3 dimensional quedtra hipersuperficie de la misma foliaai, sino una manera
evolucionade acuerdo con una naci particular de tiempo de comparar campos tensoriales entre ambos puntos de la va-
global. Al separar un espaciotiempo cuadridimensional tofiedad.
mando el tiempo como pametro, se busca que el objeto que  El procedimiento general para hacer esto es el siguiente:
evolucione sea la étrica Riemanniana que definedsstan-  dado un difeomorfisme : M — M, es posibldranspor-
cia sobre una subvariedad tridimensional apropiada. tar tensores de un punto a otro, a #awde los mapeos de-
De manera mas precisa, se tratanicamente con espa- nominadospush-forwarde. : 7, M — T4,y My pullback
ciotimepos globalmente hipelicos, que son aquellos que se ¢* : T(b*(p)/\/l — 7, M, lo cual permite comparar el valor de
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un campo tensorial en un punto con su valor en otro punteonsiderarversiones tridimensionalede estos campos ten-
cercano. A continuaén, se define etambiode estos obje- soriales, parametrizados pQry que estdan definidos sobre

tos sobre el flujo d& como la derivada de Lie de ese objeto. cada subvariedad; C M.

En el Apéndice 7 se detallan los aspectos formales de esta El punto de vista tridimensionakequiere definir mapeos
construcadn. de proyecdn o encajes entr#1 y una hipersuperficie tridi-

En el caso particular en cuesti, se desea que el flujo de mensionak:, lo cual no es esencial para presentar el formalis-
¢ represente una forma esfiftza de avanzar en el tiempo da- mo 3+ 1. A los lectores interesados en esta perspectiva se les
do por la funcbn globalt. Para ello se considera el hecho deinvita a revisar el Agndice 7 donde se elabora esta cobexi
gue un campo vectorial suave gue no se anula en niag  en la que adeés se pone de manifiesto el papel del campo
punto del espaciotiempo permite definir, a &#awe sus cur- t*, caracterizado, como se @egn la siguiente sed@n, por la
vas integrales, un grupo uniparatrico de difeomorfismos eleccbn de un campo vectorial tridimensional denominado
¢r : R x M — M del siguiente modo: para cada vator shift
del padmetro de las curvas integralesifese asigna a cada Habiendo establecido los elementésicos de esta pers-
puntop € M, el punto dado por la curva integral del campo pectiva, a continuadn se procede a desarrollar el formalis-
t* que pasa pop, v, : R — M, evaluada en el pametror, mo para campos tensoriales de acuerdo consegtaracbn,
es decirg, (p) = 7,(7). El paametro de la curva se toma de empezando por la descompositide vectores y campos vec-
modo quey,(0) = p. toriales en partes tangente y normal a la hipersuperficie.

Para que el pametro de las curvas,(7) coincida con
¢ (salvo una constante correspondiente a la edecdel ori-  2.1. Vectores y covectores tangentes a la hipersuperficie
gen), basta con que el campd sea de tipo tiempo y que

cumpla con la relaéin Los vectores tangentes a la hipersuperfitiese definen co-

mo aquellos vectores cuyas curvas integraleaestmpleta-

1OVt = 1. 1) mente contenidas ex. Comq las hiper_superficiést son de
Cauchy,éstos vectores son tipo espacio.

De aqu en adelante, se indidacon undilde (7) que un

Luego, para todp € M, : - -
vector es tangente a la hipersuperfigie Asimismo, se de-

t(v,(7)) = t(p) + 7. (2) hotadpor7,x, C 7,M al subespacio de vectores tangentes
aY, enelpunty € %;.
Por lo tanto, el grupo uniparaatrico de difeomorfismos Como la funcdnt es constante sobre toda la hipersuper-

o generado por el campty permite definir mapeos que ficie 3, la derivada de en la direcabn de cualquier vector
transportancampos tensoriales sobre una hipersuperfigie tangente &; se anula. Por lo tanto, cualquier vector tangente
a otra hipersuperfici&, .. Con esto, se provee de una no- v cumple con la ecuagn
cion de_t evoludn a la descrip@in3 + 1. FV.t = 0. 3)
Es importante destacar que:
) . .. Asimismo, un vectoortogonala la superficie se define como
» El campo vectgrlak“ no es necesariamente unitario, \, yector ortogonal a todo vector tangente a la hipersuperfi-
por lo que el paametror no puede interpretarse en ge- s pado que la hipersuperficia es homeomorfa a una va-
neral como etiempo propianedido por un observador. yieqaqd tridimensional, el subespacio de vectores ortogonales
a ella es unidimensional.
De la Ec. (3), tenemos que el campo vectorial tipo tiempo
Vet es ortogonal &, por lo que el vector normal en cada
puntop deX; se expresa como

= No se impone ninguna condii de ortogonalidad del
campot® respecto a las hipersuperficiestamnstante.

= La condicbn (1) no determina al camp#, lo cual es
un hechointimamente relacionado con la libertad de ab
. @ g*’Vt
norma de la teda. n(p) = - ————— . 4)
=gV  tVyt ves,
Respecto a est@timo punto, otese que ldinico que la ’

condicbn (1) requiere es que existan coordenadas que tomerl SI9NO S€ ha escogido de modo que el campaea tipo
el valor def en cada punto como coordendianpg y que la tiempo dirigido al futuro. Entonces, dado un pupte 3,

base del espacio tangente en cada punto inducida por dichS denota poiV;, al subespacio d&, M generado por los
coordenadas tengata como el dual &dt),. Es decir, la li- vectores proporcionalesr# (p), el cual es justamente el su-

bertad en la elecon det® se identifica con la libertad para bespacio de vectores ortogonales a la hipersuperficie en el
escoger coordenadas que cumplan estas condiciones, ~ PUNtop, .

En este trabajo se adopiael denominadpunto de vis- Np = {An"(p) : A € R}. ®)
ta cuadridimensiona[l], en el que los campos tensoriales Considerando esta sepafatpunto a punto sobrg,, se tie-
del formalismo siempre saruadridimensionaleg eséin de-  ne que un campo vectorial ortogonata siempre se puede
finidos sobreM. Alternativamente, en su lugar se ptair  expresar como
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extender esta descompos$icj punto a punto, para campos
v* = v, n?, vectoriales o de covectores sobké, considerando en cada
. untogq la separadn con respecto a la hipersuperfiig,.
dondev es una fundn real sobre:;. P q P P P ] E Q‘I)a
A los campos que resultan de esta separa@i” y v, n

Por lo tanto, todo vector tangente a un puptde 33, se o .
jara vectores, ¥, Y w, n, para covectores, se les denomina
puede expresar como la suma de un vector tangente a la hi-

persuperficie y un vector ortogonal a ella proyecciones tangente y normal, respectivamer_ﬂe. _
' La componente normal de un campo vectorial y respecti-

V% =% 4+ n9(p)uL (6) vamente de un campo de covectoreaestadas por
es decir, el espacio tangentp & ¥; se puede separar como vl = —nav, (15)
~ = —nw,, 16
TM=T,% &N, ) wi=-—nw (16)

, , lo cual se puede verificar contrayendo (6 14) con
donde® denota la suma directa de subespacios. Tomandg, P y (6) aony (14)

esta definidn punto a punto sobrg,, quedan definidos los
campos vectoriales tangentesa

La extensbn de esta separ@ci para campos de covec-
tores ol—formas es directa. Un campo de covectabgses 74 = (6% + nny)0°, (17)
tangente &; si para todo punto eR, se cumple que

Las proyecciones tangentes se obtienen sustituyendo (15)
y (16) en (6) y (14), respectivamente, quedando

We = (511 b + nanb)wba (18)
@an® = 0. (8)
dondes® , = ¢%°gep Y 60’ = Gacg®.
De aqu en adelante la tilde tamém se utilizaa para indicar De (17) y (18) se tiene que los proyectores de vectores en
gue un campo de covectores es tangerie.a el subespacio tangenfey, y respectivamente el de covecto-

Analogamente, un campg, es ortogonal &; si para res en el subespacio cotangefite® estin dados por
todo campo vectorial tangenté se cumple

h¢ o = 6° o + nana/, (19)
waf}a =0. (9) ’ ’ ’
he® =044 +ngn®, (20)
Considerando . 3
_ b respectivamente. dese que estos tensorestart como la
Ng = GabM (10)

identidad para vectores y covectores tangentes.
y la Ec. (3), se tiene que todo campo de covectores ortogona- A partir de (15) y (16) se tiene que los proyectores de
les a¥’; se puede expresar como vectores en el subespacio tangeiey de covectores en el
subespacio cotangenté* son

Wq = W1 Mg, (11)
- . i P %y =-—nng, (21)
siguiendo un razonamiento@ogo al caso de campos vecto- , ,
riales. P ,% =—ngn®, (22)
Tal como ocurre para el espacio tangente al ppred>,, )

el espacio cotangentepase separa como respectivamente. -
_ En ttrminos de estos proyectores, se pueden reescribir

