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One of the most significant tools for expressing physical phenomena in the world around us is to express problems using differential equations
with partial derivatives. The result of these considerations has been the invention and application of various analytical and numerical methods
in solving this category of equations. In this work, we make use of a newly-developed technique called the generated exponential rational
function method to compute the exact solution of the Davey-Stewartson equation. According to all the conducted research studies so far,
results similar to those found in the present paper have not been published. The results attest to the efficiency of the proposed method. Th
method used in this paper has the ability to be implemented in other cases in solving equations with relative derivatives.
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1. Introduction This important system of equations has attracted the attention
of many researchers. For example, the line soliton [4], the
Many fields of physics benefit from the nonlinear partial dif- semi-inverse variational principle method (SIVPM), the im-
ferential equations (NPDEs) in a wide variety of applica-provedtan($/2)-expansion method (ITEM) along with the
tions to mechanics, electrostatics, quantum mechanics, angkneralized=’ /G-expansion method (GGM) [5], the G'/G
finance. In linear theory, solutions usually have represenmethod and the 1-soliton solution [6], the Galerkin methods
tation formulas and conform to the superposition principle.[7], the extended tanh-function method [8], the generalized
Despite some equations governing nature were recognized fudryashov method [9], the traveling wave solutions [10],
be linear since the 19th century, this advance was widely critthe first integral method [11], the solitary wave solution [12],
icized in the 20th century. Itis possible to observe NPDEs nothe dynamical system method [13], the traveling waves so-
only in non-Newtonian fluids, glaciology, rheology but also ution and the exponential function method [14], the inverse
in stochastic game theory, nonlinear elasticity, flow throughscattering transform method and the soliton solutions [15],
a porous medium, and image-processing. As a result, nthe self-similar solutions [16], the bilinear method [17, 18],
available superposition can be found for nonlinear equationshe single soliton and multi-soliton solutions [19], t6¢/G
therefore, there is a need for studying those equations. Ovegxpansion method [20], the generalizedh(¢/2) method
the last few years, a crucial number of new methods havand the He’s semi-inverse variational method [21], and the
been proposed to obtain exact solutions for NPDEs. Theifurcation method [22, 23]. Others popular techniques can
Davey-Stewartson equation (DSE) has been studied in martye found in Ref. [24, 43].

areas of research such as chemical engineering, nonlinear |, ref [44], Ghanbari and his collaborator developed an
mechanics, biology, and physics. To define the evolution of &icient methodology for obtaining exact solutions to NPDEs
three-dimensional wave packet in finite depth water, Daveygyhich is known as a generalized exponential rational func-
Stewartson (1&_974) had.presented the DSE in his researgyn method (GERFM). The authors applied the technique
study about fluid dynamics [1]. to solve the resonant nonlinear Satlinger equation (R-

In (2+1)-dimensions, the Davey-Stewartson equation i\ SE). It has been proven over time that the method en-
known as a solution equation that examines long and sholp|es us to be implemented in many different NPDEs arising
wave resonances and other wave propagation patterns. FgF mathematics, physics, and engineering [45-54]. The pro-
more details, we refer to the previous research works COMosed method reproduces many types of precise solutions,
ducted in Refs. [2-3]. The Davey-Stewartson theory is amng it is very useful for finding the exact solutions of the
NPDE for a complex field (wave-amplitudgpnd areal field  equation with relative ease. Recently, a new version of the
(mean flow)¢ which is described by the following nonlinear method for solving partial differential equations with local

coupled system fractional derivatives has been considered in Refs. [55, 56].
_ 1 ) In this paper, the GERFM is used to solve the Davey-
1t + 5 (qwo + 8ayy) + Ala]"q = ¢2q =0, (1)  stewartson equation. This paper consists of the follow-

) ) ing parts: In Sec. 2, we introduce the methodology of the
baw — 0"y — 2X (|Q| )T =0. (1.1)  GERFM. In Sec. 3, the results of using the method in deter-
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mining the solutions of the equation (according to the main 2. The crucial part of the new methodology comes from
achievement of this article) will be presented. Finally, the the fact that Eq/4.2) has the formal solution of
article ends with some concluding remarks.

m

() = Ao+ > ARE()F + ) BEE)F, (2.3)
k=1

k=1

2. Methodology of the GERFM where

B plefhf —I—pzquE
pSeQB£ + p4e‘I4€ ’

[1]

©) (2.4)

The technique is a very efficient method in solving partial dif-

ferential equations [44]. The basic steps of using this method
are listed below. The real (or complex) unknown constants are

Ag, A, B(1 < k < m), andpg,qi(1 < k < 4).
_ These coefficients are determined in such a way that
1. NPDE will be accepted as follows: Eq. (2.9 satisfies the nonlinear ODE of E®Z.P).

