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Apartado Postal 70-543, Ciudad Universitaria, 04511 México, D.F., Ḿexico.
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Se presenta una breve revisión del formalismo3 + 1 en Relatividad General, y se introducen algunas novedosas convenciones ası́ como
elementos de notación que permiten facilitar el tratamiento de las expresiones de todas las proyecciones tensoriales involucradas en este
formalismo. Tambíen se obtienen expresiones3 + 1 útiles para la manipulación deı́ndices (contracción, simetrizacíon, antisimetrizacíon),
productos tensoriales y derivación covariante de tensores arbitrarios.
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A brief review of3 + 1 formalism in General Relativity is presented, introducing innovative conventions and notation elements which make
it easier to deal with all of the tensorial projections involved in this formalism. Also, useful3 + 1 expressions for manipulation of indexes
(contraction, symmetrization, anti-symmetrization), tensorial producs and the covariant derivative of arbitrary tensors are obtained.
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1. Introducción

La separacíon o formalismo3 + 1 es la descripción de un
espaciotiempo cuadridimensional(M, gab), en t́erminos de
una foliacíon dada por hipersuperficies tridimensionales ti-
po espacio, de modo que la métrica inducida sobréestas sea
Riemanniana [1]. Esta separación es el punto de partida de la
formulacíon hamiltoniana de la Relatividad General de Ar-
nowitt, Deser y Misner [2], [3], ası́ como de la Relatividad
Numérica.

Aunque en la literatura existen referencias más detalladas
y extensas sobre este formalismo, como [1] y [4] por citar
algunas, en este trabajo se enfatiza su utilidad como herra-
mienta analı́tica, obteniendo las expresiones3 + 1 más ge-
nerales para operaciones como productos, trazas y derivadas
de tensores arbitrarios. Con este fin, se introduce una nota-
ción especial para las proyecciones tensoriales, que permite
sistematizar la manipulación de las expresiones tı́picamente
engorrosas que aparecen en esta separación. Por lo deḿas,
la notacíon y convenciones son consistentes con Wald [5],
en particular la ḿetrica del espaciotiempogab con signatura
(−,+, +, +), y el signo de la curvatura extrı́nseca.

2. Nociones generales

La idea intuitiva detŕas de la descripción3 + 1 es la deinter-
pretar el espaciotiempo como un objeto 3 dimensional que
evolucionade acuerdo con una noción particular de tiempo
global. Al separar un espaciotiempo cuadridimensional to-
mando el tiempo como parámetro, se busca que el objeto que
evolucione sea la ḿetrica Riemanniana que define ladistan-
cia sobre una subvariedad tridimensional apropiada.

De manera mas precisa, se tratará únicamente con espa-
ciotimepos globalmente hiperbólicos, que son aquellos que se

pueden foliar por hipesuperficies de CauchyΣt. Esto quiere
decir que se cuenta con una familia de hipersuperficies ho-
meomorfas entre sı́, parametrizadas por una función tiempo
globalt, y éstas cubren toda la variedadM. A su vezésto im-
plica que la topoloǵıa de la variedad es la deΣ×R. Es claro
que un mismo espaciotiempo se puede foliar de mútiples ma-
neras y que en particular la función tiempo global no eśunica.
Esta libertad de elegir la foliacion esta asociadaı́ntimamente
con la nocíon de invarianica de norma de la teorı́a.

En el presente tratamiento se supondrá que la foliacíon y
la función tiempo est́an dadasa priori, y se limitaŕa a espa-
ciotiempos globalmente hiperbólicos, para los cuales es posi-
ble tener una buena formulación de valores iniciales, que en
pocas palabrasi, se refiere a que el espaciotiempo está deter-
minado uńıvocamente por los datos sobre una hipersuperficie
de Cauchy, que son el equivalente relativista de datos a un
tiempo inicial.

La métrica del espaciotiempogab determina el tamãno de
vectores, y para el caso de vectores tangentes a curvas defi-
nidas sobre hipersuperficies de CauchyΣt, ésta es una canti-
dad positiva. Esta noción de longitud determina entonces una
métrica Riemanniana sobre cadaΣt.

Para completar el punto de vista dinámico para el espa-
ciotiempo, es necesario definir una noción apropiada de evo-
lución, es decir, establecer una manera de identificar no sólo
puntos en una hipersuperficie de la foliación con puntos en
otra hipersuperficie de la misma foliación, sino una manera
de comparar campos tensoriales entre ambos puntos de la va-
riedad.

El procedimiento general para hacer esto es el siguiente:
dado un difeomorfismoφ : M → M, es posibletranspor-
tar tensores de un punto a otro, a través de los mapeos de-
nominadospush-forwardφ∗ : TpM → Tφ(p)M y pullback
φ∗ : T ∗φ(p)M→ T ∗p M, lo cual permite comparar el valor de
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un campo tensorial en un punto con su valor en otro punto
cercano. A continuación, se define elcambiode estos obje-
tos sobre el flujo deφ como la derivada de Lie de ese objeto.
En el Aṕendice 7 se detallan los aspectos formales de esta
construccíon.

En el caso particular en cuestión, se desea que el flujo de
φ represente una forma especı́fica de avanzar en el tiempo da-
do por la funcíon globalt. Para ello se considera el hecho de
que un campo vectorial suaveta que no se anula en ningún
punto del espaciotiempo permite definir, a través de sus cur-
vas integrales, un grupo uniparamétrico de difeomorfismos
φτ : R ×M → M del siguiente modo: para cada valorτ
del paŕametro de las curvas integrales deta, se asigna a cada
puntop ∈ M, el punto dado por la curva integral del campo
ta que pasa porp, γp : R→M, evaluada en el parámetroτ ,
es decir,φτ (p) = γp(τ). El paŕametro de la curva se toma de
modo queγp(0) = p.

Para que el parámetro de las curvasγp(τ) coincida con
t (salvo una constante correspondiente a la elección del ori-
gen), basta con que el campota sea de tipo tiempo y que
cumpla con la relación

ta∇at = 1. (1)

Luego, para todop ∈M,

t(γp(τ)) = t(p) + τ. (2)

Por lo tanto, el grupo uniparaḿetrico de difeomorfismos
φτ generado por el campota permite definir mapeos que
transportancampos tensoriales sobre una hipersuperficieΣt

a otra hipersuperficieΣt+τ . Con esto, se provee de una no-
ción de evolucíon a la descripción3 + 1.

Es importante destacar que:

El campo vectorialta no es necesariamente unitario,
por lo que el paŕametroτ no puede interpretarse en ge-
neral como eltiempo propiomedido por un observador.

No se impone ninguna condición de ortogonalidad del
campota respecto a las hipersuperficies det constante.

La condicíon (1) no determina al campota, lo cual es
un hechóıntimamente relacionado con la libertad de
norma de la teorı́a.

Respecto a estéultimo punto, ńotese que lóunico que la
condicíon (1) requiere es que existan coordenadas que tomen
el valor det en cada punto como coordenadatiempo, y que la
base del espacio tangente en cada punto inducida por dichas
coordenadas tenga ata como el dual a(dt)a. Es decir, la li-
bertad en la elección deta se identifica con la libertad para
escoger coordenadas que cumplan estas condiciones.

En este trabajo se adoptará el denominadopunto de vis-
ta cuadridimensional[1], en el que los campos tensoriales
del formalismo siempre soncuadridimensionalesy est́an de-
finidos sobreM. Alternativamente, en su lugar se podrı́an

considerarversiones tridimensionalesde estos campos ten-
soriales, parametrizados port, y que estaŕıan definidos sobre
cada subvariedadΣt ⊂M.

El punto de vista tridimensionalrequiere definir mapeos
de proyeccíon o encajes entreM y una hipersuperficie tridi-
mensional̂Σ, lo cual no es esencial para presentar el formalis-
mo3+1. A los lectores interesados en esta perspectiva se les
invita a revisar el Aṕendice 7 donde se elabora esta conexión,
en la que adeḿas se pone de manifiesto el papel del campo
ta, caracterizado, como se verá en la siguiente sección, por la
eleccíon de un campo vectorial tridimensional denominado
shift.

Habiendo establecido los elementos básicos de esta pers-
pectiva, a continuación se procede a desarrollar el formalis-
mo para campos tensoriales de acuerdo con estaseparacíon,
empezando por la descomposición de vectores y campos vec-
toriales en partes tangente y normal a la hipersuperficie.

2.1. Vectores y covectores tangentes a la hipersuperficie

Los vectores tangentes a la hipersuperficieΣt se definen co-
mo aquellos vectores cuyas curvas integrales están completa-
mente contenidas enΣt. Como las hipersuperficiesΣt son de
Cauchy,́estos vectores son tipo espacio.

De aqúı en adelante, se indicará con unatilde (˜) que un
vector es tangente a la hipersuperficieΣt. Asimismo, se de-
notaŕa porT̃pΣt ⊂ TpM al subespacio de vectores tangentes
aΣt, en el puntop ∈ Σt.

Como la funcíon t es constante sobre toda la hipersuper-
ficie Σt, la derivada det en la direccíon de cualquier vector
tangente aΣt se anula. Por lo tanto, cualquier vector tangente
ṽa cumple con la ecuación

ṽa∇at = 0. (3)

Aśımismo, un vectorortogonala la superficie se define como
un vector ortogonal a todo vector tangente a la hipersuperfi-
cie. Dado que la hipersuperficieΣt es homeomorfa a una va-
riedad tridimensional, el subespacio de vectores ortogonales
a ella es unidimensional.

De la Ec. (3), tenemos que el campo vectorial tipo tiempo
∇at es ortogonal aΣt, por lo que el vector normal en cada
puntop deΣt se expresa como

na(p) ≡ − gab∇bt√
−gab∇at∇bt

∣∣∣∣∣
p∈Σt

. (4)

El signo se ha escogido de modo que el campona sea tipo
tiempo dirigido al futuro. Entonces, dado un puntop ∈ Σt,
se denota porNp al subespacio deTpM generado por los
vectores proporcionales ana(p), el cual es justamente el su-
bespacio de vectores ortogonales a la hipersuperficie en el
puntop,

Np = {λna(p) : λ ∈ R}. (5)

Considerando esta separación punto a punto sobreΣt, se tie-
ne que un campo vectorial ortogonal aΣt siempre se puede
expresar como
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va = v⊥na,

dondev⊥ es una funcíon real sobreΣt.
Por lo tanto, todo vector tangente a un puntop deΣt se

puede expresar como la suma de un vector tangente a la hi-
persuperficie y un vector ortogonal a ella,

va = ṽa + na(p)v⊥, (6)

es decir, el espacio tangente ap ∈ Σt se puede separar como

TpM = T̃pΣt ⊕Np, (7)

donde⊕ denota la suma directa de subespacios. Tomando
esta definicíon punto a punto sobreΣt, quedan definidos los
campos vectoriales tangentes aΣt.

La extensíon de esta separación para campos de covec-
tores o1−formas es directa. Un campo de covectoresω̃a es
tangente aΣt si para todo punto enΣt se cumple que

ω̃ana = 0. (8)

De aqúı en adelante la tilde también se utilizaŕa para indicar
que un campo de covectores es tangente aΣt.