TM =TS &N, (12) (19) y (20) como las descomposiciones dédentidad pa-

_ ra vectores® ./ y para covectored, ¢, es decir
donde7,’ ¥, es el subespacio d& M formado por todos los
covectores tangentesa en el puntop, y se ha denotado al o =h"w + P =h"y —n'ng, (23)
espacio de covectores ortogonalés;a@np como 6.7 = hy Pl = b, —pan. (24)
Ny = {na(p) : A € R}, (13) Las expresiones (6) y (14) indicabro reconstruir vec-
tores y covectores del espaciotiempo a partir de su proyecci
tangente (algelaicamente tridimensional) y ssomponente
Wa = Fq + Na(p)wy . (14)  ortogonal (una funéin real), lo que justifica la denominaci
3 + 1 de este formalismo. Asimismo, las expresiones (23)
Nuevamente, esta sepa@tise extiende al caso de camposy (24) seén (tiles para realizar la descomposigi3 + 1 de
aplicando estas reglas punto a punto sabyre tensores de rango arbitrario.
Gracias a que se éstrabajando en un espaciotiempo fo-  Respecto al camptd, es convencional denominshifta
liado por hipersuperficies,, cada puntg € M esh conte-  su proyecdn tangente y representarla pgf, mientras que
nido en una y 8lo una hipersuperfici&,,, lo que permite  a su componente normal se le denomina fantpsey se le

de modo que todo covector gre ¥; se expresa como
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representa poN. Entonces, la descompogici3 + 1 det® y desarrollando cada identidad como en (24), se obtienen ex-

es presiones para cada uno de los tensores presentes en (29),
t* = N*+n°®N. (25)
- a’ v

De (1) se sigue que la furm lapsetambin se puede expre- Tap =ha™ ho” Ty, (31)
sar como 1 :}ta _ ha a’ (7nb/)Ta/b/, (32)

= av i (26) - o

nev .t o Fp = (—n" Yy " T, (33)
y de (25) queN sea el factor de normalizaxi en la expre- .
sion (4), es decir, Ty =n"n"Tuy. (34)
N = + (27)  En este trabajo, a cada uno de lésntinos de (29) se les
V =9VatVit denomina& proyecciones, y a los tensores tangentes de ca-

Por lo tantoy, y N eséin determinados por la furigityla 92 proygccﬁm, (31)-(34), se les denomirgeromponentes de

meétrica del espaciotiempo, mientras quelft V¢ depende Proyeccon.

de la elecdin particular del camp¢. En el Agendice 7 se La métrica inducida es un tens¢d, 2) tangente a la hi-

hace exkita la dependencia de estos campos en la expresi Persuperficie que, actuando sobre dos vectores tangentes

de un vector desde el punto de vista tridimensional. la hipersuperficie, tiene la misma agique la nétrica del
espaciotiempo. Es inmediato verificar que la proy&edd-

2.2. Tensores de rango arbitrario. talmente tangente de latrica,

<8}

La separadn de los espacios de vectores o covectores en una Bap = ha @ iy ¥ Jarty

parte tangente y una parte ortogonal expresada en (7) y (12),

se puede generalizar para tensores de rango arbitrario a partir = Gab + NaNb, (35)

de su descomposimi como producto tensorial de espacios

de vectores y covectores. Por ejemplo, para el espacio de tefs €llnico tensor tangente a la hipersuperficie que cumple
sores(0, 2) definidos sobre un puntede la hipersuperficie Con estas condiciones.

3, se tiene Denotar la nétrica inducida coma,,; es consistente con
~ ~ la notacon que se ha introducido para los proyectores tan-
TyM@TyM = (T2 @ Ny) @ (Ty 5 & N,) gentes, en el sentido de que,; bajaindices”, pues

= (T3S @ T;%) & (TS @ N;)
DN RTIS) @ NFoNT).  (28)

hab = Gaarh® b = ha ¥ grp-

o Notese tamléin que la rétrica inducida permitsubir y
Esta descompositn indica que todo tensdf, 2), T.s,  bajar indices de tensores tangentes,ay
se puede separar como la suma de los siguiegtasrtos:

ab — _ac bd
= Un tensor(0,2) completamente tangente a la hiper- W =9%9" hea (36)

superficie, es decir, que se anula al contraerlo con
vector normain® en cualquiera de sugdices. A es-
te #rmino se le denotarcolocando unélde sobre el

e L
tjunge como operador @trica inversa, puesto que

ab _ 1a
simbolo del tensor originall;. h*hee = h% c. (37)
» El producto tensorial de, con un covector tangente, Cuando se realiza la separ@cidel espacio (co)tangente
Tb- aM (en cada puntp), en un subespacio (cojtangentea,

y el subespacio de (co)vectores paraleles €0 n,) enp, y

se aplica esta separénial producto tensorial con el que se

definen los espacios de tensores de rango superior, se obtiene

» Un escalaff’, multiplicando an,n;, correspondiente  que el rimero de maneras en que se puede proyectar un ten-
a sucomponentertogonal. sor (k,0) es2”, puesto que se terauna descomposim de

) . la forma
Es decir, la separamn 3+ 1 de un tensof0, 2) es de la forma

= El producto tensorial de un covector tangeitg,con
ng.

®-

Tab - Tab + ;anb + na;b + naanJ_- (29) (%M)k = %M = (%Et(p) D N)k

=1

Utilizando la descomposiagn de la identidad (24) para
cadaindice deT,;, es decir, escribiendo

e

P(TyZup)" 7 (N)], (38)

<.
I
=)

Tab = 6(1 a/(sb b,Ta’b’a (30)
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donde#? indica las permutaciones sobre logndices de to-
das las posibles proyecciongs/eces contf@as conn, es
decir, todas las posibles combinaciones donaelices de la
proyeccon son normales y el resto tangentes. &nero de
permutaciones para cagl&s( ) por lo que el iimero total

de proyecciones es
k
£()-
J

Jj=0

(39)

Siguiendo estadgica, en general para tensores t{pol), se
tendéa

k
-0

=0 j=0

(T Sepy) I (N)],

donde el @mero total de proyecciones 2.

l

P(TyS4) T (N

(40)

Aungue en la mayda de aplicaciones comunes para el

formalismo 3 + 1 basta con la descompogiai de vecto-
res, covectores y tensores de rag@n situaciones menos

T. MIRAMONTES Y D. SUDARSKY

por lo que bajo esta convefi, este tipo de tensor se expre-
sa@ como
(42)

A continuacbn establecemogmo se asigna una etique-
tam a una proyecéin dada. Seg,, el conjunto que codifica
la expansin binaria del amero enteron < [0,2'!] en la

forma 4
m = Z 27,
JE€Cm
Esto no es ras que la notadh desarrollada en base dosde

por lo que los conjuntog,, para los primeros cinco enteros
son:

Tal,lal,z...alay

(43)

0=0 = (=10
1=2° = (¢ = {0},
2=2! = (o = {1},
3=2"+2° = (3 ={0,1},
4 =22 = (4 = {2},
5=2%42° = (5 = {0, 2},

estindar, como en el estudio del acoplamiento de campos

cuanticos con gravedad, iasomo en el estudio de acciones

efectivas para gravedadamtica, donde adeas de &érminos
como R R.a Y R*® R, se requiere elaculo de de-

rivadas superiores comiadR, o los desarrollos en series de
Taylor covarianté$, que en principio involucran derivadas
del tensor de Riemann de todo orden, es deseable contar ¢

un formalismo que permita realizar estédoulos de manera
totalmente general y para uimero deindices arbitrario.
El crecimiento exponencial delimero de proyecciones,

al incrementarse el rango de los tensores, implica que, si

desea tratar con total generalidad la descompmsiti+- 1,

es necesario primero sistematizar la nomenclatura de est

componentes de proyeoai.
Por ejemplo, para el cag0, 2), las cuatro proyecciones
previstas son justamente cada uno deéosiinos de (29), y

se puede utilizar una notdci en la que a cada componen-

te de proyecdn se le asigna urirmbolo diferente, como los

simbolos del lado izquierdo de las Ecs. (31)-(34). Sin embar

go, para tensores de ran@p!) conl > 2, deja de ser @acti-
co denotar cada componente de proy&eaon un snbolo
distinto, por lo que en su lugar, se asignarcada proyectn
una etiqueta nu@rica entred y 2! — 1.