Also, it is essential to determine the positive integer m
by the principle of balancing.
2
]__<u($7t)’8u(x,t)’8u(x,t)’(") u(a’;’t)7,,,) =0. (2.1) 3. By adding all terms and inserting Eq2.8) into
Ox ot Ox Eq. 2.2), the left-hand side of Eq2(2) is converted
into the polynomial equatio®(Y7,Y>,Y3,Ys) = 0in

To abbreviate the NPDEs is the following ordinary terms ofY; = e%¢ for i = 1,...,4. With the help
differential equation (ODE), it will be used(§) = of symbolic calculation in Maple, we obtain a set of
u(z,t) and§ = kx — It. simultaneous algebraic equations fof, ¢, (1 < n <
4), andk,w, \, Ag, A1, By by eliminating each coeffi-
.7:(U, U/, U”, B ) — O, (22) cient of P.

4. Finally, exact solutions to Ec2(1) are derived through
solving the algebraic nonlinear system of equations in
| step 3.

3. Theresults
The first step is the traveling wave transformation of Agl)(by utilizing the following new variables
q=u(&)e”,  o=7(E)e”, (3.1)
and
E=ip(x+y—nt), 0 = ax + By + ~t. (3.2)

In addition, constants qf, n, «, and3 should be determined. Using the wave transformation of Eq. (3.1) and Eq. (1.1)
together withy = ad? + 344, the following system of nonlinear ODE is obtained [5]:

1 1 ,
5 (27 + 0%+ B20%) % — 5?67 (14 6%) 2" + P —ipwy’ =0, (3.3)
p (62 = 1) 7" —2ix (2% =o. (3.4)
Integrating Eq./8.4), we obtain
2i\
Y = ED) /02/2d§. (3.5)

Substituting Eq.3.5) in Eq. (3.3 will turn into the following nonlinear differential equation:

%,ﬁ# (*—1) 2" + % (62 =1) 2y + 28>+ 326" ) — N (1+ ) %* =0, (3.6)
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where primes denote the derivatives with respec.t®y balancing terms 0% and%? in Eq. 3.6) using homogenous
principle yields3m = m + 2, som = 1. Accordingly, the solution of Ecd(1) is expressed as follows:
B

E(8)

By following the described methodologies in section 2, we obtain several non-trivial solutidhd)of (
Family 1: We attain the results fgr = [1,1, —1, 1] andgq = [1, —1, 1, —1], which gives

_cosh (§)

(€)= b (6) (3.8)

(&) = Ao+ A1E(6) + (3.7)

(1]

Case 1:

i\/a264 + (24120 — 02 +27) 82+ 24,2\ — 2
b= 6262 — 1 ’

6:6a Y= Aozov A1:A1) Bl:0

a=aq,

Va4
s/ 1

We have replaced the above values with E8sZ)(and 3.8) together with8.5)

_ Ajcosh(§)

“(&) = sinh (§) '

24\ A2 (€ — coth
) - 2O con©)

Hence, the following exact solution was reached for Eq. (1.1):

A cosh '
q1 (xv ya t) = ( ;mh [é—][g]) el(O&ﬂ?-‘-,@y—i—’yt)’

(3.9)

. 2
o (ap.t) = (FRE LG penriren (3.10)

Case 2:

i\/a254 +(8A12A— a2 +27) 82+ 8 A, %A — 21
a=q, 8= )

0202 —1
VA
= —, 0=, =", Ag =0, Ap = A;, By = A;.
1 5\/ﬁ v v 0 1 1 1 1
We have replaced the above values with E8sZ)(and 3.8) together with(8.5)

(2 [cosh (€)]2 — 1) A
cosh (¢)sinh (§)

%2(5) =

PNEL A2 (45 cosh [€] sinh [€] — 2 [cosh {€}] + 1)
2(8) = cosh (&) sinh (&) p (62 — 1) '

Hence, the following exact solution has been reached for Eq. (1.1):

2
g t) = ( {2 {cosh (§)}" — 1} A1> gilostBy+t)

(3.11)

cosh [¢] sinh [¢]

(3.12)

2iN A2 [45 cosh (£) sinh (§) — 2 {cosh (5)}2 + 1] i(az+By-+t)
_ i(az+Ly+vy
¢2 (,y,t) = cosh [{]sinh [¢] 1 [02 — 1] ’ '

Rev. Mex. Fis67 060702
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FIGURE 1. Dynamic behaviours modulus of solutiops(z, y, t) (left) and¢s (z, y, t) (right) foré = 1.05,7v = 1.3,a = 8 = 0.5, = 1.5,
andt = 1.