Análogamente, un campoωa es ortogonal aΣt si para
todo campo vectorial tangentẽva se cumple

ωaṽa = 0. (9)

Considerando
na ≡ gabn

b, (10)

y la Ec. (3), se tiene que todo campo de covectores ortogona-
les aΣt se puede expresar como

ωa = ω⊥na, (11)

siguiendo un razonamiento análogo al caso de campos vecto-
riales.

Tal como ocurre para el espacio tangente al puntop ∈ Σt,
el espacio cotangente ap se separa como

T ∗p M = T̃ ∗p Σt ⊕N ∗
p , (12)

dondeT̃ ∗p Σt es el subespacio deT ∗p M formado por todos los
covectores tangentes aΣt en el puntop, y se ha denotado al
espacio de covectores ortogonales aΣt enp como

N ∗
p ≡ {λna(p) : λ ∈ R}, (13)

de modo que todo covector enp ∈ Σt se expresa como

ωa = ω̃a + na(p)ω⊥. (14)

Nuevamente, esta separación se extiende al caso de campos
aplicando estas reglas punto a punto sobreΣt.

Gracias a que se está trabajando en un espaciotiempo fo-
liado por hipersuperficiesΣt, cada puntoq ∈ M est́a conte-
nido en una y śolo una hipersuperficieΣt(q), lo que permite

extender esta descomposición, punto a punto, para campos
vectoriales o de covectores sobreM, considerando en cada
puntoq la separacíon con respecto a la hipersuperficieΣt(q).

A los campos que resultan de esta separación, ṽa y v⊥na

para vectores, ỹωa y ω⊥na para covectores, se les denomina
proyecciones tangente y normal, respectivamente.

La componente normal de un campo vectorial y respecti-
vamente de un campo de covectores están dadas por

v⊥ = −nava, (15)

ω⊥ = −naωa, (16)

lo cual se puede verificar contrayendo (6) conna y (14) con
na.

Las proyecciones tangentes se obtienen sustituyendo (15)
y (16) en (6) y (14), respectivamente, quedando

ṽa = (δa
b + nanb)vb, (17)

ω̃a = (δa
b + nanb)ωb, (18)

dondeδa
b ≡ gacgcb y δa

b ≡ gacg
cb.

De (17) y (18) se tiene que los proyectores de vectores en
el subespacio tangentẽT Σ, y respectivamente el de covecto-
res en el subespacio cotangenteT̃ ∗Σ est́an dados por

ha
a′ ≡ δa

a′ + nana′ , (19)

ha
a′ ≡ δa

a′ + nana′ , (20)

respectivamente. Ńotese que estos tensores actúan como la
identidad para vectores y covectores tangentes.

A partir de (15) y (16) se tiene que los proyectores de
vectores en el subespacio tangenteN y de covectores en el
subespacio cotangenteN ∗ son

P⊥a
a′ ≡ −nana′ , (21)

P⊥ a
a′ ≡ −nana′ , (22)

respectivamente.
En t́erminos de estos proyectores, se pueden reescribir

(19) y (20) como las descomposiciones de laidentidadpa-
ra vectoresδa

a′ y para covectoresδa
a′ , es decir

δa
a′ = ha

a′ + P⊥a
a′ = ha

a′ − nana′ , (23)

δa
a′ = ha

a′ + P⊥ a
a′ = ha

a′ − nana′ . (24)

Las expresiones (6) y (14) indican cómo reconstruir vec-
tores y covectores del espaciotiempo a partir de su proyección
tangente (algebráicamente tridimensional) y sucomponente
ortogonal (una función real), lo que justifica la denominación
3 + 1 de este formalismo. Asimismo, las expresiones (23)
y (24) seŕan útiles para realizar la descomposición 3 + 1 de
tensores de rango arbitrario.

Respecto al campota, es convencional denominarshift a
su proyeccíon tangente y representarla porNa, mientras que
a su componente normal se le denomina función lapsey se le
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representa porN . Entonces, la descomposición 3 + 1 de ta

es
ta = Na + naN. (25)

De (1) se sigue que la función lapsetambíen se puede expre-
sar como

N =
1

na∇at
, (26)

y de (25) queN sea el factor de normalización en la expre-
sión (4), es decir,

N =
1√

−gab∇at∇bt
. (27)

Por lo tanto,na y N est́an determinados por la función t y la
métrica del espaciotiempo, mientras que elshift Na depende
de la eleccíon particular del campota. En el Aṕendice 7 se
hace expĺıcita la dependencia de estos campos en la expresión
de un vector desde el punto de vista tridimensional.

2.2. Tensores de rango arbitrario.

La separacíon de los espacios de vectores o covectores en una
parte tangente y una parte ortogonal expresada en (7) y (12),
se puede generalizar para tensores de rango arbitrario a partir
de su descomposición como producto tensorial de espacios
de vectores y covectores. Por ejemplo, para el espacio de ten-
sores(0, 2) definidos sobre un puntop de la hipersuperficie
Σt, se tiene

T ∗pM⊗ T ∗pM = (T̃ ∗p Σt ⊕N ∗
p )⊗ (T̃ ∗p Σt ⊕N ∗

p )

= (T̃ ∗p Σt ⊗ T̃ ∗p Σt)⊕ (T̃ ∗p Σt ⊗N ∗
p )

⊕ (N ∗
p ⊗ T̃ ∗p Σt)⊕ (N ∗

p ⊗N ∗
p ). (28)

Esta descomposición indica que todo tensor(0, 2), Tab,
se puede separar como la suma de los siguientes términos:

Un tensor(0, 2) completamente tangente a la hiper-
superficie, es decir, que se anula al contraerlo con el
vector normalna en cualquiera de suśındices. A es-
te t́ermino se le denotará colocando unatilde sobre el
śımbolo del tensor original,̃Tab.

El producto tensorial dena con un covector tangente,
˜́τ b.

El producto tensorial de un covector tangente,˜̀τa, con
nb.

Un escalarT⊥ multiplicando ananb, correspondiente
a sucomponenteortogonal.

Es decir, la separación3+1 de un tensor(0, 2) es de la forma

Tab = T̃ab + ˜̀τanb + na
˜́τ b + nanbT⊥. (29)

Utilizando la descomposición de la identidad (24) para
cadáındice deTab, es decir, escribiendo

Tab = δa
a′δb

b′Ta′b′ , (30)

y desarrollando cada identidad como en (24), se obtienen ex-
presiones para cada uno de los tensores presentes en (29),

T̃ab = ha
a′hb

b′Ta′b′ , (31)

˜̀τa = ha
a′(−nb′)Ta′b′ , (32)

˜́τ b = (−na′)hb
b′Ta′b′ , (33)

T⊥ = na′nb′Ta′b′ . (34)

En este trabajo, a cada uno de los términos de (29) se les
denominaŕa proyecciones, y a los tensores tangentes de ca-
da proyeccíon, (31)-(34), se les denominará componentes de
proyeccíon.

La métrica inducida es un tensor(0, 2) tangente a la hi-
persuperficie que, actuando sobre dos vectores tangentes a
la hipersuperficie, tiene la misma acción que la ḿetrica del
espaciotiempo. Es inmediato verificar que la proyección to-
talmente tangente de la métrica,

hab ≡ ha
a′hb

b′ga′b′

= gab + nanb, (35)

es elúnico tensor tangente a la hipersuperficie que cumple
con estas condiciones.

Denotar la ḿetrica inducida comohab es consistente con
la notacíon que se ha introducido para los proyectores tan-
gentes, en el sentido de que “gab bajaı́ndices”, pues

hab = gaa′h
a′

b = ha
b′gb′b.

Nótese tambíen que la ḿetrica inducida permitesubir y
bajar ı́ndices de tensores tangentes aΣt, y

hab ≡ gacgbdhcd (36)

funge como operador ḿetrica inversa, puesto que

habhbc = ha
c. (37)

Cuando se realiza la separación del espacio (co)tangente
aM (en cada puntop), en un subespacio (co)tangente aΣt(p)

y el subespacio de (co)vectores paralelos ana (o na) enp, y
se aplica esta separación al producto tensorial con el que se
definen los espacios de tensores de rango superior, se obtiene
que el ńumero de maneras en que se puede proyectar un ten-
sor(k, 0) es2k, puesto que se tendrá una descomposición de
la forma

(TpM)k ≡
k⊗

i=1

TpM = (TpΣt(p) ⊕N )k

=
k⊕

j=0

P[(TpΣt(p))k−j(N )j ], (38)
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dondeP indica las permutaciones sobre losk ı́ndices de to-
das las posibles proyeccionesj veces contráıdas conn, es
decir, todas las posibles combinaciones dondej ı́ndices de la
proyeccíon son normales y el resto tangentes. El número de
permutaciones para cadaj es

(
k
j

)
, por lo que el ńumero total

de proyecciones es

k∑

j=0

(
k

j

)
= 2k. (39)

Siguiendo esta lógica, en general para tensores tipo(k, l), se
tendŕa

(TpM)k ⊗ (T ∗p M)l

=
k⊕

i=0

l⊕

j=0

P[(TpΣt(p))k−i(N )i

⊗(T ∗p Σt(p))l−j(N ∗)j ], (40)

donde el ńumero total de proyecciones es2k+l.
Aunque en la mayorı́a de aplicaciones comunes para el

formalismo 3 + 1 basta con la descomposición de vecto-
res, covectores y tensores de rango2, en situaciones menos
est́andar, como en el estudio del acoplamiento de campos
cuánticos con gravedad, ası́ como en el estudio de acciones
efectivas para gravedad cuántica, donde adeḿas de t́erminos
como RabcdRabcd y RabRab, se requiere el ćalculo de de-
rivadas superiores como¤R, o los desarrollos en series de
Taylor covariantesii, que en principio involucran derivadas
del tensor de Riemann de todo orden, es deseable contar con
un formalismo que permita realizar estos cálculos de manera
totalmente general y para un número déındices arbitrario.

El crecimiento exponencial del número de proyecciones,
al incrementarse el rango de los tensores, implica que, si se
desea tratar con total generalidad la descomposición 3 + 1,
es necesario primero sistematizar la nomenclatura de estas
componentes de proyección.

Por ejemplo, para el caso(0, 2), las cuatro proyecciones
previstas son justamente cada uno de los términos de (29), y
se puede utilizar una notación en la que a cada componen-
te de proyeccíon se le asigna un sı́mbolo diferente, como los
śımbolos del lado izquierdo de las Ecs. (31)-(34). Sin embar-
go, para tensores de rango(0, l) conl > 2, deja de ser prácti-
co denotar cada componente de proyección con un śımbolo
distinto, por lo que en su lugar, se asignará a cada proyección
una etiqueta nuḿerica entre0 y 2l − 1.