El primer paso para establecer una ndiacpropiada pa-
ra este formalismo general &dijar reglas para la notam de
losindices de todo tensdr del tipo (0, ). Susindices se eti-
guetaén de modo que indiquen su posicirespecto dhdice
mas a la derecha, por lo que un tenfr2) se expresar co-
mo

Talaoa

y en general, el conjunto de etiquetasinidices para un ten-
sor(0,1) se&a
IlE{l—l,...,

1,0}, (41)

se

y ad sucesivamente. Rgrocamente, a partir de un conjun-
to ¢,, de rimeros enteros, se puede construir amerom
mediante ladrmula (43).
La receta para asignar etiquetas a una propecti+ 1
de un tensor sérla siguiente: Etiquete Idadices del tensor
gﬂmo en (42) y construya el conjun{g, como el conjunto
e etiquetas de ldsdices que en la proyedri son norma-
les, es decir, las etiquetas de laslices de los covectores
y luego, asigne a la proyeéui la etiquetan dada por (43).
Esta convenéin no resulta intuitiva, pero es una manera
simple de etiquetar proyecciones directamente, si se conside-
%Ia siguienteegla visual Sustituya cadandice den por un
numero “1”, y asigne al resto de Idsdices, que pertene@ar
a la componente de proyebaitangente, igitos “0”. Escriba
los dgitos en el orden original de Idadices correspondien-
tes en el tensor no desarrollado, (42). Lo que se obtiene es la
notacbn binaria del amerom que le corresponde a la pro-
yeccbn en cuestin.
Por ejemplo, denotando por un $nffice B a un umero
en notaddn binaria, se tenth en (29),

Ta1a0 - Talao + 7\-0'«1 Nag
——

005=0 0 1
————
0lp=1

+ Na, 7£ao + Na; Nag T,.
NN NNy

1 0 1 1
—_—
10p=2 11p=3

Al conjuntd® que contiene las etiquetas de lioslices
proyectados de manera tangente se le denota por

Y'rfq, = Il - C’m- (44)
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Finalmente, la proyecenm de un tensof” de tipo(0, [) 2.2.1. Simetrizaéin y antisimetrizadn deindices

se denotar como _ e
Se ha establecido una convantidonde la posiéin de los

MP(Ty | oag) = indice_s juega un p_apel impor_tan_te, por lo que ha_y que te-
ner cuidado de realizar cualquier intercambio de etiquetas de
® ha, @ ® Na, (fn‘IE')Ta;_ln_%. (45) indicesdespiesde que se hayan etiquetado las componentes.
ievlL JE€Cm Por ejemplo, el tensdf,, ., se desarrolla en esta notdeico-
mo
Se puede simplificarien mas esta expre@n si se con-

. oo . 2 . Toray =T, T, 2T, T, (49
sidera la siguient@otacibn multiplicativapor conjunto de arao arao + May Tay + Moy “Tay +NanagT1, (49)

indices, exclusivamente para proyectores, y para expresar su simetrizani
1
Na 4 = ® Na;, T(alao) = 5 (Talao + Tagal) ’
ied se deber tomar en cuenta primero el etiquetado de componen-
ha, “4 = ® ha, %, tes dado en (49) y desgsi el intercambia; — a, para el
icA segundoé&rmino, obteniendo
. . _— 1/~
dondeA es un conjunto _de etiquetas ni_tehce;. Para el resto Tlarao) = a1 (Talao + Ny 1T,
de los tensores, se define una ndiacabreviada para con- :
juntos deindices: + Nay *Tay + NayNagT1
2 1
Toy =Tau,.an,> + Tagar +1ay Tag

2
. ” . - . + nag Ta1 + nag nal TJ_)7
es decir, T, es un tensor cuyosidices esin etiquetados

por los elementos del conjuntodenadod = {4,,...,A,}, esdecir,
donde en generad; < A;;.

Haciendo uso de esta notanj la proyecén m de un 1| - - . )
tensor(0, 1) se expresa como Tarao) = g7 [ Zarao + Tagay + Nao [1Tay + T,

0P(T(ﬂ1"0)) IP(T(alao))

’

"P(Ta,) = ha% Y naCm(—n)%mTa,”, (46)

las componentes de proyegaise expresan como + gy [*Tag + Tag] +naynag2TL | . (50)
m a/‘/l a’ ZP(T(‘H@O)) 3P(T(@1<lo))
Tayl = Nay, m (—TL) cm Ta’Il ) (47)

m m

De manera afloga, la antisimetrizaoh de losndices de este

L tensor en forma + 1 se@a
y en general, la descompogioi3 + 1 de un tensof0, 1) se +

expresa como

1 ~
T[alao] = 921 Tavao = Tagar +Nag [1Ta1 - 2Ta1]

21 21
TaIl, = Z mP(TaIl) = Z nacm mTayl . (48) OP(T[“I“O]) lP(T[alao])
m=0 m=0 ™
Nétese que lan—ésima compon,ente de proye@cies un ten- + g, [2Ta0 _ 1Ta0] . (51)
sor tangenté0, ! — z), conz el nimero de elementos &p),.
Esta convenéin de notadn se generaliza directamente P (Tlaya0)

paratensores de tigé, /), tomando el valor posicional de los Notese que en este caso la proyénaion etiquetan = 3 se
indices como etiqueta, independientemente de sirstioes  ha cancelado iehticamente porque involucra antisimetrizar
“covariantes” o “contravariantes”. el producto simtricong, n,, .

Se conservér la convendin de denotar por una tilde a Si se tiene un tensdp, ) arbitrario, y se desea simetri-
la proyeccbn completamente tangente de un tensor, correszar o antisimetrizar el conjunto de duslices etiquetados por
pondiente a la proyedan identificada por elimero0 (por  los elementos del conjunto ordenafiden el caso anterior,
ejempIoTall) ad como el empleo del sihdice | pararefe- S = {1,0}), entonces es necesario primero establecer una
rirse a la proyecdéin completamente ortogonal de un tensor,convencbn para expresar las permutaciones involucradas.
correspondiente a la proyeo6ai identificada por el imero Una permutadin p sobre un conjunto ordenadbes una
2(k+1) _ 1 (por ejemploT,). regla que intercambia elementos del conjunto entre Si
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s es el mimero de elementos e#, entonces el fimero to- y para preservar la consistencia de la ndtaciosindices
tal de permutaciones de sus elementos!e&stas posibles se debean volver a etiquetar en el orden @sdar (42) tras
permutaciones pueden ordenarse de diversas maneras, peritir losindices que se han corittla, es decir, aquellos con
el ordenamiento concreto no es relevante, y basta con utillas etiquetas y j. A esta transforma6n le denominaremos
zar una regla consistente para enumerar las permutacionésansformadn de traza para los fines de esta satci

A la i—ésima permutadin del conjuntaS se le denotdx por Entonces, lan—é&sima componente de proyeagide una
S; = pi(S). La permutadin inversa de; es la permutadin  contracobn seé

p; ' tal quep; (pi(S)) = S. El signo de lai—ésima per-
mutacbn, ¢;, s positivo si la permutan se obtiene de un
nimero par de intercambios binarios de elementos, y negati-
vo si se obtiene de urimero impar de intercambios binarios
de elementos. Sea,,, el numero de componente definido dondemg =

i b;b
m(ga]llkTaIl) = h’ 3k mOTCLlfg.A.bj...bk.“aU
J k
— motEAIT (58)

2",y (m, €s el conjunto dendices que

como
My, = Z 2k, (52)

k€pi(Cm)
Considerando estas convenciones, la expregieneral
para lam—ésima proyecéin de un tensof (0,1) simetri-
zado en losndices con etiqueta$s estaad dada por

s!
. na m m 1
"P(Sims(Ta, ) = == > Tay s (53)
=1
mientras que la antisimetrizéci correspondiente ser
n s!
. Al m -1
" P(Asims (Tay, ) = = 20 L (64)
i=

2.2.2. Productos y contracciones

Si se tienen dos tensored, de tipo (0,{4), y B de tipo

(0,15), el producto tensorial destos esté@r dado por
(A®B)alA+lB—1---

Entonces, lan—éstima componente de proyeagiestan da-

da por

™(A® B) = M4 BB

a1+l a_i !
y"{q B YV’{QA +2 B

(56)

a lB k)
’NLB

donde

k€CmNIig
ma =27 (m —mp).

La contracadbn de losindices con etiquetagy k& de un
tensorly,, , dondei, 5 € I, esh dada por

a;ag _ a;ar a; ag
g Tall = (R** —n%n )Tall
21
— ajak m
- z : nath TaY7ln
m=0

(57)

— n%inak m
n“n*ng. Tay,ln

. KE€Cmg =~ 1T - L
no incluye a losndicesi o j, y que bajo la transformamn de

traza resulta en el conjuntg,.
Por ejemplo, si se contraen lasdices0 y 2 de un ten-
sor(0, 4), la transformadin de traza corresponde al siguiente

mapeo:
1—0, 3 — 1.

Asi, los conjuntog,,,, que no incluyen ni & ni a2 (revisando
la Tabla | del Agendice 6.1) se transforman como

Go=10 - o =10,
G ={1} — G = {0},
G = {3} . G = {1},
Cio = {3,1} - G ={1,0}.
Entonces, la exprean (58) en este caso produce
Tarbao” = 1" *Toybsabo — “Taras
+ Ny (B2 2Ty 00 — "Tay)
+ 14, (A% Tha000 — *Tay)

+ Naq Nag (hbzbo 10Tb2b0 — 15Tl) . (59)

Para un tensdr,, ., la transformadn de traza es trivial
y se obtiene de manera inmediata la exgnesi

T, =T,"—T,. (60)

Para construir la contradm de dos tensores, primero se
calcula el producto tensorial de ambos, y dé&spla contrac-
cion sobre los correspondientexlices. Sin embargo, una
formula expicita en este caso no resulta de gran utilidad, ya
gue es ras eficiente calcular esta contramtide manera di-
recta.

Una aplicaddn que motiva expresiones como (56) y (58),
y en general la introducgn de una notabn especial para to-
das las proyecciones, es que pueden ser implementadas com-
putacionalmente para obtener expresidhes, en principio,
para cualquier tensor covariante, permitiendo manipulacio-
nes de otro modo extenuantes.