Case 3:
i/2v/2+/ 3204 + 262 + 2
= b = b = b 5 - 5? = b A = 07
« « /B ﬂ M 5m Y Y 0
—iV2V6E — 1,/B20% + 0252 + 2
A =0, B = )
V(262 +2)

We have replaced the above values with EBs/)(and 3.8) together with8.5)
—i/2v/2V/8% —1,/325% + o262 + 2 ysinh (€)
V(62 + 1) cosh (€)

—1 (64 — 1) (ﬂ264 + a26? + 27) (& — tanh (£)) (3.13)
(62 —1) (62 +1)° ' '

)

Us3(§) =

V5(8) =

Hence, the following exact solution has been reached forEt): (

[ —i/2v2V6% — 14/ 320% + o262 + 2y sinh (€) i(ox+By+t)
g3 (z,y,t) = ( \/X[(S?—i—l]cosh[f] >e o

—i [6* — 1] [826* + 0262 + 27] [¢ — tanh ()] silaw+Bytat) (3.19)
p[62 = 1) (62 + 1)° ' '

¢3 (»”U,y,t) = (

Figure 1 shows the dynamic behavior of modulus of solutipnge, v, t) (left) and ¢3 (z,y,t) for 6 = 1.05,y = 1.3,
a=0=0.5X =15 andt = 1.
Family 2: We attain the results fqr = [¢, —i, 1, 1] andq = [i, —i, ¢, —i], and thus one gets

= sin (&)
2@ =-, GE (3.15)

Case 1:

i\Ja20t + (—8 42X — a2 +27) 02 — 8 4,%A — 2
Oé—Oé, ﬁ_ (SQM I

6 =4, Y= Ay =0, A = Ay, By =—-A.

Rev. Mex. Fis67 060702
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We have replaced the above values with E@si)(@and B.€) together with/8.5)

(2 [cos (€)]* — 1) Ay

TR
20N A2 (—2 [cos {¢€}]* — 4 € cos [¢] sin [¢] + 1)
)= (67— T)sin () cos (€ | (510
Hence, the following exact solution has been reached forEf): (
B [2 {cos ()} — 1] A\
44 (LL', Y, t) - sin (é—) cos (5) € )
20\ A [—2 {cos (£)}* — 4 cos (€)sin (€) + 1] '
— i(oz+B )
b4 (x,y,t) = ( TP e (6 s gilawtBy+at) (3.17)
Case 2:
i\/a254 + (AB1*A— a2 +27) 82 + 4 B2\ — 2
a = q, /6 = (52\/(52——1 3
MZN%y d=29, Y= Ap =0, Ay = By, By = By.
We have replaced the above values with E8s/)(and 3.8) together with/8.5)
By
Y0 = O eos(e)”
20\ By (—2 [cos (£)) + 1)
V5(8) = (3.18)

p (0% — 1) sin (§) cos (£)

Hence, the following exact solution has been reached forEf): (

1000 &y

500

FIGURE 2. Dynamic behaviours modulus of solutions (z,y,t) (left) and ¢s (z,y,t) (right) for By = 1,6 = 8.5,y = 2.01,
a=4.25X=0.92 andt = 1.

Rev. Mex. Fis67 060702
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I Bl i(az+B1 )
)= (=g )

2iABy? =2 {eos () +1]) t
b5 (a:,y,t)z( 7 50 (&) cos @ eilaztBy+t), (3.19)

Figure 2 shows the dynamic behavior of modulus of solutignér, y,t) (left) and ¢s (z,y,t) for By = 1,§ = 8.5,
v =201, =4.25 X\ = 0.92, andt = 1.
Case 3:
iJ0204 + (=2 B1°A — 02 + 27) 62 = 2B %A — 24
a = a? ﬁ = )
02 — 162
o= 631\/524, §=6, ~v=~, Ay=0, A =0, B, =B.
We have replaced the above values with E@sZ)(and 3.8) together with8.5)
By cos (€)
4 ="
6(§) Sn(©)
2\ By ® (= cot (§) — §)
v = . 2

Hence, the following exact solution has been reached for equdtiti (
_ B; cos (5) i(az+Ly+t)
de ($7y7t) - ( sm(ﬁ) € )
~ (20ABy [=cot (&) = €]\ i(awtsyian
b6 (7,y,t) = ( ] e . (3.21)
Family 3: We attainp = [1,1, —1, 1] andg = [2, 0, 2, 0], which gives

— 2 +1

Case 1:

)

i\/a254 +(8A 2N — a2 +27) 62 + 84,2\ — 2
a=a, B=
52— 162

A
,U,:\/X(Sl\/(sg—l, (S:(S, Y=, AOZO, 141:/117 Blel.