El primer paso para establecer una notación apropiada pa-
ra este formalismo general será fijar reglas para la notación de
los ı́ndices de todo tensorT del tipo(0, l). Suśındices se eti-
quetaŕan de modo que indiquen su posición respecto aĺındice
más a la derecha, por lo que un tensor(0, 2) se expresará co-
mo

Ta1a0 ,

y en general, el conjunto de etiquetas deı́ndices para un ten-
sor(0, l) seŕa

Il ≡ {l − 1, . . . , 1, 0}, (41)

por lo que bajo esta convención, este tipo de tensor se expre-
saŕa como

Tal−1al−2...a1a0 . (42)

A continuacíon establecemos cómo se asigna una etique-
tam a una proyección dada. Seaζm el conjunto que codifica
la expansíon binaria del ńumero enterom ∈ [0, 2l−1] en la
forma

m =
∑

j∈ζm

2j . (43)

Ésto no es ḿas que la notación desarrollada en base dos dem,
por lo que los conjuntosζm para los primeros cinco enteros
son:

0 = 0 ⇒ ζ0 = ∅,
1 = 20 ⇒ ζ1 = {0},
2 = 21 ⇒ ζ2 = {1},
3 = 21 + 20 ⇒ ζ3 = {0, 1},
4 = 22 ⇒ ζ4 = {2},
5 = 22 + 20 ⇒ ζ5 = {0, 2},

y aśı sucesivamente. Recı́procamente, a partir de un conjun-
to ζm de ńumeros enteros, se puede construir un númerom
mediante la f́ormula (43).

La receta para asignar etiquetas a una proyección 3 + 1
de un tensor será la siguiente: Etiquete losı́ndices del tensor
como en (42) y construya el conjuntoζm como el conjunto
de etiquetas de lośındices que en la proyección son norma-
les, es decir, las etiquetas de losı́ndices de los covectoresn,
y luego, asigne a la proyección la etiquetam dada por (43).

Esta convención no resulta intuitiva, pero es una manera
simple de etiquetar proyecciones directamente, si se conside-
ra la siguienteregla visual: Sustituya cadáındice den por un
número “1”, y asigne al resto de lośındices, que pertenecerán
a la componente de proyección tangente, d́ıgitos “0”. Escriba
los d́ıgitos en el orden original de losı́ndices correspondien-
tes en el tensor no desarrollado, (42). Lo que se obtiene es la
notacíon binaria del ńumerom que le corresponde a la pro-
yeccíon en cuestíon.

Por ejemplo, denotando por un subı́ndiceB a un ńumero
en notacíon binaria, se tendrı́a en (29),

Ta1a0 = T̃a1a0︸ ︷︷ ︸
00B=0

+ ˜̀τa1︸︷︷︸
0

na0︸︷︷︸
1︸ ︷︷ ︸

01B=1

+ na1︸︷︷︸
1

˜́τa0︸︷︷︸
0︸ ︷︷ ︸

10B=2

+ na1︸︷︷︸
1

na0︸︷︷︸
1︸ ︷︷ ︸

11B=3

T⊥.

Al conjuntoiii que contiene las etiquetas de losı́ndices
proyectados de manera tangente se le denota por

Y l
m ≡ Il − ζm. (44)
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Finalmente, la proyecciónm de un tensorT de tipo(0, l)
se denotaŕa como

mP (Tal−1...a0) ≡
⊗

i∈Y l
m

hai

a′i
⊗

j∈ζm

naj (−na′j )Ta′l−1...a′0 . (45)

Se puede simplificar aún más esta expresión si se con-
sidera la siguientenotacíon multiplicativapor conjunto de
ı́ndices, exclusivamente para proyectores,

naA
≡

⊗

i∈A

nai
,

haA

a′A ≡
⊗

i∈A

hai

a′i ,

dondeA es un conjunto de etiquetas deı́ndices. Para el resto
de los tensores, se define una notación abreviada para con-
juntos déındices:

TaA
≡ TaA1 ...aAs

,

es decir,TaA es un tensor cuyośındices est́an etiquetados
por los elementos del conjuntoordenadoA = {A1, . . . , As},
donde en generalAi < Ai+1.

Haciendo uso de esta notación, la proyeccíon m de un
tensor(0, l) se expresa como

mP (TaIl
) = ha

Y l
m

a′
Y l

m naζm
(−n)a′ζm Ta′Il

, (46)

las componentes de proyección se expresan como

mTa
Y l

m
= ha

Y l
m

a′
Y l

m (−n)a′ζm Ta′Il
, (47)

y en general, la descomposición 3 + 1 de un tensor(0, l) se
expresa como

TaIl
=

2l−1∑
m=0

mP (TaIl
) =

2l−1∑
m=0

naζm

mTa
Y l

m
. (48)

Nótese que lam−ésima componente de proyección es un ten-
sor tangente(0, l − z), conz el número de elementos enζm.

Esta convención de notacíon se generaliza directamente
para tensores de tipo(k, l), tomando el valor posicional de los
ı́ndices como etiqueta, independientemente de si sonı́ndices
“covariantes” o “contravariantes”.

Se conservará la convencíon de denotar por una tilde a
la proyeccíon completamente tangente de un tensor, corres-
pondiente a la proyección identificada por el ńumero0 (por
ejemploT̃aIl

) aśı como el empleo del subı́ndice⊥ para refe-
rirse a la proyección completamente ortogonal de un tensor,
correspondiente a la proyección identificada por el ńumero
2(k+l) − 1 (por ejemplo,T⊥).

2.2.1. Simetrización y antisimetrizacíon deı́ndices

Se ha establecido una convención donde la posición de los
ı́ndices juega un papel importante, por lo que hay que te-
ner cuidado de realizar cualquier intercambio de etiquetas de
ı́ndicesdespúesde que se hayan etiquetado las componentes.
Por ejemplo, el tensorTa1a0 se desarrolla en esta notación co-
mo

Ta1a0 = T̃a1a0 + na0
1Ta1 + na1

2Ta0 + na1na0T⊥, (49)

y para expresar su simetrización,

T(a1a0) ≡
1
2!

(Ta1a0 + Ta0a1) ,

se deber tomar en cuenta primero el etiquetado de componen-
tes dado en (49) y después el intercambioa1 ↔ a0 para el
segundo t́ermino, obteniendo

T(a1a0) =
1
2!

(
T̃a1a0 + na0

1Ta1

+ na1
2Ta0 + na1na0T⊥

+ T̃a0a1 + na1
1Ta0

+ na0
2Ta1 + na0na1T⊥

)
,

es decir,

T(a1a0) =
1
2!


T̃a1a0 + T̃a0a1︸ ︷︷ ︸

0P (T(a1a0))

+na0

[
1Ta1 + 2Ta1

]
︸ ︷︷ ︸

1P (T(a1a0))

+ na1

[
2Ta0 + 1Ta0

]
︸ ︷︷ ︸

2P (T(a1a0))

+ na1na02T⊥︸ ︷︷ ︸
3P (T(a1a0))


 . (50)

De manera ańaloga, la antisimetrización de lośındices de este
tensor en forma3 + 1 seŕa

T[a1a0] =
1
2!


T̃a1a0 − T̃a0a1︸ ︷︷ ︸

0P (T[a1a0])

+ na0

[
1Ta1 − 2Ta1

]
︸ ︷︷ ︸

1P (T[a1a0])

+na1

[
2Ta0 − 1Ta0

]
︸ ︷︷ ︸

2P (T[a1a0])


 . (51)

Nótese que en este caso la proyección con etiquetam = 3 se
ha cancelado id́enticamente porque involucra antisimetrizar
el producto siḿetricona1na0 .

Si se tiene un tensor(0, l) arbitrario, y se desea simetri-
zar o antisimetrizar el conjunto de susı́ndices etiquetados por
los elementos del conjunto ordenadoS (en el caso anterior,
S = {1, 0}), entonces es necesario primero establecer una
convencíon para expresar las permutaciones involucradas.

Una permutacíonp sobre un conjunto ordenadoS es una
regla que intercambiak elementos del conjunto entre sı́. Si

Rev. Mex. Fis. E64 (2018) 108–126



114 T. MIRAMONTES Y D. SUDARSKY

s es el ńumero de elementos enS, entonces el ńumero to-
tal de permutaciones de sus elementos ess!. Estas posibles
permutaciones pueden ordenarse de diversas maneras, pero
el ordenamiento concreto no es relevante, y basta con utili-
zar una regla consistente para enumerar las permutaciones.
A la i−ésima permutación del conjuntoS se le denotará por
Si ≡ pi(S). La permutacíon inversa depi es la permutación
p−1

i tal quep−1
i (pi(S)) = S. El signo de lai−ésima per-

mutacíon, σi, es positivo si la permutación se obtiene de un
número par de intercambios binarios de elementos, y negati-
vo si se obtiene de un número impar de intercambios binarios
de elementos. Seampi

el número de componente definido
como

mpi
≡

∑

k∈pi(ζm)

2k. (52)

Considerando estas convenciones, la expresión general
para lam−ésima proyección de un tensorT (0, l) simetri-
zado en lośındices con etiquetasS estaŕa dada por

mP (SimS(TaIl
)) =

naζm

s!

s!∑

i=1

m
p
−1
i Ta

pi(Y l
m)

, (53)

mientras que la antisimetrización correspondiente será

mP (AsimS(TaIl
)) =

naζm

s!

s!∑

i=1

σi
m

p
−1
i Ta

pi(Y l
m)

. (54)

2.2.2. Productos y contracciones

Si se tienen dos tensores,A de tipo (0, lA), y B de tipo
(0, lB), el producto tensorial déestos estará dado por

(A⊗B)alA+lB−1...a0 ≡ AalA+lB−1...alB
⊗BalB−1...a0 . (55)

Entonces, lam−éstima componente de proyección estaŕa da-
da por

m(A⊗B)a
Y

lA+lB
m

= mAAa
Y

lA
mA

+2lB

mBBa
Y

lB
mB

, (56)

donde

mB ≡
∑

k∈ζm∩IlB

2k,

mA ≡ 2−lB (m−mB).

La contraccíon de lośındices con etiquetasj y k de un
tensorTaIl

, dondei, j ∈ Il, est́a dada por

gajakTaIl
= (hajak − naj nak)TaIl

=
2l−1∑
m=0

[
naζm

hajak mTa
Y l

m

− naj naknaζm

mTa
Y l

m

]
(57)

y para preservar la consistencia de la notación, los ı́ndices
se debeŕan volver a etiquetar en el orden estándar (42) tras
omitir los ı́ndices que se han contraı́do, es decir, aquellos con
las etiquetasi y j. A esta transformación le denominaremos
transformacíon de traza para los fines de esta sección.

Entonces, lam−ésima componente de proyección de una
contraccíon seŕa

m(gajakTaIl
) = hbjbk m0Tal−3...bj ...bk...a0

− m0+2j+2k

TY l−2
m

, (58)

dondem0 =
∑

κ∈ζm0
2κ, y ζm0 es el conjunto déındices que

no incluye a lośındicesi o j, y que bajo la transformación de
traza resulta en el conjuntoζm.

Por ejemplo, si se contraen losı́ndices0 y 2 de un ten-
sor(0, 4), la transformacíon de traza corresponde al siguiente
mapeo:

1 → 0, 3 → 1.