Ademas, estas expresiones permiten obterdeméilas
Utiles para aplicacione§picas de este formalismo, como el
calculo del tensor de Ricci a partir del tensor de Riemann,
mediante la expresh (59), obtenida directamente de (58).
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3. Geometia Diferencial en el formalismo 3+1 es un tensor ortogonaléd. Este tensor indicadmo cambian

o ) o las geoésicas ante un desplazamiemdinitesimalen una
La geometia intrinseca de la hipersuperficie se construye &jireccibn  ortogonal a la congruencia, es decir,
partir de la nétrica inducidah,;, sobre la hipersuperficig,,

y su derivada asociad®),, que cumple con la condimi de YOV =y B, b (68)
compatibilidad con esta@trica,
_ El teorema de Frobenius garantiza qué“ses ortogonal
Dahbc - 07 (61) . . : :
a una subvariedad — 1 dimensional, como una hipersu-
ad como la propiedad deo-torsin, perficie de Cauchy, este tensor es ta@ntsinétrico [5]. Sea
entonces una congruencia ortogonal;ade modo que sobre
Dia Dy f =0, (62)  ésta (y $lo sobre la hipersuperficig,), n® y £ coincidan.

ésto implica que las derivadas de ambos campos en cualquier
direccbn tangente a la hipersuperficie tagicoinciden.
Por lo tanto,

para toda fundin escalalf sobreX:;.

La curvatura ininseca de-; esh caracterizada por el
tensor de Riemann correspondiente a &nna inducida so-
bre la hipersuperficie, que éstlefinido por su acéh sobre

N C _ (&3 J—
covectores tangentes como Kap = haVeny = ha “ Vel = Bap|s,, (69)

) Rupe Y0q = Do Dyie — DypD oo, (63)  esuntensor siatricoy tangente &, al que se denomina cur-
vatura extmseca K ,;, mide qie tanto deja de ser “normal” el

y puede mostrarse [S5] que consta de combinaciones de detjector, al transportarlo paralelamente sobre la hipersuper-
vadas de hasta segundo orden deé#rival,;. Mas adelante  ficie de un punto a otro punto cercano.

se mostra su reladn con el tensor de Riemann del espacio- g/ tensork , contiene la informaéin sobre la evoluén
a

tiempo. de la netrica de una superficie a otra, ya quE,, es pre-

~ Debe tenerse en cuenta que la georaetitinseca de  ¢isamente la derivada de Lfede la nétrica inducida en la
sOlo una hipersuperficie no contiene la inforn@csobre la  §ireccbn dent. es decir

geometia de todo el espaciotiempo, ya que, como es de es-
perarse de un sistema de ecuaciones diferenciales de segundo
orden, se requiere comoinmmo, la informaocdn del cambio

de su geometa al pasar de una hipersuperficie a otra, o en
otras palabras, la derivada de l&tnica respecto al pametro 4. Operadores derivada
t. Esta informadin esé contenida justamente endarvatura
extrinseca

Kab = %-’gnhalr (70)

Como se menciamanteriormente, a la @trica inducida so-
breX; est asociada una derivad?. que cumple con el re-
quisito de compatibilidad Btrica conh,;,, Ec. (61). Esta de-
rivada esh dada por la expresi

3.1. Curvatura extrinseca

Una forma de caracterizar la geomatiel espaciotiempo en
una regbn dada es eretminos de unaongruencia geagki-
ca, que es una familia de geesicas tipo tiempo tales que en
cada punto de esa régi pase una y&o una geodsica de di-

A —1---Qi — Lak—
DCT k—1 Obl—1~~b0 = h k—1 a;C

cha familia. Tomando una geesica de la congruencia como - T
referencia, se describe el comportamiento de las &soals e €V T %=1+ Y
H 7 1—1--Y%
adyacentes al evolucionar de acuerdo ahpwetro afn de la
. B . / !/ 7
curva, es decir, su tiempo propio. = h% o1 hy, ¥ by, ¢ N o T b,
Los vectores tangentes a la congruencia conforman un ¥ '
a g i = O (VT ). (71)
campos®, que cumple con la ecudai geo@sica, c br—1...bo) -
b , . . .
§*V,€" =0, (64) Notese qué), no es una derivada covariante del espacio-

tiempo, pues@o se comporta como derivada cuandadiact

y es de norma constante, : . -
sobre campos tensoriales tangentes a la hipersuperficie, ya

£, = —1, (65)  que paracampos tensoriales que no son tangedigea ge-
o neral no cumple con la regla de Leibniz, puesto que el campo
donde estalltimo implica que tensorial resultante siempre es tangeniy .&Por ejemplo, al
V.60 = 0. (66) actuar sobre, @y, se tiene
Considerando (64) y 66, se tiene que De(na@p) = ha " hp " he © Ve (g @p)
Bap = V& (67) = Kcqwp 7é (Dcna)‘:}b + ngDcwy.
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Esta derivada codifica la componente tangente de la va- El campo vectoriali* aparece en referencias como [4]
riacion de un tensor ante desplazamientos en una dimecci y [1], generalmente eretminos de la derivada del logaritmo
tangente a la hipersuperficie, es decir, contiene la informade la funcon Lapsé?,
cion disponible sobre la varidm del tensor enérminos de

datos sobre la hipersuperficie. U, = —DgIn N, (79)
Notese quel,, es justamente la derivada dé asociada
a la metrica inducida, es decir, 0 de la propia derivada de Lie de, ya que se puede
Kab = Danb = Dbna = D(anb). (72) mostraF que

. . . Uq = _£nna- (80)
La descomposioin 3+1 de la derivada covariante de una

funcion escalar se puede expresar haciendo uso de la derivagigicamenten® puede interpretarse (salvo por un sitif)

recien definida mediante la Ec. (14), quedando como la 4-aceleraéh de una familia de observadores, como
Vof = Dof +nad f, (73) S€ muestrg en el /émee 7. o '
La derivada covariante de un tensor arbitrario incluye in-
donde formacibn tanto de la variabn del tensor como de la cur-
d =-n"V,. (74)  vatura del espaciotiempo,iague su expreén general en el

El operadord no es nas que un “atajo” definido por con- formalismo3 + 1 debe incluir la derivada de laétrica in-

veniencia debido a la frecuencia con que en este formalism@ucida, es decir, la curvatura exiseca, adeés de la propia

aparece la derivada en la dire@sinormain®Vv,,. variacbn del tensor sobre la hipersuperficie. Por este motivo,
Al aplicard a un tensor tangente, este no permanece tarf:S hecesario primero descomponer en fosrtd la derivada

gente, por lo que es necesario volver a desarrollar sus préovariante de la gtrica inducida,

yecciones para recuperar una exprasi + 1. Se utilizaa el

simbolo @ para indicar que despa de aplicarl, el tensor Vahpe = 2 [Ko@ne) + nanpue)| (81)
resultante se proyecta sol¥g, es decir
- ) , ad como la del proyectoh,, ',
dTal,l...aO = hal,l -1 hao aOd’Ta;_l...a{)' (75) proy ¢
En generaldT,, ,. ., Se puede separar €hproyecciones Vihe * = 1Ky ® + nyngu®
con componentes tangent®4d T, , ..a.)- o o
Esta derivada eatdirectamente relacionada con la deri- + Kpan® 4 npuan® (82)
vada de Lie bajo el flujo de®, £,,, cuestdbn que se aborda ) .
en el Agendice 7. A partir de la descomposimn 3 + 1 de un tensor
Finalmente, siempre es posible realizar la susfituci Tai_1...a0, EC. (48), se hace patente que primero es necesario
, expresar la derivada covariantendg =~ = Na., Na., *** Na.,
Va=he" Va4 n.d, (76)  enforma3 + 1. Aplicando la regla de Leibniz y la exprési
gue constituye informalmente @escomposién 3 + 1 del (78) se obtiene
indicede la derivada covariante, pero es importante enfatizar
que el segundcétmino del lado derecho todavdebe des- Vana,, = Z Nac,,—gry {Kazak N, Yoy |- (83)
asindi kE€Cm
arrollarse en forma + 1 sobre sus deasindices cuando se ok mol_ok
aplica a un tensor para tener una expe8i+ 1, que sea el
tema de la siguiente seéai. Las etiquetas de las componentes de propecresultantes

indican, para el primeiérmino dentro del p&ntesis, que el
k—eésimoindice, que antes er@ormal ahora es tangente y
por lo tanto corresponde a la componente de progecodn
etiqyetqm’ = EHEC"_{,C} 2% = m — 2%, y para el,segun-
En esta secon se desarrolla la descompoéiti3 + 1 de do termino ocurre lo mismo, salvo_ que en este E:gsmd;te
que acompida a la derivada covariante en la positi ahora

la derivada covariante de un tensy_, . ,,. Ya que apare- I d e Ia etiqueta de |
ce con frecuencia, es conveniente definir el siguiente camp?])z:tzrma y por ende se agreja a eliqueta de la compo-

tangent& ay;, ]
, Como aderas, cada componente de proyécces tan-
Uy =dng = —n’Ving, (77)  gentegstas se pueden desarrollar, redundantemente, como

5. Separacdon 3+1 de las derivadas de tenso-
res.

de modo que la derivada covariante rdequeda expresada /
"Tay, = ha,, 0T,
en forma3 + 1 como ayr = May, ™ a’

g L
m m Y,

vanb = Kab + NgUp. (78) =h a;l .- h a;s mTa/ cal - (84)
v1

Ayy Ay Ys
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El motivo para realizar este desarrollo es que permite obtener atitamente una exprési 3 + 1 al aplicar la derivada
covariante &"7,_, , pues a partir de (82), y aplicando la regla de Leibniz, se obtiene