We have replaced the above values with Esi)(and 3.8) together with(8.5)

24, (e*¢ +1
nle) - 2,

X (—4+4¢ et —1]) 442
V() = 2 Eb(aj—f)[(eu_lﬂ)) . (3.23)

Hence, the following exact solution has been reached forEg). (

2A1 €4E+1 ilax
q7(w,y,t)=<e4[f_1 1) e o,

29\ |—4+4 46 _11] A2\
o7 (z,y,t) = ( : Eﬁ [5:—_ i{[;g — 1]}] 1) gtloztBy+t) (3.24)

Rev. Mex. Fis67 060702
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FIGURE 3.Dynamic behaviours modulus of solutiogs(z,y, t) (left) and¢s (z,y,t) (right) for A1 = 1,6 = 1.01,7 = 2.3,a = 0.2,

A= 0.5, andt = 1.

Case 2:

i/0260 + (4 4:2) — 02 +27) 62 — 4 4:°) — 2

AA
M;{_lwa 0=, Y= Ay =0, A = Ay, By =—-A;.

We have replaced the above values with E@sZ)(and 3.8) together with8.5)

4e2€A
Us(§) = e‘lefi—i’
—8iNA;?
Vs(€) L

BTNCEESICE)

Hence, the following exact solution has been reached forEt): (

462€A1 : +
_ i(ax+By+~t
qg(x,y,t)—(e4£_1>e( )
—8iNA,? ,
1) = i(az+By+7t)
e (u [62—1}[&5—11)6

(3.25)

(3.26)

Figure 3 shows the dynamic behavior of modulus of solutigng:, y,t) (left) and¢s (x,y,t) for Ay = 1,6 = 1.01,y =

2.3, =02,A=0.5,andt = 1.
Family 4: We attain the results fgr = [—1,3,1, —1] andq = [2,0, 2, 0]. So, it reads

—e?8 +3
()= e

(1]

Case 1:

i0204 + (24:°0 — 02 +27) 02 + 242N — 24

a=mh= 5% — 152 ’
ANA
/,L:\(s/2>11§’ 525) Y= AO:2A17 A1:A17 BIZO

Rev. Mex. Fis67 060702
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We have replaced the above values with E@si)(and (3.8) together with(8.5)

Ay (e +1
wp(e) = 2D,

20X (—442¢[e2 - 1]) 47
o p (21 (2et-2)

V9(8)

Hence, the following exact solution has been reached for equdtith (

Al 625—1_1 i(ax
%(x,y,t):( 6[25_1] ellortfuiat),

C(2ix [—4+26 {28 —1}] A2
¢9<x’y’t)_< 1 02 — 1] [202€ — 9]

) eilaz+By+7t)

Case 2:
1\/5\/2 0204 + (A’A — 202 +47) 62 + Ag?A — 47
am® B 2V/62 — 142 ’
A()\A
= 5=, =", Ay = Ay, A =0, By =3/2 A.
H 26m v Y 0 0 1 1 / 0
We have replaced the above values with EBsZ)(and 3.8) together with(8.5)
Ao (26 +3)
w S LA
10(§) SYSTr
2iXAg? (124 2¢ [e2€ -3
Profe) = 2240 = —3)

p (02 — 1) (8e2€ —24)
Hence, the following exact solution has been reached for equdtith (

_AO [625 + 3]

dio ($7y7t) = ( 26256> ei(fm+ﬁy+7t)7

C(2ix A% [—12 426 {e2€ - 3]
d10 (z,y,t) = ( w02 — 1] [8e2& — 24]

Family 5: We attain the results fgr = [—1, 1,1, 1] andq = [1, —1, 1, —1], which gives

— o sinh(§)
2(6) = cosh (&)’
Case 1:
iy/0269 + (—4 AN — 02 + 29) 82 — 442N - 29
a =, /8 = 9
02 — 162
VA,
=, 6 =0, =7, Ay =0, A1 = Aq, By = —A;.
14 ma Y Y 0 1 1 1 1
We have replaced the above values with E@si)(and 3.8) together with(8.5)
Ay
“nle) = cosh (¢) sinh (£)’
2i\ A2 (—2 [cosh (£)]% + 1)
Y1(6) =

p (62 — 1) cosh (§) sinh (§)

Rev. Mex. Fis67 060702
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FIGURE 4. Dynamic behaviours modulus of solutiogs; (z,y,t) (left) and ¢11 (z,y,¢) (right) for A, = 1,6 = 1.01,7 = 2.3,
a=0.2,A=0.5,andt = 1.