Aśı, los conjuntosζm que no incluyen ni a0 ni a2 (revisando
la Tabla I del Aṕendice 6.1) se transforman como

ζ0 = ∅ → ζ0 = ∅,
ζ2 = {1} → ζ1 = {0},
ζ8 = {3} → ζ2 = {1},

ζ10 = {3, 1} → ζ3 = {1, 0}.
Entonces, la expresión (58) en este caso produce

Ta1ba0
b = hb2b0 0Ta1b2a0b0 − 5Ta1a0

+ na0

(
hb2b0 2Ta1b2b0 − 7Ta1

)

+ na1

(
hb2b0 8Tb2a0b0 − 13Ta0

)

+ na1na0

(
hb2b0 10Tb2b0 − 15T⊥

)
. (59)

Para un tensorTa1a0 , la transformacíon de traza es trivial
y se obtiene de manera inmediata la expresión

Tb
b = T̃b

b − T⊥. (60)

Para construir la contracción de dos tensores, primero se
calcula el producto tensorial de ambos, y después la contrac-
ción sobre los correspondientesı́ndices. Sin embargo, una
fórmula expĺıcita en este caso no resulta de gran utilidad, ya
que es ḿas eficiente calcular esta contracción de manera di-
recta.

Una aplicacíon que motiva expresiones como (56) y (58),
y en general la introducción de una notación especial para to-
das las proyecciones, es que pueden ser implementadas com-
putacionalmente para obtener expresiones3+1, en principio,
para cualquier tensor covariante, permitiendo manipulacio-
nes de otro modo extenuantes.

Además, estas expresiones permiten obtener fórmulas
útiles para aplicaciones tı́picas de este formalismo, como el
cálculo del tensor de Ricci a partir del tensor de Riemann,
mediante la expresión (59), obtenida directamente de (58).
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3. Geometŕıa Diferencial en el formalismo 3+1

La geometŕıa intŕınseca de la hipersuperficie se construye a
partir de la ḿetrica inducidahab sobre la hipersuperficieΣt,
y su derivada asociada,Da, que cumple con la condición de
compatibilidad con esta ḿetrica,

Dahbc = 0, (61)

aśı como la propiedad deno-torsíon,

D[aDb]f = 0, (62)

para toda funcíon escalarf sobreΣt.
La curvatura intŕınseca deΣt est́a caracterizada por el

tensor de Riemann correspondiente a la métrica inducida so-
bre la hipersuperficie, que está definido por su acción sobre
covectores tangentes como

(3)Rabc
dω̃d ≡ DaDbω̃c −DbDaω̃c, (63)

y puede mostrarse [5] que consta de combinaciones de deri-
vadas de hasta segundo orden de la métricahab. Más adelante
se mostraŕa su relacíon con el tensor de Riemann del espacio-
tiempo.

Debe tenerse en cuenta que la geometrı́a intŕınseca de
sólo una hipersuperficie no contiene la información sobre la
geometŕıa de todo el espaciotiempo, ya que, como es de es-
perarse de un sistema de ecuaciones diferenciales de segundo
orden, se requiere como mı́nimo, la informacíon del cambio
de su geometrı́a al pasar de una hipersuperficie a otra, o en
otras palabras, la derivada de la métrica respecto al parámetro
t. Esta informacíon est́a contenida justamente en lacurvatura
extŕınseca.

3.1. Curvatura extrı́nseca

Una forma de caracterizar la geometrı́a del espaciotiempo en
una regíon dada es en términos de unacongruencia geod́esi-
ca, que es una familia de geodésicas tipo tiempo tales que en
cada punto de esa región pase una y śolo una geod́esica de di-
cha familia. Tomando una geodésica de la congruencia como
referencia, se describe el comportamiento de las geodésicas
adyacentes al evolucionar de acuerdo al parámetro af́ın de la
curva, es decir, su tiempo propio.

Los vectores tangentes a la congruencia conforman un
campoξa, que cumple con la ecuación geod́esica,

ξa∇aξb = 0, (64)

y es de norma constante,

ξaξa = −1, (65)

donde estóultimo implica que

ξb∇aξb = 0. (66)

Considerando (64) y 66, se tiene que

Bab ≡ ∇aξb (67)

es un tensor ortogonal aξa. Este tensor indica cómo cambian
las geod́esicas ante un desplazamientoinfinitesimalen una
direccíonχa ortogonal a la congruencia, es decir,

χa∇aξb = χaBa
b. (68)

El teorema de Frobenius garantiza que siξa es ortogonal
a una subvariedadD − 1 dimensional, como una hipersu-
perficie de Cauchy, este tensor es también siḿetrico [5]. Sea
entonces una congruencia ortogonal aΣt, de modo que sobre
ésta (y śolo sobre la hipersuperficieΣt), na y ξa coincidan.
ésto implica que las derivadas de ambos campos en cualquier
direccíon tangente a la hipersuperficie también coinciden.

Por lo tanto,

Kab ≡ ha
c∇cnb = ha

c∇cξb = Bab|Σt
, (69)

es un tensor siḿetrico y tangente aΣt al que se denomina cur-
vatura extŕınseca.Kab mide qúe tanto deja de ser “normal” el
vectorna al transportarlo paralelamente sobre la hipersuper-
ficie de un punto a otro punto cercano.

El tensorKab contiene la información sobre la evolución
de la ḿetrica de una superficie a otra, ya que2Kab es pre-
cisamente la derivada de Lieiv de la ḿetrica inducida en la
direccíon dena, es decir,

Kab =
1
2
£nhab. (70)

4. Operadores derivada

Como se menciońo anteriormente, a la ḿetrica inducida so-
breΣt est́a asociada una derivadaDc que cumple con el re-
quisito de compatibilidad ḿetrica conhab, Ec. (61). Esta de-
rivada est́a dada por la expresión

DcT
ak−1...a0

bl−1...b0 ≡ hak−1
a′k−1

· · ·ha0
a′0

· hbl−1
b′l−1 · · ·hb0

b′0

· hc
c′∇c′T

a′k−1...a′0
b′l−1...b′0

= haIk a′Ik
hbIl

b′Il hc
c′∇c′T

a′Ik b′Il

= 0
(∇cT

ak−1...a0
bk−1...b0

)
. (71)

Nótese queDa no es una derivada covariante del espacio-
tiempo, pues śolo se comporta como derivada cuando actúa
sobre campos tensoriales tangentes a la hipersuperficie, ya
que para campos tensoriales que no son tangentes aΣt, en ge-
neral no cumple con la regla de Leibniz, puesto que el campo
tensorial resultante siempre es tangente aΣt. Por ejemplo, al
actuar sobrenaω̃b, se tiene

Dc(naω̃b) = ha
a′hb

b′hc
c′∇c′ (na′ ω̃b′)

= Kcaω̃b 6= (Dcna)ω̃b + naDcω̃b.
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Esta derivada codifica la componente tangente de la va-
riación de un tensor ante desplazamientos en una dirección
tangente a la hipersuperficie, es decir, contiene la informa-
ción disponible sobre la variación del tensor en términos de
datos sobre la hipersuperficie.

Nótese queKab es justamente la derivada dena asociada
a la ḿetrica inducida, es decir,

Kab = Danb = Dbna = D(anb). (72)

La descomposición 3+1 de la derivada covariante de una
función escalar se puede expresar haciendo uso de la derivada
recíen definida mediante la Ec. (14), quedando

∇af = Daf + nad̄ f, (73)

donde
d̄ ≡ −na∇a. (74)

El operadord̄ no es ḿas que un “atajo” definido por con-
veniencia debido a la frecuencia con que en este formalismo
aparece la derivada en la dirección normalna∇a.

Al aplicar d̄ a un tensor tangente, este no permanece tan-
gente, por lo que es necesario volver a desarrollar sus pro-
yecciones para recuperar una expresión3 + 1. Se utilizaŕa el
śımbolo ˜̄d para indicar que después de aplicar̄d , el tensor
resultante se proyecta sobreΣt, es decir

˜̄d Tal−1...a0 ≡ hal−1
a′l−1 · · ·ha0

a′0 d̄ Ta′l−1...a′0 . (75)

En general,̄d Tal−1...a0 se puede separar en2l proyecciones
con componentes tangentesm(d̄ Tal−1...a0).

Esta derivada está directamente relacionada con la deri-
vada de Lie bajo el flujo dena, £n, cuestíon que se aborda
en el Aṕendice 7.

Finalmente, siempre es posible realizar la sustitución

∇a = ha
a′∇a + nad̄ , (76)

que constituye informalmente ladescomposición 3 + 1 del
ı́ndicede la derivada covariante, pero es importante enfatizar
que el segundo término del lado derecho todavı́a debe des-
arrollarse en forma3 + 1 sobre sus deḿası́ndices cuando se
aplica a un tensor para tener una expresión3 + 1, que seŕa el
tema de la siguiente sección.

5. Separacíon 3+1 de las derivadas de tenso-
res.

En esta sección se desarrolla la descomposición 3 + 1 de
la derivada covariante de un tensorTal−1...a0 . Ya que apare-
ce con frecuencia, es conveniente definir el siguiente campo
tangentev aΣt,

ua ≡ d̄ na = −nb∇bna, (77)

de modo que la derivada covariante dena queda expresada
en forma3 + 1 como

∇anb = Kab + naub. (78)

El campo vectorialua aparece en referencias como [4]
y [1], generalmente en términos de la derivada del logaritmo
de la funcíon Lapsevi,

ua = −Da ln N, (79)

o de la propia derivada de Lie den, ya que se puede
mostrarvii que

ua = −£nna. (80)

Fı́sicamente,ua puede interpretarse (salvo por un signoviii)
como la 4-aceleración de una familia de observadores, como
se muestra en el Apéndice 7.

La derivada covariante de un tensor arbitrario incluye in-
formacíon tanto de la variación del tensor como de la cur-
vatura del espaciotiempo, ası́ que su expresión general en el
formalismo3 + 1 debe incluir la derivada de la ḿetrica in-
ducida, es decir, la curvatura extrı́nseca, adeḿas de la propia
variacíon del tensor sobre la hipersuperficie. Por este motivo,
es necesario primero descomponer en forma3+1 la derivada
covariante de la ḿetrica inducida,

∇ahbc = 2
[
Ka(bnc) + nan(buc)

]
, (81)

aśı como la del proyectorha
a′ ,

∇bha
a′ = naKb

a′ + nbnaua′

+ Kbana′ + nbuana′ . (82)

A partir de la descomposición 3 + 1 de un tensor
Tal−1...a0 , Ec. (48), se hace patente que primero es necesario
expresar la derivada covariante denaζm

= naz1
naz2

· · ·nazs

en forma3 + 1. Aplicando la regla de Leibniz y la expresión
(78) se obtiene

∇al
naζm

=
∑

k∈ζm

naζm−{k}

[
Kalak︸ ︷︷ ︸
m−2k

+nal
uak︸︷︷︸

m+2l−2k

]
. (83)

Las etiquetas de las componentes de proyección resultantes
indican, para el primer término dentro del paréntesis, que el
k−ésimoı́ndice, que antes eranormal, ahora es tangente y
por lo tanto corresponde a la componente de proyección con
etiquetam′ =

∑
κ∈ζm−{k} 2κ = m − 2k, y para el segun-

do t́ermino ocurre lo mismo, salvo que en este caso, elı́ndice
que acompãna a la derivada covariante en la posición l ahora
es normal y por ende se agrega2l a la etiqueta de la compo-
nente.