’

’
1 Ay
Ym) 4 hayl Yin Vi, ™ T

m

Vo, "To., = ™y ¢

'yl |
m Yo

(Va, h
allay v,

— Z Na, (Kal ar mp +nal ue mTayz ) + Dal mm +nal am™T

Q~-1 A~ 1 Q~-1 0
f Y m Y Yin
keyl

(85)

m-42k m-42k 421 m m-2!
donde losérminos de la segundinka de (82) se han cancelado en cédaino puesto que Idadices primados van contoos
con el tensor tangent&€7;, , y se ha empleado la sustitoai (76).
Y,

A continuacén se sintetiza el procedimiento de escribir la derivada covariante de un tensor arbitrario ed formal
calcular la derivada covariante de la expansi + 1 general, Ec. (48), se terar

2l 1 21
— E m _ E m m
Val j"(”l - val n“(m TG‘Y}H - |:(V(Ll n“(m ) T(J‘Y}n + n“(m val j_‘ayyln I’ (86)
m=0 m=0 )

y sustituyendo (83) y (85) en (86) se obtiene

21
_ m m ap m ar m
VaTun, = 208 2 Mgy | Kewws "Tayy 47000 "oy | 4700, | D0 may (Ko ™ "oy e u ", )
m=0 \ k€l S———— N——— keyl

m—2k m—+2l -2k m—+2F m+2k 421

Q-1
Y

———

m m+2!

donde al reagrupar loétminos por componente queda finalmente la expresi

+ Day "Tuy, 41, @ ™T, } ,

2l g
m Zm—2! ap m—2F ap m—2F—2!
VaTo,= Y fag, D0 Tay, +d™ 2T, + > (Kal . T, +u® Ta,,

m .

m=0 m—2l kIECnlmll m—2Fk m—2k 2l

m42F m4-2F 2!
+ 3 (Koo ™ Tay, + g, T, . (87)

m+2k m—2k ol

ke,

La formula (87) se puede aplicar, por ejemplo, para calcular la derivada de un covector. Para ello, se calcula cada compo
nente de proyecon por separado,

0 0 G —2t ap —2F aj —2F—2!
(Va,way) = Da, Waya +d( 77 wa )+ E (Ka1 P Way, . +utt Wayr
_o —2k _2

Yl
o1
~— # keConI1 =0
OUJQOZ(ZJGO 0 0
2k 2k 21
+ § (Kalak Way, T Ug, Way
——" ok ~—~ ok _gl
1_
keYy={0} Kayag Ugy “———————
Way, 1 =WL ’lwa,yl =0
~1
0 ~
(valwao) = Dalwao + KalaUWL7 (88)

1 1 -1 Z 1-2F . —2F-1
(vﬂlw%) = -Da1 Way 1 +d( Way1 ) + Kal “ Way 1 +u Way 1
1 —1 —— _ ~~ ok _1
N — \ ~ ke¢iNI;={0} K. ao w®0

W 0 aj

Z 142k 2k_1
+ (Kalak wayl +uak wayl

ker:@ 142k ok 1

' (vmwg«{) =Dg,wi + K, aé)‘;a{)» (89)
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2 2 2—2 22 _9
(vg/fwao) =Da, “Wa,, +d Wq,, T E K, ** Wa,, 1 +u* Wao,
Y2 Y221 Yook Yok
~—— kelanI;=0
0 g v
242 2k 2 _ 53~
+ Z (Kalak Wayr + Uq, Wayy ) (Vgway) = AdWay + Uaew 1, (90)
keY}={0} M 2 —~ 2
2 K u
aiag v ag o

8 (V/@(ﬁd/@t{) - al Swa 1 +d Wayl + Z (Kal Gk B_kaayl + uak 1-2* (.Uayl )

W—/ H/—/ ke¢snl; ={0} Kvao— 3—2k w0 1—2k
w1 “ 0 Dag
k 1 2k 3 jod !~
+ E (Kamk Way g, 1T Way ) (Vgwyg) = dwi +u™wy . (91)
keYi=0 a2t e

En estas expresiones, las componentes de prayeseimuestran con ldsdices normales cancelados en el lado izquierdo
para mantener la consistencia de la nd@a@ ambos lados de la igualdad. Finalmente, al realizar la suma deroinds
(88)-(91) de acuerdo con la exprasi(87), se obtiene la descompoéitB + 1 de la derivada covariante de un covector,

v‘llwao =0 (v‘llwao) + Ng, ! (valw%) + Mg, 2 (vg/fwao) + Nay Nag s (VW%) = Dalaao + Kalaowj_
+ Ny (Dale_ + K, ap &a()) + Ny (5@% + uanJ_) + Mgy Mag (d‘wJ_ + u“é@aé) . (92)
Utilizando este mismo procedimiento para un tensor de réfgd), se obtiene la descompogioi3 + 1 deV,, T4, a0

Va,Tayae = O(VazTalao) + Nag l(vazTalp«{) + Na, Z(V@Ty{ao) + Nay Ny S(VazT/a/{%) + Na, 4(v%Ta1ao)

+ Naynay *(VosTar56) + Masnay *(VosTytan) + Nasnar Ny ' (VosTpeng), (93)
donde sus componentes de proyéncon
(VasTurao) = Daz Turag + KazaoTay + Kazar Tao» (94)
Y(VasTur ) = Kay “Taray + DagTa, + Kaga, T4, (95)
2(VasTptao) = Kay Ty ay + DayTay + Kagao T, (96)
3(VasTpsoq) = Kay 1Ta) + Koy 07 + Do, T, (97)
Y(VyiTara0) = ATy a0 + TarUag + Uay Tao, (98)
*(VysTurgg) = ua/oj:ala/ +dTe, +ua,TL, (99)
(VosTytar) = U Ty + ATap + tta, T, (100)
"(VosType) = U Fop +u07y +dT). (101)

Aqui se ha empleado la notéci de las Ecs. (29)-(34) para las componentes de prdyedeil, ;.

En la siguiente sectn se empledr el formalismo hasta agdesarrollado para calcular los tensores de Riemann y Ricci
del espaciotiempo ergtminos de los tensores de Riemann y Ricci sobre la hipersuperficegrase la nétrica inducida, el
tensor de curvatura eftiseca y el campo de vectores normales y sus derivadas.

6. Tensores de curvatura y ecuaén de Einstein
6.1. Tensor de Riemann

El tensor de curvatura de Riemamy,. ¢ se define [5] endrminos de su acgh sobre un campo de covectorgscomo

Rape d wd = VoVpwe — VpViwe. (102)
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Este tensor caracteriza la curvatura de una variedad en ebmponentes de proyeéci deBy.q = V, V. wy,
sentido de que su anulacion en cualquierdegiel espacio- 0 _
tiempo es condi@n necesaria y suficiente para la existencia (Byea) = DyDowa + (Dyw1 ) Keq
de coodenadas en las que la metrica toma la forma minkows-
kiana (es deciny = diag(—1,1,1,1)) en esa re@n [7], 0 en
otras palabras, que el espaciotiempo en cualquieomegs + KpgDow | + Kpedwg + Kpeugw,,  (109)
planosiy solo si en ella se anula el tensor de Riemann.

+w) DyKeq + KpaK . ¥ G

1 _ d’ ~ d’
Tomando en cuenta que se&smpleando la conexm (Bbe) = Kp© Delar + Ky Keqwy

métrica sin torshn, este tensor cumple con las siguientes pro- + @ DyK. " + (Dyiva ) K,
piedades, ) , )
+ DyDew + Kpe(u &g + dw)), (110)
d d ’ / ~
Rape © = —Rpac “, (103) 2(Bpg) = Ky € Do@g + Ky € Kyqw, + Dyd g
d
Rapg © =0, (104) + (Dywi )ug +wi Dyug + Kpgdwy,  (111)
Raved = _Rabdca (105) 3<Bb) =K, C/KC/ d/@d/ + K C/DC/(UJ_
v[a Rbc]d ‘= 0, (106)

+ K, d/c?&d/ +w Ky d/ud/

donde a (106) se le denomina identidad de Bianchi. A partir +u? Dy@gr + B Dyu + Dydwy, (112)
de estas propiedades, tammise puede derivar la siguiente 4 3~

simetia para el tensor de Riemann covariante, (Bea) = d Delda + Keadw.,

+ WLch’d’ + K. d'@d/ud

fabed = Hedab: 1o  (Dews)a + uedBa+ wrveus, (113)

5 B) = d’ ~ d’
. p ) =u"D.w wi Kegru
El procedimiento que se emplégvara expresar el tensor (Be) cWa + Wi Rea

de Riemann en forma+ 1 a partir de su definioin, sea el +Ord K" + K.Y dg
siguiente: _ :
+dDow, + uc(u Ty +dwy), (114)
1. Expresar en forma + 1 al tensorBy.; = V, V. wy, S(By) = u® Dy + wy Kerqu®

dondew, es un covector arbitrario. ~2
+d Oy +ugdw,

2. AntisimetrizarBy.q sobre losindicesb y ¢, de modo twidug +ug(ul Sy +dw.), (115)
ue se tiene s y 1~
q "(B) = Ku T By 4+ uf Dow,) +ut A0y