Hence, the following exact solution has been reached forE#g).

_ A i(ax+By+t)
qi11 (l‘,y,t)— <COSh(§)Sinh(£)>e 3

2i\ A2 [—2 {cosh (£)}% + 1}

i(az+S )
41 [0% — 1] cosh (€)sinh (€) | © ., (3.34)

¢11 (I,y,t) =

Figure 4 shows the dynamic behavior of modulus of solutipagz, y, t) (left) and¢;; (x,y,t) for Ay = 1,5 = 1.01,y =
2.3, =02,A=0.5,andt = 1.

Family 6: We attain the results fgr = [—-1 — 4,1 — 4, —1, 1] andq = [¢, —i, ¢, —i], and one obtains
- cos (§) + sin (£)
2(€) = ) 3.35
(©) Y0 (3:35)
Case 1:
i\/a254 + (=2 402A — 02 +27) 62 — 2 Ag?A — 2
o = Q, 6 = 9
§% — 142
AgVA
=222 5=, =~,  Ay=Ay, A1 =0, B;=-2A,.
52— 15 Y= 0 0 1 1 0

We have replaced the above values with EBsZ)(and 3.8) together with8.5)

_ Ao (=sin (§) + cos (§))
“2(§) = cos (§) +sin(¢)

20X A¢® (€ tan (€) + € +2)
TS e @ ©59

Hence, the following exact solution has been reached forE#g).
Ag [—si ;
Q2 (z,y,t) = ( o [—sin () + cos (5)]) ellaatBy+at)

cos (€) +sin (€)

o -2 Z)‘ "402 [f tan ('g) + f + 2] i(az+ﬁy+'yt)
P12 (2,y,1) = ( 11 [6% — 1] [tan (€) + 1] ¢ : (3.37)
Family 7: We obtainp = [-2 —i,2 — i, —1, 1] andgq = [i, —4, 7, —i], and thus one attains
cos (§) + 2 sin (§)

sin(6)

() = (3.38)

Rev. Mex. Fis67 060702
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Case 1:
i/2V2)/2025% + (—Ag*A — 202 + 47) 82 — Ag*A— 4
a:a’ ﬁ: b
02 — 142
AgV/X
=1/2 —, 6=, =", Ay = Ap, A =0, By = —-5/2 A,.
1 / ; y=r 0 0 1 1 /2 Ao

We have replaced the above values with E@si)(and (3.8) together with(8.5)
, _ Ao (=sin(£) 42 cos (§))
%13(8) = 2 cos (§) + 4 sin (&)

20X Ap? (4€ tan (€) +2€ +5)
713(8) = 1 (62 —1) (8416 tan (€)) (3.39)

)

Hence, the following exact solution has been reached for equdtith (
~ (Ao[=sin(§) +2cos ()] iaztpy+rt)
03 (7, 9,1) = ( 2 cos (§) + 4 sin (€) € ’
/ (20X Ag® [A€ tan () + 26+ 5]\ antpyian)
d)lS (‘Evyat) - ( 1 [(52 _ 1] [8 + 16 tan (é—)] € . (340)

Family 8: We attain the results for = [1 — i, —1 — 4, —1, 1] andq = [i, —i, ¢, —i], and thus we obtain

- —sin (§) + cos (§)
= (6) = . 41
©) sin (&) 341
Case 1:
i\ 0204 + (2 40X — 02 + 29) 62 - 24\ — 24
a = «, = )
0% — 162
:M 5 =19, v =7, Ay = Ao, A =0, By =2 A,.

We have replaced the above values with E8sZ)(and 3.8) together with8.5)
_ 2 Agsin (§) cos (&) + Ao
2 (cos (£))* — 1

20X Ag® (tan () — € +2)
T8 = T ) (6 - D) (342

)

U14(8)

Hence, the following exact solution has been reached forE#g).

e

—2i\ An? _ .
e

Family 9: We attain the results fpr= [-3, —1,1,1] andg = [1, —1, 1, —1], and thus we have

_ —sinh (£) — 2 cosh (§)
= = . 3.44
© e (3.44)
Case 1.
z'\/ﬁ\/z 0254 + (AgA — 202 +47) 62 + Ag?A — 44
a=a  f= 2102 — 162 ’
AoV A
0V 0 =0, Y= Ag = Ag, Ay =0, By =3/2 Ao.