Como adeḿas, cada componente de proyección es tan-
gente,́estas se pueden desarrollar, redundantemente, como

mTa
Y l

m
= ha

Y l
m

a′
Y l

m
mTa′

Y l
m

= hay1

a′y1 · · ·hays

a′ys
mTa′y1

···a′ys
. (84)
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El motivo para realizar este desarrollo es que permite obtener automáticamente una expresión 3 + 1 al aplicar la derivada
covariante amTa

Y l
m

, pues a partir de (82), y aplicando la regla de Leibniz, se obtiene

∇al

mTa
Y l

m
= mTa′

Y l
m

(∇al
ha

Y l
m

a′
Y l

m ) + ha
Y l

m

a′
Y l

m∇al

mTa
Y l

m

=
∑

k∈Y l
m

nak

(
Kal

ak mTa
Y l

m︸ ︷︷ ︸
m+2k

+nal
uak mTa

Y l
m︸ ︷︷ ︸

m+2k+2l

)
+ Dal

mTa
Y l

m︸ ︷︷ ︸
m

+nal
˜̄d mTa

Y l
m︸ ︷︷ ︸

m+2l

, (85)

donde los t́erminos de la segunda lı́nea de (82) se han cancelado en cada término puesto que losı́ndices primados van contraı́dos
con el tensor tangentemTa′

Y l
m

, y se ha empleado la sustitución (76).

A continuacíon se sintetiza el procedimiento de escribir la derivada covariante de un tensor arbitrario en forma3 + 1. Al
calcular la derivada covariante de la expansión3 + 1 general, Ec. (48), se tendrá

∇al
TaIl

= ∇al




2l−1∑
m=0

naζm

mTa
Y l

m


 =

2l−1∑
m=0

[
(∇al

naζm
) mTa

Y l
m

+ naζm
∇al

mTa
Y l

m

]
, (86)

y sustituyendo (83) y (85) en (86) se obtiene

∇al
TaIl

=
2l−1∑
m=0

{ ∑

k∈ζm

naζm−{k}

[
Kalak

mTa
Y l

m︸ ︷︷ ︸
m−2k

+nal
uak

mTa
Y l

m︸ ︷︷ ︸
m+2l−2k

]
+ naζm

[ ∑

k∈Y l
m

nak

(
Kal

ak mTa
Y l

m︸ ︷︷ ︸
m+2k

+nal
uak mTa

Y l
m︸ ︷︷ ︸

m+2k+2l

)

+ Dal

mTa
Y l

m︸ ︷︷ ︸
m

+nal
˜̄d mTa

Y l
m︸ ︷︷ ︸

m+2l

]}
,

donde al reagrupar los términos por componente queda finalmente la expresión

∇al
TaIl

=
2l+1−1∑
m=0

naζm

{
Dal

mTa
Y l

m
+˜̄d m−2l

Ta
Y l

m−2l

+
∑

k∈ζm∩Il

(
Kal

ak m−2k

Ta
Y l

m−2k

+ uak m−2k−2l

Ta
Y l

m−2k−2l

)

+
∑

k∈Y l
m

(
Kalak

m+2k

Ta
Y l

m+2k

+ uak

m+2k−2l

Ta
Y l

m+2k−2l

)}
. (87)

La fórmula (87) se puede aplicar, por ejemplo, para calcular la derivada de un covector. Para ello, se calcula cada compo-
nente de proyección por separado,

0 (∇a1ωa0) = Da1
0ωa

Y 1
0︸ ︷︷ ︸

0ωa0=ω̃a0

+˜̄d(−21
ωa

Y 1
−21︸ ︷︷ ︸

0

) +
∑

k∈ζ0∩I1=∅

(
Ka1

ak −2k

ωa
Y 1
−2k

+uak −2k−21
ωa

Y 1
−2k−21

)

︸ ︷︷ ︸
0

+
∑

k∈Y 1
0 ={0}

(
Ka1ak︸ ︷︷ ︸
Ka1a0

2k

ωa
Y 1
2k︸ ︷︷ ︸

1ωa
Y 1
1

=ω⊥

+ uak︸︷︷︸
ua0

2k−21
ωa

Y 1
2k−21︸ ︷︷ ︸

−1ωa
Y 1
−1

=0

)

0 (∇a1ωa0) = Da1 ω̃a0 + Ka1a0ω⊥, (88)

1 (∇a1ω½½a0) = Da1
1ωa

Y 1
1︸ ︷︷ ︸

ω⊥

+˜̄d (−1ωa
Y 1
−1︸ ︷︷ ︸

0

) +
∑

k∈ζ1∩I1={0}

(
Ka1

ak

︸ ︷︷ ︸
Ka1

a0

1−2k

ωa
Y 1
1−2k︸ ︷︷ ︸

0ωa
Y 1
0

=ω̃a0

+ uak︸︷︷︸
ua0

−2k−1ωa
Y 1
−2k−1︸ ︷︷ ︸

0

)

+
∑

k∈Y 1
1 =∅

(
Ka1ak

1+2k

ωa
Y 1
1+2k

+uak

2k−1ωa
Y 1
2k−1

)

︸ ︷︷ ︸
0

1 (∇a1ω½½a0) = Da1ω⊥ + Ka1
a′0 ω̃a′0 , (89)
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2 (∇½½a1ωa0) = Da1
2ωa

Y 1
2︸ ︷︷ ︸

0

+˜̄d 2−21
ωa

Y 1
2−21︸ ︷︷ ︸

ω̃a0

+
∑

k∈ζ2∩I1=∅

(
Ka1

ak 2−2k

ωa
Y 1
2−2k

+uak −2k

ωa
Y 1
−2k

)

︸ ︷︷ ︸
0

+
∑

k∈Y 1
2 ={0}

(
Ka1ak︸ ︷︷ ︸
Ka1a0

2+2k

ωa
Y 1
2+2k︸ ︷︷ ︸

0

+ uak︸︷︷︸
ua0

2k

ωa
Y 1
2k︸ ︷︷ ︸

ω⊥

)
2 (∇½½a1ωa0) = ˜̄d ω̃a0 + ua0ω⊥, (90)

3 (∇½½a1ω½½a0) = Da1
3ωa

Y 1
3︸ ︷︷ ︸

0

+˜̄d 1ωa
Y 1
1︸ ︷︷ ︸

ω⊥

+
∑

k∈ζ3∩I1={0}

(
Ka1

ak

︸ ︷︷ ︸
Ka1

a0

3−2k

ωa
Y 1
3−2k︸ ︷︷ ︸

0

+ uak︸︷︷︸
ua0

1−2k

ωa
Y 1
1−2k︸ ︷︷ ︸

ω̃a0

)

+
∑

k∈Y 1
3 =∅

(
Ka1ak

3+2k

ωa
Y 1
3+2k

+uak

1+2k

ωa
Y 1
1+2k

)

︸ ︷︷ ︸
0

3 (∇½½a1ω½½a0) = ˜̄dω⊥ + ua′0 ω̃a′0 . (91)

En estas expresiones, las componentes de proyección se muestran con losı́ndices normales cancelados en el lado izquierdo
para mantener la consistencia de la notación a ambos lados de la igualdad. Finalmente, al realizar la suma de los términos
(88)-(91) de acuerdo con la expresión (87), se obtiene la descomposición3 + 1 de la derivada covariante de un covector,

∇a1ωa0 = 0 (∇a1ωa0) + na0
1 (∇a1ω½½a0) + na1

2 (∇½½a1ωa0) + na1na0
3 (∇½½a1ω½½a0) = Da1 ω̃a0 + Ka1a0ω⊥

+ na0

(
Da1ω⊥ + Ka1

a′0 ω̃a′0

)
+ na1

(˜̄d ω̃a0 + ua0ω⊥
)

+ na1na0

(
d̄ ω⊥ + ua′0 ω̃a′0

)
. (92)

Utilizando este mismo procedimiento para un tensor de rango(0, 2), se obtiene la descomposición3 + 1 de∇a2Ta1a0 ,

∇a2Ta1a0 = 0(∇a2Ta1a0) + na0
1(∇a2Ta1½½a0) + na1

2(∇a2T½½a1a0) + na1na0
3(∇a2T½½a1½½a0) + na2

4(∇½½a2Ta1a0)

+ na2na0
5(∇½½a2Ta1½½a0) + na2na1

6(∇½½a2T½½a1a0) + na2na1na0
7(∇½½a2T½½a1½½a0), (93)

donde sus componentes de proyección son

0(∇a2Ta1a0) = Da2 T̃a1a0 + Ka2a0
`̃τa1 + Ka2a1

´̃τa0 , (94)

1(∇a2Ta1½½a0) = Ka2
a′0 T̃a1a′0 + Da2

`̃τa1 + Ka2a1T⊥, (95)

2(∇a2T½½a1a0) = Ka2
a′1 T̃a′1a0 + Da2

´̃τa0 + Ka2a0T⊥, (96)

3(∇a2T½½a1½½a0) = Ka2
a′1 `̃τa′1 + Ka2

a′0 ´̃τa′0 + Da2T⊥, (97)

4(∇½½a2Ta1a0) = ˜̄d T̃a1a0 + `̃τa1ua0 + ua1
´̃τa0 , (98)

5(∇½½a2Ta1½½a0) = ua′0 T̃a1a′0 + ˜̄d `̃τa1 + ua1T⊥, (99)

6(∇½½a2T½½a1a0) = ua′1 T̃a′1a0 + ˜̄d ´̃τa0 + ua0T⊥, (100)

7(∇½½a2T½½a1½½a0) = ua′1 `̃τa′1 + ua′0 ´̃τa′0 + d̄ T⊥. (101)

Aqúı se ha empleado la notación de las Ecs. (29)-(34) para las componentes de proyección deTa1a0 .
En la siguiente sección se empleará el formalismo hasta aquı́ desarrollado para calcular los tensores de Riemann y Ricci

del espaciotiempo en términos de los tensores de Riemann y Ricci sobre la hipersuperficie, ası́ como la ḿetrica inducida, el
tensor de curvatura extrı́nseca y el campo de vectores normales y sus derivadas.

6. Tensores de curvatura y ecuación de Einstein

6.1. Tensor de Riemann

El tensor de curvatura de RiemannRabc
d se define [5] en t́erminos de su acción sobre un campo de covectoresωd como

Rabc
d ωd = ∇a∇b ωc −∇b∇a ωc. (102)
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Este tensor caracteriza la curvatura de una variedad en el
sentido de que su anulacion en cualquier región del espacio-
tiempo es condición necesaria y suficiente para la existencia
de coodenadas en las que la metrica toma la forma minkows-
kiana (es decir,η = diag(−1, 1, 1, 1)) en esa región [7], o en
otras palabras, que el espaciotiempo en cualquier región es
planosi y solo si en ella se anula el tensor de Riemann.