Rbcd ewe = 2B[bc]d- (108) d

+wiu /ud/ +ud/&d/ +dw]. (116)

El siguiente paso es antisimetrizar los primerosidds
3. Considerando los casos en quees tangente &, (es  ces deBy.q, en donde todas las proyecciones que son si-
decir, cuandav; = 0) y cuando es ortogonal (es de- multaneamente normales’a en losindicesb y c se anulan,
cir, cuandaz, = 0), se obtiene de las expresiones dequedando el desarrolid+ 1 de By,; cOmo
las componentes de proyegoide (108), la forma de ~
: e Biyaa = Bipeja + 'Bpgna +np B
algunas componentes del tensor de Riemang ©. [beld [beld [be] T b Peld

—np2Bga+ (np *Bg — np *Bag)ng,  (117)

4. Elresto de las componentes se obtienen a partir de lagendo las componentes de proyéccielevantes,
propiedades y siméts del tensor de Riemann (103)-

1 ~
(107). "Blbeja = 3 ®) Riea “@e + w1 DK aa
d ~
A continuacén se detallan cada uno de estos pasos. + KapKe " war, (118)
Retornando a la notaim deindices usuét, la expresin 1B[bc] = Kp d’ Kgaw. +@0a DK, d’
paraV.wy est dada por (92), y sustituyendo la expoesi
para las componentes de este tensor en (93), se obtienen las + DpDawi, (119)
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120 T. MIRAMONTES Y D. SUDARSKY
4Boy— *Bog = dD.5g — Ded@yg + uedyg y de aqiique,

+ K. (@4ug — Dyr@q) ORbea® = @ Ryca® + 2K K . (124)

+wi(@Kea = Deua) Notese que esta ecuanise puede reescribir como

+wy (UCUd - K. 4 Kc/d)a (120) (S)Rabc d _ ﬁabc d K, K, d + KK, d (125)

— ~ ’ !
°B. — °Be = a(dK.* — Dou®) N o .
A esta ecuaéin se le denomina primera relani de Gauss-

+ 5DCwL —D.dw, Codacci, y relaciona al tensor de Riemann de &rioa in-
oz o g ducida sobre la hipersuperficie, que representa a la curvatura
+ (ueu® = K Ko @ )oa intrinseca de;, el tensor de curvatura ektseca y el tensor

de Riemann de la &trica del espaciotiempo.
Cuando el covector es ortogonal, = 0, we = new, Y
donde ®) R, ¢ es el tensor de Riemann correspondiente &l sustituir en (118) se obtiene
la metrica inducida sobre la hipersuperficie, previamente de- VI
e ; o ho e hag® Ryoar “(—ne)wi = 'Rycaw
finido en (63). Las de&s componentes de proyetgise ob- b fle ld - fcd e)WL = flbcdWL
tienen de intercambiandices y signos, a partir de estas com- = 2 (DK ga) wi,
ponentes, de modo que se puede reescribir (108) como

~ ~ de donde se lee
Rped ‘we = Bped — Bepa

1
+ (1Bbc _ 1Bcb)nd Rbcd = Dchd — Dchd. (126)

+tedw, — K. Dow, . (121)

+ e 2Bpa — 4Bbd) Siguiendo un procedimiento alogo para las deas com-
ponentes de proyecm de B,.4, Se obtienen las siguientes

3 5
+("By = "By)ncna componentes de proyeéci del tensor de Riemann,

+ 15 (*Bedg — 2Bed)
+ nb( 5Bc - 3Bc)nd~ (122)

21:1)»126e = -Dche - Dchea (127)

SRy = d Kpg — Dyug +upug — Ky ¥ Kya, (128)
Las componentes de proyegnidel tensor de Riemann 6 ~ .

Ried € = Rpea © + Rpean® + 2Ry “1g El Gltimo paso es obtener las componentes de progacci
faltantes a partir de las proyecciones (124)-(129). Las compo-

3 e 4 e i L
+ " Ryenan® + " Rpq “ne nentes de proyedmn *R,. y "R, se cancelan ihticamen-

+ SRygnen® + SRy “nony te debido a que las propi_eqlades_ ,(10_3),y (_107) implican_ para
estas proyecciones la antisimetrizacdeindices nulos. Asi-
—np(*Req © + PRean® + °R. “ny), (123)  mismo, aplicado directamente la propiedad (107), se obtiene

la componente con etiqueta = 4,
notando que se trata de un tensor de rafig8), por lo que P q

para emplear las expresiones (118)-(121) considerando la et4Rbd e _ pef YRy = DKy — DK, ©, (130)
gueta de componente que les asigna la expnegi2?2), es

necesario incrementar en uno el valor posicional de todas lase| resto de las componentes se pueden obtener a partir de la
componentes, re-etiquetando cada una de ellas de acuergpiedad (103),

con la regla

8 e 4 e
Rcd = - Rcd (131)
m:ZQk . m/:q+z2k+17
kECm kECm 9Rcd - - 5-Rcd (132)
dondeg = 0 6 ¢ = 1 dependiendo de si. es tangente u orto- R ¢=_CR.© (133)
onal a la superficie, respectivamente. Por ejemplo, tomando
g p P jemp Up — "R, =0. (134)

la componente de proyeécim = 0 de B4, (118), se ob-
tienen las componentes de proyéccin’ = 0y m’ = 1.
Explicitamente, cuando el covector es tangente= . y
w, = 0, al sustituir en (118) se tiene

Con esto concluye el desarroBet 1 del tensor de Riemann,
pues se han expresado todas las componentes de pimyecci
presentes en (123). Las componentes de proyeagie no

0 o~ L (3 . o\ ~ aparecen en (123) soréidticamente nulas debido a las sime-
(Rbeq “we) = 2 ) Roca ™ + KapKq© | we, trias del tensor de Riemann.
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6.2. Tensor de Ricciy escalar de curvatura Suponiendo que la separani3 + 1 para el tensor momento

. ) ) enerda es de la forma,
A partir del desarroll@ + 1 del tensor de Riemann, es directa

la expresbn 3 + 1 del tensor de Ricci, _
Tap = Sap + J(a™l) + nanp,
Ryg = Ryea ®, (135)

dondeS,y, j. Y p son respectivamente el tensor de esfuer-
zos, el vector de flujo de densidad de momento y la densi-
Rped © = Rped € — °Rpa dad de eneiig de la materia en el marco de los observadores
Eulerianog, se tiene que la ecudxi de Einstein

gracias a laérmula (59),

+ ng (2Rbc ¢ — 7Rb)
+ny (PRea® — " Ry) Gap = 87G N T, (146)

+nyng ('R — PR (136)

) i _ _equivale a las ecuaciones
Sustituyendo las expresiones (124)-(134), se obtiene final-

mente )
~ ~ 8GN Say = PG, +K<Ka — Zhe K)
Rap = O Rap + KapK — Ko — g+ Doy, (137) N ’ T
~ 1
Ry = 'Ry = *Ry = DK — D K, °, (138) + hap (UcuC — Deu — 2chch)
R) = dK — Dau® + uqu® — Ko K. 139
- ’ (139) + Doty — uatn, (147)
A la Ec. (138) se les denomina segunda réaale Gauss- . B b
Codazzi porque relaciona el tensor de curvaturaimseca 81GNJo = DaK = DyFa”, (148)
) . S 1
de la hlp.ersuperflme con el tensor de curvatura de Ricci del 87Gnp = = ((3)R LR? - KabK“b) ' (149)
espaciotiempo. 2

Gracias a laérmula (60), se obtiene inmediatamente una
expresbn en érminos de los objetos del formalisido+ 1 Como las Ecs. (148) y (149) representan condiciones para la

para el escalar de curvatura de Ricci, métrica inducida y sus derivadas en cada hipersuperficie, a
" menudo se les denomina ecuaciones de congiricEistas
R=R",, (140)  resultan de especial inf3 puesto que sonas faciles de re-

solver que el sistema completo (146), y, para campos de ma-
teria apropiados, la existencia de dichas soluciones sobre una
R= ®R{ K2 2uut42D,u’—2d K+ Ko, K. (141) hipersuperficieZ garantiza, dada la existencia de una buena
formulacbn de valores inicial€s, la existencia y unicidad de
6.3. Ecuacbn de Einstein una soluddn para todo el espaciotiempo.

es decir,

Considerando la descomposioi del tensor de Ricci, Ecs.
(138), (139), (137), y del escalar de curvatura, (141), se puede

expresar el tensor de Einstein 7. Conclusiones
1
Gap = Rap — Zgap R 142
“® ab ™ dablh (142) En este trabajo se ha presentado unaft@ske los aspectos
en forma3 + 1, generales del formalism® + 1, y se han introducido con-

venciones y notabn especialmente adaptadas peste, que

facilitan el tratamiento sisteatico de todas las proyecciones

involucradas y la manipula@h de expresiones de uso fre-
) cuente en Relatividad General.

~ . 1
Gab = (S)Gab + K (Kab - QhabK)

Haciendo uso deéstas herramientas se han derivando
formulas exdkitas y generales para productos tensoriales
+ Dauy — uqus, (143) (56), simetrizadin (53), antisimetrizadn (54) y contracdn
deindices (58), dscomo para la derivada covariante (87).