SaEN
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We have replaced the above values with E8sZ)(and 3.8) together with8.5)

A (2 sinh (€) + cosh (€))
%15(§) = Z cosh (&) + 2 sinh (¢) ’

y ¢y — 20\ (4cosh (€) In (cosh (§) — 1 +sinh (€)) + 2sinh (€) In (cosh (§) — 1 + sinh (£))) Ao®
15(8) = p (62 — 1) (16 cosh (€) + 8sinh (£))

n 2iA (=4 cosh (€) In (cosh (§) — 1 —sinh (€)) — 2sinh (§) In (cosh (§) — 1 — sinh (§)) — 3sinh (£)) A02.

1 (62 — 1) (16 cosh (€) + 8sinh (£))
Hence, the following exact solution has been reached forEd). (

_ A [2 sinh (6) + cosh (5)] i(ax+0 t)
5 (@, 9,1) = ( 4 cosh (£) + 2 sinh (¢) > ghamri,

¢15 (ma Y, t) = 715(§)ei(a$+5y+7t)'

Family 10: We attain the results fgr = [-2 — 4, -2 + ¢, 1, 1] andq = [¢, —i, i, —i], and thus one has

sin (§) — 2 cos (5)

=0 ="
Case 1:
iﬂ\/2a254 +(—Ap®A— 202 +47) 62 — A’ A — 47
e=a b= 2/0? — 162 ’
Ao\
= 0 =9, =7, Ag = Ao, A =0, B =5/2A,.
1 2@6 v v 0 0 1 1 / 0

We have replaced the above values with E8si)(and 3.8) together with8.5)

~ Ag(cos (&) +2sin(€))
Ui6(§) = g sin (€) — 4 cos (€)

—2iX Ap? (€ tan (€) — 26 +5)
p(02—1)(4tan(§) —8)

Hence, the following exact solution has been reached forEf). (

V16(§) =

11

(3.45)

(3.46)

(3.47)

(3.48)

FIGURE 5. Dynamic behaviours modulus of solutiogs; (z,y, t) (left) and¢ie (z,y,t) (right) for Ag = 1,6 = 1.1,7 = 0.8, = 0.9,

A =0.2,andt = 1.
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16 (2, 9,1) <A0 [cos (§) + 2 sin (f)]) eila+By+yt)

2 sin (§) — 4 cos (€)

—2iX Ap® [€ ¢ —26+5]\ am
P1o (w’y’t):( ;[520_[% [Zntafl)(s) S ]>e( . (3.49)

Figure 5 shows the dynamic behavior of modulus of solutigRd(z,y,t) (left) and ¢16 (x,y,t) for Ag = 1,5 = 1.1,
v=08,a=09,A=02,andt = 1.
Family 11: We attain the results fgr = [1 — 4,1+ 4,1, 1] andq = [i, —i, 4, —i], and then one results

— o cos (£) + sin (§)
E@O = GR (3.50)
Case 1:
i\/a254 +(—2412A— a2 +279) 62 —24,%X — 24
ase 0= 52— 152 ’
VA
M:P——llf 6 =4, Y=, Ag = —Aq, A = Ay, By =0,
We have replaced the above values with E8si)(and B.8) together with8.5)
o A1 sin (g)
U17(§) = cos (€)
20\ A? (tan (€) — &)

Hence, the following exact solution was reached for Efl)(

q17 (l',y,t) = <141Ln(£)> ei(az+[3y+7t)’

cos (€)
¢17 (:L‘, y, t) _ <2 i\ Ij; [[;Qan_(i]) — €] ) ei(az+ﬂy+'yt). (352)

Figure 6 shows the dynamic behavior of modulus of solutigngx,y,t) (left) and ¢17 (z,y,t) for A; = 1,§ = 1.5,
v =0.5,a=0.1, A =0.2,andt = 1.

FIGURE 6. Dynamic behaviours modulus of solutiong? (z,y,t) (left) and ¢17 (z,y,t) (right) for A;
v=0.5a=0.1,A=0.2 andt = 1.
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FIGURE 7. Dynamic behaviours modulus of solutiogs (z,y,t) (left) and¢is (z,y,t) (right) for Ao = 1,6 = 5,7v = 0.1,a = 1.5,
A =0.3,andt = 1.