Tomando en cuenta que se está empleando la conexión
métrica sin torsíon, este tensor cumple con las siguientes pro-
piedades,

Rabc
d = −Rbac

d, (103)

R[abc]
d = 0, (104)

Rabcd = −Rabdc, (105)

∇[a Rbc]d
e = 0, (106)

donde a (106) se le denomina identidad de Bianchi. A partir
de estas propiedades, también se puede derivar la siguiente
simetŕıa para el tensor de Riemann covariante,

Rabcd = Rcdab. (107)

El procedimiento que se empleará para expresar el tensor
de Riemann en forma3 + 1 a partir de su definición, seŕa el
siguiente:

1. Expresar en forma3 + 1 al tensorBbcd ≡ ∇b∇c ωd,
dondeωd es un covector arbitrario.

2. AntisimetrizarBbcd sobre lośındicesb y c, de modo
que se tiene

Rbcd
eωe = 2B[bc]d. (108)

3. Considerando los casos en queωe es tangente aΣt (es
decir, cuandoω⊥ = 0) y cuando es ortogonal (es de-
cir, cuandoω̃e = 0), se obtiene de las expresiones de
las componentes de proyección de (108), la forma de
algunas componentes del tensor de RiemannRbcd

e.

4. El resto de las componentes se obtienen a partir de las
propiedades y simetrı́as del tensor de Riemann (103)-
(107).

A continuacíon se detallan cada uno de estos pasos.

Retornando a la notación deı́ndices usualix, la expresíon
para∇cωd est́a dada por (92), y sustituyendo la expresión
para las componentes de este tensor en (93), se obtienen las

componentes de proyección deBbcd ≡ ∇b∇cωd,

0(Bbcd) = DbDcω̃d + (Dbω⊥)Kcd

+ ω⊥DbKcd + KbdKc
d′ ω̃d′

+ KbdDcω⊥ + Kbc
˜̄d ω̃d + Kbcudω⊥, (109)

1(Bbc) = Kb
d′Dcω̃d′ + Kb

d′Kcd′ω⊥

+ ω̃d′DbKc
d′ + (Dbω̃d′)Kc

d′

+ DbDcω⊥ + Kbc(ud′ ω̃d′ + d̄ ω⊥), (110)

2(Bbd) = Kb
c′Dc′ ω̃d + Kb

c′Kc′dω⊥ + Db
˜̄d ω̃d

+ (Dbω⊥)ud + ω⊥Dbud + Kbdd̄ ω⊥, (111)

3(Bb) = Kb
c′Kc′

d′ ω̃d′ + Kb
c′Dc′ω⊥

+ Kb
d′ ˜̄d ω̃d′ + ω⊥Kb

d′ud′

+ ud′Dbω̃d′ + ω̃d′Dbu
d′ + Dbd̄ ω⊥, (112)

4(Bcd) = ˜̄dDcω̃d + Kcdd̄ ω⊥

+ ω⊥ ˜̄dKc′d′ + Kc
d′ ω̃d′ud

+ (Dcω⊥)ud + uc
˜̄d ω̃d + ω⊥ucud, (113)

5(Bc) = ud′Dcω̃d′ + ω⊥Kcd′u
d′

+ ω̃d′ ˜̄dKc
d′ + Kc

d′ ˜̄d ω̃d′

+ ˜̄d Dc′ω⊥ + uc(ud′ ω̃d′ + d̄ ω⊥), (114)

6(Bd) = uc′Dc′ ω̃d + ω⊥Kc′du
c′

+ ˜̄d 2
ω̃d′ + udd̄ ω⊥

+ ω⊥ ˜̄d ud + ud(ud′ ω̃d′ + d̄ ω⊥), (115)

7(B) = Kc′
d′uc′ ω̃d′ + uc′Dc′ω⊥ + ud′ ˜̄d ω̃d′

+ ω⊥ud′ud′ + ud′ ω̃d′ + d̄ ω⊥. (116)

El siguiente paso es antisimetrizar los primeros dosı́ndi-
ces deBbcd, en donde todas las proyecciones que son si-
multáneamente normales aΣt en losı́ndicesb y c se anulan,
quedando el desarrollo3 + 1 deB[bc]d como

B[bc]d = B̃[bc]d + 1B[bc]nd + n[b
4Bc]d

− n[b
2Bc]d + (n[b

5Bc] − n[b
3Bc])nd, (117)

siendo las componentes de proyección relevantes,

0B[bc]d =
1
2

(3)Rbcd
eω̃e + ω⊥D[bKc]d

+ Kd[bKc]
d′ ω̃d′ , (118)

1B[bc] = K[b
d′Kc]d′ω⊥ + ω̃d′D[bKc]

d′

+ D[bDc]ω⊥, (119)
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4Bcd − 2Bcd = ˜̄dDcω̃d −Dc
˜̄d ω̃d + uc

˜̄d ω̃d

+ Kc
d′(ω̃d′ud −Dd′ ω̃d)

+ ω⊥(˜̄dKcd −Dcud)

+ ω⊥(ucud −Kc
c′Kc′d), (120)

5Bc − 3Bc = ω̃d′(˜̄dKc
d′ −Dcu

d′)

+ ˜̄dDcω⊥ −Dcd̄ ω⊥

+ (ucu
d′ −Kc

c′Kc′
d′)ω̃d′

+ ucd̄ ω⊥ −Kc
c′Dc′ω⊥. (121)

donde (3)Rbcd
e es el tensor de Riemann correspondiente a

la metrica inducida sobre la hipersuperficie, previamente de-
finido en (63). Las deḿas componentes de proyección se ob-
tienen de intercambiarı́ndices y signos, a partir de estas com-
ponentes, de modo que se puede reescribir (108) como

Rbcd
eωe = B̃bcd − B̃cbd

+ ( 1Bbc − 1Bcb)nd

+ nc( 2Bbd − 4Bbd)

+ ( 3Bb − 5Bb)ncnd

+ nb( 4Bcd − 2Bcd)

+ nb( 5Bc − 3Bc)nd. (122)

Las componentes de proyección del tensor de Riemann
seŕan entonces,

Rbcd
e = R̃bcd

e + 1Rbcdn
e + 2Rbc

end

+ 3Rbcndn
e + 4Rbd

enc

+ 5Rbdncn
e + 6Rb

encnd

− nb( 4Rcd
e + 5Rcdn

e + 6Rc
end), (123)

notando que se trata de un tensor de rango(1, 3), por lo que
para emplear las expresiones (118)-(121) considerando la eti-
queta de componente que les asigna la expresión (122), es
necesario incrementar en uno el valor posicional de todas las
componentes, re-etiquetando cada una de ellas de acuerdo
con la regla

m =
∑

k∈ζm

2k → m′ = q +
∑

k∈ζm

2k+1,

dondeq = 0 ó q = 1 dependiendo de siωe es tangente u orto-
gonal a la superficie, respectivamente. Por ejemplo, tomando
la componente de proyección m = 0 deB[bc]d, (118), se ob-
tienen las componentes de proyección m′ = 0 y m′ = 1.
Expĺıcitamente, cuando el covector es tangente,ωe = ω̃e y
ω⊥ = 0, al sustituir en (118) se tiene

0 (Rbcd
eω̃e) = 2

(
1
2

(3)Rbcd
e + Kd[bKc]

e

)
ω̃e,

y de aqúı que,

0Rbcd
e = (3)Rbcd

e + 2Kd[bKc]
e. (124)

Nótese que esta ecuación se puede reescribir como

(3)Rabc
d = R̃abc

d −KacKb
d + KbcKa

d. (125)

A esta ecuación se le denomina primera relación de Gauss-
Codacci, y relaciona al tensor de Riemann de la métrica in-
ducida sobre la hipersuperficie, que representa a la curvatura
intrı́nseca deΣt, el tensor de curvatura extrı́nseca y el tensor
de Riemann de la ḿetrica del espaciotiempo.

Cuando el covector es ortogonal,ω̃e = 0, ωe = neω⊥, y
al sustituir en (118) se obtiene

hb
b′hc

c′hd
d′Rb′c′d′

e(−ne)ω⊥ ≡ 1Rbcdω⊥

= −2
(
D[bKc]d

)
ω⊥,

de donde se lee

1Rbcd = DcKbd −DbKcd. (126)

Siguiendo un procedimiento análogo para las deḿas com-
ponentes de proyección deBbcd, se obtienen las siguientes
componentes de proyección del tensor de Riemann,

2Rbc
e = DbKc

e −DcKb
e, (127)

5Rbd = ˜̄dKbd −Dbud + ubud −Kb
b′Kb′d, (128)

6Rb
e = −˜̄dKb

e + Dbu
e − ubu

e + Kb
b′Kb′

e. (129)

El último paso es obtener las componentes de proyección
faltantes a partir de las proyecciones (124)-(129). Las compo-
nentes de proyección 3Rbc y 7Rb se cancelan id́enticamen-
te debido a que las propiedades (103) y (107) implican para
estas proyecciones la antisimetrización déındices nulos. Asi-
mismo, aplicado directamente la propiedad (107), se obtiene
la componente con etiquetam = 4,

4Rbd
e = hef 1Rdfb = DeKbd −DdKb

e, (130)

y el resto de las componentes se pueden obtener a partir de la
propiedad (103),

8Rcd
e = − 4Rcd

e (131)

9Rcd = − 5Rcd (132)

10Rc
e = − 6Rc

e (133)

11Rc = − 7Rc = 0. (134)

Con esto concluye el desarrollo3+1 del tensor de Riemann,
pues se han expresado todas las componentes de proyección
presentes en (123). Las componentes de proyección que no
aparecen en (123) son idénticamente nulas debido a las sime-
trı́as del tensor de Riemann.
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6.2. Tensor de Ricci y escalar de curvatura

A partir del desarrollo3+1 del tensor de Riemann, es directa
la expresíon3 + 1 del tensor de Ricci,

Rbd = Rbcd
c, (135)

gracias a la f́ormula (59),

Rbcd
c = R̃bcd

c − 5Rbd

+ nd

(
2Rbc

c − 7Rb

)

+ nb

(
8Rcd

c − 13Rd

)

+ nbnd

(
10Rc

c − 15R⊥
)
. (136)

Sustituyendo las expresiones (124)-(134), se obtiene final-
mente

R̃ab = (3)Rab + KabK − ˜̄d Kab − uaub + Daub, (137)

R̃b ≡ 1Rb = 2Rb = DbK −DcKb
c, (138)

R⊥ = d̄K −Daua + uaua −KabK
ab. (139)

A la Ec. (138) se les denomina segunda relación de Gauss-
Codazzi porque relaciona el tensor de curvatura extrı́nseca
de la hipersuperficie con el tensor de curvatura de Ricci del
espaciotiempo.