1
+ hgp (ucuc — D.uf — 3 G

= o b
®a = DaK = DyKa™ (144) Asimismo, se han obtenido todas las proyecciones del tensor
1 de Riemann (124)-(134), del tensor de Einstein (143)-(145)
== (PR+K? - Ky, K™). 145 ’ ’
GL=3 ( R+ b ) (145) y las relaciones de Gauss-Codacci (125)-(138).
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122 T. MIRAMONTES Y D. SUDARSKY

Appendix y para covectores, el mapeo : 7, M — 7,* M se deno-
minapull-back y est dado por

(¢*wa) (v*) = wa(dsv?), (B.2)

or lo que en general se define para tensofeg),
1@k b, €l pullbackeg* T . mediante la regla

A. Observadores Eulerianos

Al considerar una foliaéin del espaciotiempo por hipersu-
perficies de Cauchy;, el campo de vectores normales a cad
una de estas hipersuperficies unitario y tipo tiempo puede
interpretarse como el campo de veIOC|da_1de_s de un conjunto (g7 broby) Way - o Wa, 07 LY
de observadoes en cada punto del espaciotiempo, a los que se

les denomina observadores Eulerianos [1]. Estos observado- T gy (@7 way ) - - (97 way)
res toman por superficie de simultaneidad justamente a cada - L -
o porsapericis €6 smuanetact (670" (7). (@9

La relacbn entre el tiempo propio medido por estos ob-La derivada de Lie de un campo tenso@t %, , res-
servadores y el cambio de la fubnitiempot, es justamen- pecto a un campo vectorial que genera un grupo unipa-
te la funcbn lapse Mas formalmente, considese la trayec- ramétrico de difeomorfismd&’ ¢, se define como [5]
toria de uno de estos observadores, la cudl sea curva

A : R — M que, parametrizada por el tiempo propioy LTy

gue introduciendo coordenada$, cumple con L gr Ty TGk
= lim ,  (B.4)
dl‘“ T—0 T
nt = 22X . )
dr y da como resultado un campo tensorial del mismo rango
_ o _ queT*-%, . . Esta cantidad se puede interpretar como
Sise tomar” = t, se tiene que el cambio infinitesimal del camp@®: -2+ ;. ,, a lo largo
dt 1 del flujo deg;.
nd = — =n%dt), =n"Vut = —. Notese que la derivada de Lie de un campo tensorial res-

dr N pecto a un campo vectoriaf, sdlo esh bien definida en un
Por lo tanto,n*V, corresponde a la derivada respecto alpunto daday si el campo tensoriales éstlefinido en una ve-
tiempo propio de esta familia de observadores, de modo qugindad deq que contenga un intervalo de la curva integral

la 4-acelera@n de los observadores es justamente dev® que pasa por dicho punto. Por lo tanto, emtinos de
. una foliacbn por hipersuperficies de Cauchy, para calcular la
a — a __ a . . .
A =n"Vpn® = —u, derivada de Lie de un campo tensorial respecto a un campo

vectorial tipo tiempo, es necesario que el campé dsfini-

do no $lo en la hipersuperficie donde se&staluando su

Berivada, sino tambn en las hipersuperficies que contengan

una vecindad infinitesimal de la hipersuperficie en coesti
Una expregin general para la derivada de Lie de un cam-

po tensoriall@-, . es[5],

gue es tangente a cadla.

Para los observadores Eulerianos, las diferentes comp
nentes de proyeamn del tensor momento enéagde cual-
quier forma de materidl,;, son directamente ldensidad
de enerda de materia,

_ b _
p = nan Tab — TJ_7 £vTa1...(Lk bl,..bl — UCVCTLM...ak bl,,.bl
la densidad de momento de la materia k
/ _ ZTal...c...ak by b]vCUaL
Ja = _nbha “Tary = Ta, i=1
l
y eltensor de esfuerzos de la materia + Z To, V. (B.5)
Jj=1

Sab = ha a/hb b,Ta’b’ = falr
A partir de la brmula (B. 5), y de la definiéin de la de-
rivada normal de la Sec. 4, Ec. (74), se obtiene directamente

B. Mapeos y derivada de Lie que la reladn entreéstas derivadas es

Un mapeap : M — N induce un nuevo mapeo que permite  g7a1.-.ax
identificar (otransportar tensores tangentes\d, con tenso-

res tangentes,a[. En el casoV = M, y para vectores en el B Z e (K% + nyut)
espacio tangented v* € 7, M, el mapeo correspondiente _ br...bi{re ¢

ay...a
by...b;y = _£nT ! k by...b;

es elpush-forward ¢, : T, M — 74,) M, que en&rminos =1

de la acadn de vectores sobre funcionesadefinido por la ! ‘

regla + Z Tk by...c...by (ij ‘+ nbjuc)’ (B 6)
(6x0%) (f) = v*(f 0 ), (B.1) =
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siendou, = dng Yy Kap = Dongp.

123

Lapse,D,N. La prueba que adse presenta sigue el des-

Por ejemplo, para el caso del propio campo de covectoresrollo correspondiente en la Ref. 1. A partir de la Ec. (26),

na, (B. 6) implica que

Ug =dng = —Lpng + 1. (K, ¢+ nguc)

_£nna7

lo que prueba la Ec. (80).
El resultado (81) de la Sec. 5 implica que

d hab

*ncvchab

= —n(Keanp + Kepng + Neglp + Nenpla)
= NqUp + NpUq,

lo cual se puede sustituir en el lado izquierdo dedlaniula
(B. 6) para obtener

NaUp + Npthg = —Lnhap + hep (Ko € + ngu’)
+ hae(Kp © 4 npu),
= —Lphay + 2K + ngup + npug
= Lpha = 2K,

gue prueba la Ec. (70). & din, el lado derecho de la expre-
sion (B. 6) puede escribirse completamente &minos de
las derivadas de Lie d&' y h,y, pues

u® = h®u, = —h* £ane.,
K, =hrK,, = %hbc.ﬁnhac,
es decir,
AT %y = — £, Ty

k
ay...C...aL
- E T k by...b;
i=1

1
haid (2 £nhcd - nc£nnd>

1
al...a
+ g T % ey
J=1

1
hed (2£nhb].d — ny, £nnd) . (B.7)

se despeja la derivada de

Ng
Vet =——.
N
A continuacén se sustituye en la propiedad de no tamsile
la derivada [5], aplicada a la furdsi tiempo,

V.Vt =V Vi, (C.1)
y se desarrolla, quedando
OGN ety = — 2SN + . (C.2)

N N

Al contraer (C. 2) con-n®h,°, se obtiene la Ec. (79),

1
ue=—DcN=—D.InN.

D. Perspectiva tridimensional

A partir de las nociones de la se@i2, es posible establecer
una reladbn entre la subvariedad; c M, y una variedad
tridimensional® con la misma topoldg. Para ello, consi-
dere un mapeo suave: M — ¥ con la propiedad de ser
invariante ante el mapeg. generado por el campd de la
Sec. 2, es decir,

0(¢-(p)) = o(p), VP EM, T ER. (D.1)

Notese que cualquier difeomorfismo soBtelefine un nue-
vO mapeoy’ con la misma propiedad, por lo que un mapeo
de este tipo no saitnico.

Como ¢ mapea todos los puntos de una cufyar) al
puntoo(p) € 33, no eslinica la noddn de mapeo inverso para
o, pues existe una infinidad de funciones ¥ — M tales
queo(p(q)) = .

Esta ambigedad se puede resolver si se toma en cuenta
el valor de la fundn global de tiempo, y se utiliza como un
parametro externo para los objetos Ende modo queéstos
“evolucionen” respecto & Con este fin, se escoge una hiper-
superficieX,, correspondiente a cierto valty de referencia
para la funddbn ¢ (no necesariamenty = 0), y se define
d,, : 3y, — 3 como

@4, (p) = o(p)-

esto muestra la conveniencia de recurrir a la derivada normaiste mapeo es un difeomorfismoj gee tiene un mapeo in-

d para la manipuladin de expresione3 + 1, ya que evita
escribir varios&rminos que incluian combinaciones de de-
rivadas de Lie.

C. 4-aceleracbn y la funcion Lapse

El campou, = dn,, proporcional a la 4-acelerdri de los
observadores Eulerianos, tar@bipuede expresarse @nrhi-
nos de la derivada tangente a la hipersuperficie de ladanci

verso bien definidocpt*ol, y de este modo se puede definir el
siguiente mapeo invertible,

U:M—->RxY,
p = (t(p), o(p)), (D.2)
TLRX Y - M,
(7,9) = br—t, [25,'(0)] - (D. 3)
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A partir de v y ¥, se induce epush-forward¥, de en el vago, existe un espaciotiemgmico (M, g,;), deno-
vectores d&’ M, al espacio tangentela x 3, y elpullback  minado el desarrollo maximal de Cauchy @& h.p, Kup),
(U—1)* quetransportacovectores del espacio cotangente aque satisface:
la variedad hacia el espacio cotangentéRde 3. éstos ma-
peos se generalizan para tensores arbitrarios evaluando sobr
vectores y covectores dag corresponda, tal como en la Ec.
(B. 3) del Apendice 7. _ R (i) (M, gap) €s globalmente hipedtico con superficie de

En terminos de coordenadgs sobreX:, coni = 1,2, 3, Cauchyx.
el mapeop : M — ¥ se expresa erétminos de las tres
funcioneso’ tales que

o'(p) = y'(o(p)),

con lo que la condiéin (D. 1) se reescribe como

éi) (M, gap) €s una soluéin de la ecuabin de Einstein
(146) en el vam.