Family 12:
We attain the results for = [-3,—2,1, 1] andgq = [0, 1, 0, 1], and we get
_ —3—2¢t
=€) = T (3.53)
Case 1:
i/5\/25 254 + (2 492X — 2502 + 507) 62 + 2 Ag2A — 50y
“T. N 57— 10 ’
2AO\/X 12 A(]
= 4 =4, =7, Ag = Ay, A; =0, B = ,
K 532 — 16 Y= 0 0 1 1 5
We have replaced the above values with E8s/)(and 3.8) together with/8.5)
AO (2 e5 — 3)
% =2 -
18() 15+ 10
2iXAg? (268 +36+12
Y 18(8) = o ) (3.54)

p (62 —1) (75 4+ 50€f)

Hence, the following exact solution has been reached for equdtith (

AQ 266 -3 ilax
q18 (x7y7t) = <_ 15[+ 1065] > € ( +,3y+’yt)’

200 Ao” 265 +3E4+12]\ i aimyion
18 (z,y,t) = < P71 51 504 e . (3.55)

Figure 7 shows the dynamic behavior of modulus of solutigesz, v, t) (left) and¢ss (x,y,t) for Ag = 1,6 = 5,y = 0.1,
a=1.5X=0.3,andt = 1.
Family 13:

We attain the results fgr = [—1, —2,1, 1] andq = [1, 0, 1, 0], and one finds

—e¢ -2

m . (3-56)

2() =

Rev. Mex. Fis67 060702
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Case 1:

i\/9a254 + (2A40°X — 9a2 +187) 62 + 2 Ag° X — 18
ﬁ:

am. 3Va% _ 162 ’
240V
= 5=, =7, Ay = Ay, A =0, By =4/3 A,.
H 3\/527—16 v v 0 0 1 1 / 0
We have replaced the above values with E@si)(and (3.8) together with(8.5)
Ap (ef —2)
4 =-__~
19(6) 3et +6
2iXNAg? (€ef +2£6+38
Profe) = 2240 ) (3.57)

(02 —1)(9ef +18)

Hence, the following exact solution has been reached for equdtit (

Ap [e* —2 .
d19 ({I?, Y, t) = <_3(EE—|-6]> ez(‘m‘f‘ﬁyﬁ"ﬁ)7

20X Ag® [€ef +2£ + 8]
1 [02 —1][9e€ + 18]

¢19 (Z‘, Y, t) = < ) ei(am—i-ﬂy-‘r’yt). (358)

Family 14: We attain the results fgr = [2,1, 1, 1] andg = [1, 0, 1, 0], and then we obtain

_ 2et 41
E@ =g T (3.59)
Case 1:
i\/9a2(54 +(240°) — 902 +187) 62 + 2 g2\ — 18
b 3v/62 — 142 ’
240V
= 5=, =7, Ay = Ay, A =0, B = —4/3 Aqg.
M 3m5 Y v 0 0 1 1 / 0
We have replaced the above values with E8si)(and 3.8) together with8.5)
Ap (2¢5 —1)
4 =——7
20(5) 6 ot +3 )
20N Ag® (2€ef + £ +14)
v = . 3.60
Hence, the following exact solution has been reached for equdtith (
AO [2 ef — 1] i(az+Ly+t)
a0 (z,y,t) = <6e5+3 e )
2iMAg” [2€eS +€+4] )
1) = i(az+By+7t) 3.61
¢20($,y7 ) < ILL[(52—1} [18€f+9] e ( )
Family 15: We attain the results fgr = [—1,0, 1, 1] andg = [0, 0, 1, 0], and then we find
()= - (3.62)
T 14t '
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FIGURE 8. Dynamic behaviours modulus of solutiogs, (z,y,t) (left) and¢21 (x,y,t) (right) for Ap = 1,6 = 2,7 = 0.9,8 = 0.5,
A =0.7,andt = 1.

Case 1:
i\/6266 — B20% + (2 402N +27) 62 + 2 42X — 2
a= . B=5,
52 —16
240V A
= 20V 2 0 5=y, =, Ay=Ay, A =24, B =0.
19 6m Y Y 0 0 1 0 1
We have replaced the above values with E8sZ)(and 3.8) together with/8.5)
AQ (e£ - 1)
Un() = —
2iX Ag® (Eef +E+4
Vale) = 22 (£ HE4Y) (3.69

(02 =1)(1+ef)
Hence, the following exact solution has been reached for equdtit) (
AO [GE — ].]