Gracias a la f́ormula (60), se obtiene inmediatamente una
expresíon en t́erminos de los objetos del formalismo3 + 1
para el escalar de curvatura de Ricci,

R ≡ Ra
a, (140)

es decir,

R = (3)R+K2−2uaua+2Daua−2d̄K+KabK
ab. (141)

6.3. Ecuacíon de Einstein

Considerando la descomposición del tensor de Ricci, Ecs.
(138), (139), (137), y del escalar de curvatura, (141), se puede
expresar el tensor de Einstein

Gab = Rab − 1
2
gabR, (142)

en forma3 + 1,

G̃ab = (3)Gab + K

(
Kab − 1

2
habK

)

+ hab

(
ucu

c −Dcu
c − 1

2
KcdK

cd

)

+ Daub − uaub, (143)

G̃a = DaK −DbKa
b, (144)

G⊥ =
1
2

(
(3)R + K2 −KabK

ab
)

. (145)

Suponiendo que la separación 3 + 1 para el tensor momento
enerǵıa es de la forma,

Tab = Sab + j(anb) + nanbρ,

dondeSab, ja y ρ son respectivamente el tensor de esfuer-
zos, el vector de flujo de densidad de momento y la densi-
dad de enerǵıa de la materia en el marco de los observadores
Eulerianosx, se tiene que la ecuación de Einstein

Gab = 8πGNTab, (146)

equivale a las ecuaciones

8πGNSab = (3)Gab + K

(
Kab − 1

2
habK

)

+ hab

(
ucu

c −Dcu
c − 1

2
KcdK

cd

)

+ Daub − uaub, (147)

8πGN ja = DaK −DbKa
b, (148)

8πGNρ =
1
2

(
(3)R + K2 −KabK

ab
)

. (149)

Como las Ecs. (148) y (149) representan condiciones para la
métrica inducida y sus derivadas en cada hipersuperficie, a
menudo se les denomina ecuaciones de constricción. Éstas
resultan de especial interés puesto que son más f́aciles de re-
solver que el sistema completo (146), y, para campos de ma-
teria apropiados, la existencia de dichas soluciones sobre una
hipersuperficieΣ garantiza, dada la existencia de una buena
formulacíon de valores inicialesxi, la existencia y unicidad de
una solucíon para todo el espaciotiempo.

7. Conclusiones

En este trabajo se ha presentado una reseña de los aspectos
generales del formalismo3 + 1, y se han introducido con-
venciones y notación especialmente adaptadas paraéste, que
facilitan el tratamiento sisteḿatico de todas las proyecciones
involucradas y la manipulación de expresiones de uso fre-
cuente en Relatividad General.

Haciendo uso déestas herramientas se han derivando
fórmulas expĺıcitas y generales para productos tensoriales
(56), simetrizacíon (53), antisimetrización (54) y contraccíon
de ı́ndices (58), aśı como para la derivada covariante (87).
Asimismo, se han obtenido todas las proyecciones del tensor
de Riemann (124)-(134), del tensor de Einstein (143)-(145),
y las relaciones de Gauss-Codacci (125)-(138).
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Appendix

A. Observadores Eulerianos

Al considerar una foliación del espaciotiempo por hipersu-
perficies de CauchyΣt, el campo de vectores normales a cada
una de estas hipersuperficiesna, unitario y tipo tiempo puede
interpretarse como el campo de velocidades de un conjunto
de observadoes en cada punto del espaciotiempo, a los que se
les denomina observadores Eulerianos [1]. Estos observado-
res toman por superficie de simultaneidad justamente a cada
Σt.

La relacíon entre el tiempo propio medido por estos ob-
servadores y el cambio de la función tiempot, es justamen-
te la funcíon lapse. Más formalmente, considérese la trayec-
toria de uno de estos observadores, la cual será una curva
λ : R → M que, parametrizada por el tiempo propioτ , y
que introduciendo coordenadasxµ, cumple con

nµ =
dxµ

λ

dτ
.

Si se tomax0 = t, se tiene que

n0 =
dt

dτ
= na(dt)a = na∇at =

1
N

.

Por lo tanto,na∇a corresponde a la derivada respecto al
tiempo propio de esta familia de observadores, de modo que
la 4-aceleracíon de los observadores es justamente

Aa ≡ nb∇bn
a = −ua,

que es tangente a cadaΣt.
Para los observadores Eulerianos, las diferentes compo-

nentes de proyección del tensor momento energı́a de cual-
quier forma de materia,Tab, son directamente ladensidad
de enerǵıa de materia,

ρ ≡ nanbTab = T⊥,

la densidad de momento de la materia,

ja ≡ −nbha
a′Ta′b = τ̃a,

y el tensor de esfuerzos de la materia,

Sab ≡ ha
a′hb

b′Ta′b′ = T̃ab.

B. Mapeos y derivada de Lie

Un mapeoφ : M→N induce un nuevo mapeo que permite
identificar (otransportar) tensores tangentes aM, con tenso-
res tangentes aN . En el casoN = M, y para vectores en el
espacio tangente ap, va ∈ TpM, el mapeo correspondiente
es elpush-forward, φ∗ : TpM → Tφ(p)M, que en t́erminos
de la accíon de vectores sobre funciones está definido por la
regla

(φ∗va) (f) ≡ va(f ◦ φ), (B. 1)

y para covectores, el mapeoφ∗ : T ∗φ(p)M→ T ∗p M se deno-
minapull-back, y est́a dado por

(φ∗ωa) (va) ≡ ωa(φ∗va), (B. 2)

por lo que en general se define para tensores(k, l),
T a1...ak

b1...bl
, el pullbackφ∗T a1...ak

b1...bl
mediante la regla

(φ∗T a1...ak
b1...bl

)ωa1 . . . ωak
vb1 . . . vbl ≡

T a1...ak
b1...bl

(φ∗ωa1) . . . (φ∗ωak
)

([φ−1]∗vb1) . . . ([φ−1]∗vbl). (B. 3)

La derivada de Lie de un campo tensorialT a1...ak
b1...bl

, res-
pecto a un campo vectorialva que genera un grupo unipa-
ramétrico de difeomorfismosxii φτ se define como [5]

£vT a1...ak
b1...bl

≡ ĺım
τ→0

φ∗−tT
a1...ak

b1...bl
− T a1...ak

b1...bl

τ
, (B. 4)

y da como resultado un campo tensorial del mismo rango
queT a1...ak

b1...bl
. Esta cantidad se puede interpretar como

el cambio infinitesimal del campoT a1...ak
b1...bl

a lo largo
del flujo deφt.

Nótese que la derivada de Lie de un campo tensorial res-
pecto a un campo vectorialva, sólo est́a bien definida en un
punto dadoq si el campo tensoriales está definido en una ve-
cindad deq que contenga un intervalo de la curva integral
deva que pasa por dicho punto. Por lo tanto, en términos de
una foliacíon por hipersuperficies de Cauchy, para calcular la
derivada de Lie de un campo tensorial respecto a un campo
vectorial tipo tiempo, es necesario que el campo esté defini-
do no śolo en la hipersuperficie donde se está evaluando su
derivada, sino también en las hipersuperficies que contengan
una vecindad infinitesimal de la hipersuperficie en cuestión.

Una expresíon general para la derivada de Lie de un cam-
po tensorialT a1...ak

b1...bl
es [5],

£vT a1...ak
b1...bl

= vc∇cT
a1...ak

b1...bl

−
k∑

i=1

T a1...c...ak
b1...bl

∇cv
ai

+
l∑

j=1

T a1...ak
b1...c...bl

∇bj v
c. (B. 5)

A partir de la f́ormula (B. 5), y de la definición de la de-
rivada normal de la Sec. 4, Ec. (74), se obtiene directamente
que la relacíon entréestas derivadas es

d̄ T a1...ak
b1...bl

= −£nT a1...ak
b1...bl

−
k∑

i=1

T a1...c...ak
b1...bl

(Kc
ai + ncu

ai)

+
l∑

j=1

T a1...ak
b1...c...bl

(Kbj

c + nbj u
c), (B. 6)
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siendoua = d̄ na y Kab = Danb.
Por ejemplo, para el caso del propio campo de covectores

na, (B. 6) implica que

ua ≡ d̄ na = −£nna + nc(Ka
c + nauc)

= −£nna,

lo que prueba la Ec. (80).
El resultado (81) de la Sec. 5 implica que

d̄ hab = −nc∇chab

= −nc(Kcanb + Kcbna + ncnaub + ncnbua)

= naub + nbua,

lo cual se puede sustituir en el lado izquierdo de la fórmula
(B. 6) para obtener

naub + nbua = −£nhab + hcb(Ka
c + nauc)

+ hac(Kb
c + nbu

c),

= −£nhab + 2Kab + naub + nbua

⇒ £nhab = 2Kab,

que prueba la Ec. (70). Ḿas áun, el lado derecho de la expre-
sión (B. 6) puede escribirse completamente en términos de
las derivadas de Lie dena y hab, pues

ua = hacuc = −hac£nnc,

Ka
b = hbcKac =

1
2
hbc£nhac,

es decir,

d̄ T a1...ak
b1...bl

= −£nT a1...ak
b1...bl

−
k∑

i=1

T a1...c...ak
b1...bl

haid

(
1
2
£nhcd − nc£nnd

)

+
l∑

j=1

T a1...ak
b1...c...bl

hcd

(
1
2
£nhbjd − nbj£nnd

)
. (B. 7)

ésto muestra la conveniencia de recurrir a la derivada normal
d̄ para la manipulación de expresiones3 + 1, ya que evita
escribir varios t́erminos que incluiŕıan combinaciones de de-
rivadas de Lie.

C. 4-aceleracíon y la función Lapse

El campoua = d̄ na, proporcional a la 4-aceleración de los
observadores Eulerianos, también puede expresarse en térmi-
nos de la derivada tangente a la hipersuperficie de la función

Lapse,DaN . La prueba que aquı́ se presenta sigue el des-
arrollo correspondiente en la Ref. 1. A partir de la Ec. (26),
se despeja la derivada det,

∇at = −na

N
.

A continuacíon se sustituye en la propiedad de no torsión de
la derivada [5], aplicada a la función tiempo,

∇a∇bt = ∇b∇at, (C. 1)

y se desarrolla, quedando

−nb

N
∇aN + naub = −na

N
∇bN + nbua. (C. 2)

Al contraer (C. 2) con−nahc
b, se obtiene la Ec. (79),

uc = − 1
N

DcN = −Dc ln N.

D. Perspectiva tridimensional

A partir de las nociones de la sección 2, es posible establecer
una relacíon entre la subvariedadΣt ⊂ M, y una variedad
tridimensionalΣ̂ con la misma topoloǵıa. Para ello, consi-
dere un mapeo suave% : M → Σ̂ con la propiedad de ser
invariante ante el mapeoφτ generado por el campota de la
Sec. 2, es decir,

%(φτ (p)) = %(p), ∀ p ∈M, τ ∈ R. (D. 1)

Nótese que cualquier difeomorfismo sobreΣ̂ define un nue-
vo mapeo%′ con la misma propiedad, por lo que un mapeo
de este tipo no será único.

Como% mapea todos los puntos de una curvaγp(τ) al
punto%(p) ∈ Σ̂, no esúnica la nocíon de mapeo inverso para
%, pues existe una infinidad de funcionesρ : Σ̂ → M tales
que%(ρ(q)) = q.

Esta ambig̈uedad se puede resolver si se toma en cuenta
el valor de la funcíon global de tiempot, y se utiliza como un
paŕametro externo para los objetos enΣ̂, de modo quéestos
“evolucionen” respecto at. Con este fin, se escoge una hiper-
superficieΣt0 correspondiente a cierto valort0 de referencia
para la funcíon t (no necesariamentet0 = 0), y se define
Φt0 : Σt0 → Σ̂ como

Φt0(p) = %(p).