(iii) La métrica inducida y curvatura extiseca er¥: son,
respectivamenté,, Y Kgp.

(iv) Cualquier otro espaciotiempo que satisface (i)-(iii)
_ _ _ puede mapearse is@tmicamente a un subconjunto de
t*Va0' = NV,0' + NnV,0' = 0. (M, gap), ¥ la solucon g,;, depende continuamente de

Entonces, ebush-forward¥, de un vector se escribe como los datos inicialeghap, Ka) €NX.

. v UL ~[o1” Para el caso de las ecuaciones de Einstein con materia, la
V0" = (Nat’ [U - WN } (Vo' [8y1] ) . (D.4)  existencia de una buena formulagide valores iniciales de-

Esta expre$in representa un elemento del espacio tan entepende cicamente del tipo de materia que se considere, en
£Xp P : P 9 @Special de las ecuaciones de movimiento&gta obedezca
R x ¥, por lo que su primera entrada es un vector unidimen

. - . y de la forma que tenga su tensor de momento éadtg.
sional y la segunda entrada un vector tridimensional.

Aaui | | | ) | vestoit indi En general, si la materia consiste de camppgue sa-
qui S€ esclarece €l papel que juega €l vestolt Indl- o000 una ecuam del tipo (E. 1) y sil,;, depende sola-
ca gL tanto se desplazan las proyecciones tangentes de VL te de los campas, y sus primeras derivadas,j@®mo

tores al representarlos en el espacio tangente a la varieda la nétrica del espaciotiempg,, y sus primeras derivadas

tridimensionab: bajo el mapea¥.,. entonces las ecuaciones de Einstein para el sistema conjunto
_ o de los campos y la éirica tenda la forma (E. 1) y por ende
E. Formulacion de Valores Iniciales existira una buena formulain de valores iniciales [5].

Algunos casos de campos de materia para los que existe

Un sistema hipertlico cuasilineal, diagonal y de segundo or- na huena formuladn de valores iniciales para las ecuacio-
den es un sistema de ecuaciones diferenciales para los cafks de Einstein son:

pos¢;, coni =1,...,n, de laforma

» = El campo escalap que cumple la ecuaon de Klein-
g (¢j’ 8M¢j)aﬂau¢i = Fi ((bj’ 8M¢j)' (E 1) Gordon,

Si se considera una soldci particular para los campos
(¢0)i, en la quelM, (go),w[(¢0);, 0u(¢0);]) €S un espacio-
tiempo globalmente hipedtico, entonces, un sistema de la
forma (E. 1) cuenta con una buena formutecde valores
iniciales en el siguiente sentido. Dado el conjunto de datos GV Foy = 0 E.3)
dils Y n”V ,¢;]s sobre una hipersuperficie de Caucy erab = '
suficientementeercanosa los correspondientes para la so- dondeFy, = 2V, Ay).
lucion (¢o),, existe una vecindad abierta de > en la que
existe una soluéi Gnica para (E.' 1) y esta solodi depen- apropiadas a pesar de no ser un sistema del tipo
decontinuamentele los valores inicialeg; |, y n”V ,¢;|s. E. 1) [5,8].

Los detalles de este enunciado pueden encontrarse en [5] ’

(Teorema 10.1.3), mientras que una pruelds completa se Una discugin mas amplia sobre los tipos de materia que
encuentra en [8]. Este teorema es una generalinat#l teo- ~ permiten contar con una buena formuéacde valores inicia-
rema de Cauchy-Kovalevskaya [9] sobre la existencia y uniles en Relatividad General, se puede consultar en la Ref. [8],
cidad de soluciones de sistemas de ecuaciones diferenciales donde dirigimos a los lectores interesados en profundizar

Una vez que se escogen coordenasGmioas’”, las  €n este tema.
ecuaciones de Einstein en el imse pueden escribir como Es importante enfatizar que, en el casasngeneral, no
un sistema de la forma (E. 1), tomando como los campos €sh garantizada la existencia de una buena formaiade
a las componentes de lzéfrica en estas coordenadags, . valores iniciales, especialmente si la materia no obedece

Empleando la formuladin3+1, se parte de este resultado ecuaciones lineales o cuasi-lineales. Adspnsi un espacio-
para mostrar qué’, dada una variedad tridimensional suavetiempo (0 una regin abierta deééste) no es globalmente hi-
¥, una netricah,; sobreésta, yK,; un tensor suave sitri- perkblico, no se contad con una buena formulaei de valo-
co eny, que satisfacen las Ecs. denstriccbn (148) y (149)  res iniciales en el sentido previamente expuesto.

(V. Vy, —m2 +ER)p=0.  (E.2)

= El campo vectoriad* que cumple con las ecuaciones
de Maxwell

= Elfluido perfecto con ecuaciones de estdtle- P(p)
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TABLA |. Conjuntos de etiquetas para 1, 2, 3 indices.

m mz Cm Ylm Yzm Y3m Y4m Y5,
0 0 0 {0} {1,0} {2,1,0¢ {3,2,1,0 {4,3,2,1,0
1 1 {0} 0 {1} 2,1} {3,2,1 {4,323
2 10 {1} {0} {0} {2,0 {3,2,0; {4,320
3 11 {1,0 0 0 {2} {3,2} {4,3,2
4 100 {2} {0} {1,0} {1,04 {3,1,0 {431,
5 101 {2,0 0 {1} {1} {3,1} {4,3,1
6 110 {2,1} {o} {o} {o} {3,0} {4,3,0
7 111 {2,1,04 0 ) 0 {3} {4,3}
8 1000 {3} {0} {1,0 {2,1,0 {2,1,0, {4,2,1,0
9 1001 {3,0 0 {1} 2,1 {2,13 {4,2,1
10 1010 {31} {0} {0} {2,0 {2,0} {4,2,01
11 1011 {3,1,0¢ 0 0 {2} {2} {4,2}
12 1100 {3,2 {0} {1,0} {1,0 {1,0 {4,1,04
13 1101 {3,2,0 0 {1} {1} {1} {41}
14 1110 {3,2,1 {0} {0} {0} {0} {4,0
15 1111 {3,2,1,¢ 0 ) 0 0 {4}
16 10000 {4} {0} {1,0 {2,1,0¢ {3,2,1,0 {3,2,1,0
17 10001 {4,0 0 {1} 2,1} {3,2,1 {3,2,1
18 10010 {41} {0} {0} {2,0 {3,2,0¢ {3,2,0¢
19 10011 {4,1,0¢ 0 0 {2} {3,2} {3,2
20 10100 {4,2 {0} {1,0} {1,0 {3,1,0¢ {3,1,0¢
21 10101 {4,2,0 0 {1} {1} {3,1} {3,1
22 10110 {4,2,1 {0} {0} {0} {3,0} {3,0
23 10111 {4,2,1,0 0 0 0 {3} {3}
24 11000 {4,3} {0} {1,0 {2,1,0¢ {2,1,0¢ {2,1,0¢
25 11001 {4,3,0 0 {1} 2,1 {2,1} 2,13
26 11010 {431 {0} {o} {2,04 {2,04 {2,04
27 11011 {4,3,1,0 0 0 {2} {2} {2}
28 11100 {4,3,2 {0} {1,0 {1,04 {1,04 {1,0
29 11101 {4,3,2,0 0 {1 {1 {1 {1
30 11110 {4,3,2,3 {0} {0} {0} {0} {0}
31 11111 {4,3,2,1,0 0 0 0 0 0
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7. En el Apendice E se incluye una expoginimas precisa de lo  ii. Ver por ejemplo [6].

gue significa contar con una buena formudercdle valores ini- En el Aendice F se tabulan todos los coniuntodriices ne
ciales en Relatividad General, y las condiciones que se requiel-“' AP Jun‘ost
ren para ello cesarios para desarrollar tensores hasta de cunatices.

Rev. Mex. Fis. B4 (2018) 108-126



126

.

V1.
V1.

VL.

iT.

1.

0.

. Una res@a sobre los observadores Eulerianos y el significado

T. MIRAMONTES Y D. SUDARSKY

Ver Apéndice B. 1.

Notese quer, es tangente &; debido a que:” es de norma
constante.

Ver Apéndice C.

Ver Apéndice B. 3

El signo deu” se ha escogido para que en los siguientes des-
arrollos todos losérminos tengan signo positivo.

En esta secon se regresa a la notaciusual déndices abstrac- 4.

tos ya que la notadh empleada en la seéci anterior en este
caso es innecesariamente general. No obstante, se conserva la

nomenclatura para las componentes de propecgerivada de

esta notadin. -

fisico de las componentes de proyéccidel tensor momento
energa de acuerdo a ellos se encuentra en érfgice A.

Ver Apéndice E.

. 8.
Un mapeo suave que es uno a uno, sobreyectivo y con mapeo
inverso suave.

Coordenadas*” tales quell* = ¢°*V,V,(2*) = 0.
Teorema 10.2.2 de Wald [5].
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