Este mapeo es un difeomorfismo, ası́ que tiene un mapeo in-
verso bien definido,Φ−1

t0 , y de este modo se puede definir el
siguiente mapeo invertible,

Ψ : M→ R× Σ̂,

p 7→ (t(p), %(p)), (D. 2)

Ψ−1 : R× Σ̂ →M,

(τ, q) 7→ φτ−t0

[
Φ−1

t0 (q)
]
. (D. 3)
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A partir deΨ y Ψ−1, se induce elpush-forwardΨ∗ de
vectores deTM, al espacio tangente aR × Σ̂, y el pullback
(Ψ−1)∗ que transportacovectores del espacio cotangente a
la variedad hacia el espacio cotangente deR × Σ̂. éstos ma-
peos se generalizan para tensores arbitrarios evaluando sobre
vectores y covectores según corresponda, tal como en la Ec.
(B. 3) del Aṕendice 7.

En t́erminos de coordenadasyi sobreΣ̂, coni = 1, 2, 3,
el mapeo% : M → Σ̂ se expresa en términos de las tres
funciones%i tales que

%i(p) ≡ yi(%(p)),

con lo que la condición (D. 1) se reescribe como

ta∇a%i = Na∇a%i + Nna∇a%i = 0.

Entonces, elpush-forwardΨ∗ de un vector se escribe como

Ψ∗va =
(

v⊥
N

∂t,
[
ṽb − v⊥

N
N b

] [∇b%
i
] [

∂

∂yi

]a)
. (D. 4)

Esta expresión representa un elemento del espacio tangente a
R× Σ̂, por lo que su primera entrada es un vector unidimen-
sional y la segunda entrada un vector tridimensional.

Aqúı se esclarece el papel que juega el vectorshift: indi-
ca qúe tanto se desplazan las proyecciones tangentes de vec-
tores al representarlos en el espacio tangente a la variedad
tridimensionalΣ̂ bajo el mapeoΨ∗.

E. Formulación de Valores Iniciales

Un sistema hiperb́olico cuasilineal, diagonal y de segundo or-
den es un sistema de ecuaciones diferenciales para los cam-
posφi, coni = 1, . . . , n, de la forma

gµν(φj , ∂µφj)∂µ∂νφi = Fi(φj , ∂µφj). (E. 1)

Si se considera una solución particular para los campos
(φ0)i, en la que(M, (g0)µν [(φ0)j , ∂µ(φ0)j ]) es un espacio-
tiempo globalmente hiperbólico, entonces, un sistema de la
forma (E. 1) cuenta con una buena formulación de valores
iniciales en el siguiente sentido. Dado el conjunto de datos
φi|Σ y nρ∇ρφi|Σ sobre una hipersuperficie de CauchyΣ,
suficientementecercanosa los correspondientes para la so-
lución (φ0)i, existe una vecindad abiertaO de Σ en la que
existe una solución única para (E. 1), y esta solución depen-
decontinuamentede los valores inicialesφi|Σ y nρ∇ρφi|Σ.

Los detalles de este enunciado pueden encontrarse en [5]
(Teorema 10.1.3), mientras que una prueba más completa se
encuentra en [8]. Este teorema es una generalización del teo-
rema de Cauchy-Kovalevskaya [9] sobre la existencia y uni-
cidad de soluciones de sistemas de ecuaciones diferenciales.

Una vez que se escogen coordenas armónicasxiii, las
ecuaciones de Einstein en el vacı́o se pueden escribir como
un sistema de la forma (E. 1), tomando como los camposφi

a las componentes de la métrica en estas coordenadas,gµν .
Empleando la formulación3+1, se parte de este resultado

para mostrar quexiv, dada una variedad tridimensional suave
Σ, una ḿetricahab sobreésta, yKab un tensor suave siḿetri-
co enΣ, que satisfacen las Ecs. deconstriccíon (148) y (149)

en el vaćıo, existe un espaciotiempóunico (M, gab), deno-
minado el desarrollo maximal de Cauchy de(Σ, hab,Kab),
que satisface:

(i) (M, gab) es una solución de la ecuación de Einstein
(146) en el vaćıo.

(ii) (M, gab) es globalmente hiperbólico con superficie de
CauchyΣ.

(iii) La métrica inducida y curvatura extrı́nseca enΣ son,
respectivamente,hab y Kab.

(iv) Cualquier otro espaciotiempo que satisface (i)-(iii)
puede mapearse isométricamente a un subconjunto de
(M, gab), y la solucíongab depende continuamente de
los datos iniciales(hab,Kab) enΣ.

Para el caso de las ecuaciones de Einstein con materia, la
existencia de una buena formulación de valores iniciales de-
pende cŕıticamente del tipo de materia que se considere, en
especial de las ecuaciones de movimiento queésta obedezca
y de la forma que tenga su tensor de momento energı́aTab.

En general, si la materia consiste de camposφi que sa-
tisfacen una ecuación del tipo (E. 1) y siTab depende sola-
mente de los camposφi y sus primeras derivadas, ası́ como
de la ḿetrica del espaciotiempogab y sus primeras derivadas,
entonces las ecuaciones de Einstein para el sistema conjunto
de los campos y la ḿetrica tendŕa la forma (E. 1) y por ende
existiŕa una buena formulación de valores iniciales [5].

Algunos casos de campos de materia para los que existe
una buena formulación de valores iniciales para las ecuacio-
nes de Einstein son:

El campo escalarφ que cumple la ecuación de Klein-
Gordon,

(gab∇a∇b −m2 + ξR)φ = 0. (E. 2)

El campo vectorialAa que cumple con las ecuaciones
de Maxwell

gac∇cFab = 0, (E. 3)

dondeFab ≡ 2∇[aAb].

El fluido perfecto con ecuaciones de estadoP = P (ρ)
apropiadas, a pesar de no ser un sistema del tipo
(E. 1) [5,8].

Una discusíon más amplia sobre los tipos de materia que
permiten contar con una buena formulación de valores inicia-
les en Relatividad General, se puede consultar en la Ref. [8],
a donde dirigimos a los lectores interesados en profundizar
en este tema.

Es importante enfatizar que, en el caso más general, no
est́a garantizada la existencia de una buena formulación de
valores iniciales, especialmente si la materia no obedece
ecuaciones lineales o cuasi-lineales. Además, si un espacio-
tiempo (o una región abierta déeste) no es globalmente hi-
perb́olico, no se contará con una buena formulación de valo-
res iniciales en el sentido previamente expuesto.
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F. Conjuntos de etiquetas déındices

TABLA I. Conjuntos de etiquetas para 1, 2, 3 y 4ı́ndices.

m mB ζm Y 1
m Y 2

m Y 3
m Y 4

m Y 5
m

0 0 ∅ {0} {1,0} {2,1,0} {3,2,1,0} {4,3,2,1,0}
1 1 {0} ∅ {1} {2,1} {3,2,1} {4,3,2,1}
2 10 {1} {0} {0} {2,0} {3,2,0} {4,3,2,0}
3 11 {1,0} ∅ ∅ {2} {3,2} {4,3,2}
4 100 {2} {0} {1,0} {1,0} {3,1,0} {4,3,1,0}
5 101 {2,0} ∅ {1} {1} {3,1} {4,3,1}
6 110 {2,1} {0} {0} {0} {3,0} {4,3,0}
7 111 {2,1,0} ∅ ∅ ∅ {3} {4,3}
8 1000 {3} {0} {1,0} {2,1,0} {2,1,0} {4,2,1,0}
9 1001 {3,0} ∅ {1} {2,1} {2,1} {4,2,1}
10 1010 {3,1} {0} {0} {2,0} {2,0} {4,2,0}
11 1011 {3,1,0} ∅ ∅ {2} {2} {4,2}
12 1100 {3,2} {0} {1,0} {1,0} {1,0} {4,1,0}
13 1101 {3,2,0} ∅ {1} {1} {1} {4,1}
14 1110 {3,2,1} {0} {0} {0} {0} {4,0}
15 1111 {3,2,1,0} ∅ ∅ ∅ ∅ {4}
16 10000 {4} {0} {1,0} {2,1,0} {3,2,1,0} {3,2,1,0}
17 10001 {4,0} ∅ {1} {2,1} {3,2,1} {3,2,1}
18 10010 {4,1} {0} {0} {2,0} {3,2,0} {3,2,0}
19 10011 {4,1,0} ∅ ∅ {2} {3,2} {3,2}
20 10100 {4,2} {0} {1,0} {1,0} {3,1,0} {3,1,0}
21 10101 {4,2,0} ∅ {1} {1} {3,1} {3,1}
22 10110 {4,2,1} {0} {0} {0} {3,0} {3,0}
23 10111 {4,2,1,0} ∅ ∅ ∅ {3} {3}
24 11000 {4,3} {0} {1,0} {2,1,0} {2,1,0} {2,1,0}
25 11001 {4,3,0} ∅ {1} {2,1} {2,1} {2,1}
26 11010 {4,3,1} {0} {0} {2,0} {2,0} {2,0}
27 11011 {4,3,1,0} ∅ ∅ {2} {2} {2}
28 11100 {4,3,2} {0} {1,0} {1,0} {1,0} {1,0}
29 11101 {4,3,2,0} ∅ {1} {1} {1} {1}
30 11110 {4,3,2,1} {0} {0} {0} {0} {0}
31 11111 {4,3,2,1,0} ∅ ∅ ∅ ∅ ∅
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i. En el Aṕendice E se incluye una exposición más precisa de lo
que significa contar con una buena formulación de valores ini-
ciales en Relatividad General, y las condiciones que se requie-
ren para ello.

ii. Ver por ejemplo [6].

iii. En el Aṕendice F se tabulan todos los conjuntos deı́ndices ne-
cesarios para desarrollar tensores hasta de cuatroı́ndices.

Rev. Mex. Fis. E64 (2018) 108–126



126 T. MIRAMONTES Y D. SUDARSKY

iv. Ver Apéndice B.

v. Nótese queua es tangente aΣt debido a quena es de norma
constante.

vi. Ver Apéndice C.

vii. Ver Apéndice B.

viii. El signo deua se ha escogido para que en los siguientes des-
arrollos todos los t́erminos tengan signo positivo.

ix. En esta sección se regresa a la notación usual déındices abstrac-
tos ya que la notación empleada en la sección anterior en este
caso es innecesariamente general. No obstante, se conserva la
nomenclatura para las componentes de proyección derivada de
esta notacíon.

x. Una resẽna sobre los observadores Eulerianos y el significado
fı́sico de las componentes de proyección del tensor momento
enerǵıa de acuerdo a ellos se encuentra en el Apéndice A.

xi. Ver Apéndice E.

xii. Un mapeo suave que es uno a uno, sobreyectivo y con mapeo
inverso suave.

xiii. Coordenadasxµ tales queHµ ≡ gab∇a∇b(x
µ) = 0.

xiv. Teorema 10.2.2 de Wald [5].
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