: ) eilaatBytat)
1+e

q21 (w,y,t) = <

B 20X Ao® [€ef + € +4] (ot Bytnt)
¢21($,y,t)—< /1,[(52—1][14—65] )6 +By+y . (364)

Figure 8 shows the dynamic behavior of modulus of solutigngz, y,t) (left) and ¢o1 (z,y,t) for Ag = 1,6 = 2,y =
0.9,8=0.5,\= 0.7, andt = 1.

Remark 1 In each of the above cases, we tgke iy (z 4+ y — (ad® + 56%) t).

4. Conclusion

Partial differential equations have many applications in modeling practical problems in our lives. This importance has created
additional motivation for researchers to develop new and efficient methods. Some of these techniques enable us to achiev
exact solutions to such problems. However, determining such solutions is impossible or very difficult for some categories of

equations. The method used in this paper, called the GERFM, is a powerful technique to determine the exact solutions to
different types of PDEs. In this survey, the method has been utilized to solve the Davey-Stewartson equation. It was shown
that the method is a suitable technique to solve the Davey-Stewartson equation with this study. The results are quite reliable
for solving this problem. Further, we believe that the presented methods and results in this paper are valuable to all researcher
in the field of mathematical physics. Therefore, GERFM offers an excellent opportunity for future research studies on related

topics of the research. This emphasizes the power of the method used in providing exact solutions to various real-world appliec
models.

Rev. Mex. Fis67 060702



16

—_

10.

11.

12.

13.

14.

. KW. Chow, S.Y. Lou,

H. GUNERHAN

. A. Davey, K. Stewartson, On three-dimensional packets of sur-5.

face waves,Proc. R. Soc. London Ser., 838 (1974) 101.
https://doi.org/10.1098/rspa.1974.0076

. C. Babaoglu, Long-wave short-wave resonance case for a
16.

generalized Davey-Stewartson syst&@haos Solitons Fractal
38 (2008) 48 /nttps://doi.org/10.1016/j.chaos.
2008.02.00/

peakons of the Davey-Stewartson syste@haos Solitons
Fractal, 27 (2006) 561 https://doi.org/10.1016/].
chaos.Z2005.04.036

18.
. M. D. Groves, S-M Sun, E. Wahin, Periodic solitons for the
elliptic-elliptic focussing Davey-Stewartson equatiofis, R.
Math. 354 (2016) 486 https://doi.org/10.1016/|.
crma.2016.02.005 19.

. R. F. Zinati and J. Manafian, Applications of He's semi-inverse

method, ITEM and GGM to the Davey-Stewartson equation,
Eur. Phys. J. Plus132 (2017) 155 .https://doi.org/
10.1140/ep|p/i2017-11463-3

. G. Ebadi and A. Biswas, Th&’/G method and 1-soliton

solution of the Davey-Stewartson equatiddath. Comput.
Model. 53 (2011) 694 https://doi.org/10.1016/].
mcm.2010.10.005

. Y. Gao, L. Mei, R. Li, Galerkin methods for the Davey- 21

Stewartson equationgyppl. Math. Comput328 (2018) 144.
https://doi.org/10.1016/|.amc.2018.01.044

. L. Chang, Y. Pan, X. Ma, New exact travelling wave solutions

of Davey-Stewartson equatiod, Comput. Inf. Sys® (2013)
1687.

S. Tuluce Demiray, H. Bulut, New soliton solutions of Davey-
Stewartson equation with power-law nonlineari@pt. Quant.
Electron. 49 (2017) 117 https://doi.org/10.1007/
$11082-01/-0950-6

M. Song, A. Biswas, Topological defects and bifurcation analy-
sis of the DS equation with power law nonlineariéypl. Math.
Inf. Sci.9 (2015) 1719.

H. Jafari, A. Sooraki, Y. Talebi, A. Biswas, The first inte-
gral method and traveling wave solutions to Davey-Stewartson
equation, Nonlinear Anal. Model. Control17 (2012) 182.
https://doi.org/10.15388/NA.17.2.14067

O.H. El-Kalaawy, R.S. Ibrahim, Solitary wave solution of the
two-dimensional regularized long-wave and Davey-Stewartson
equations in fluids and plasma8ppl. Math.3 (2012) 833.
https://doi.org/10.4236/am.2012.38124

G. Ebadi, E.V. Krishnan, M. Labidi, E.Zerrad, A. Biswas-
Analytical and numerical solutions to the Davey-Stewartson
equation with power-law nonlinearityave Random Com-
plex Media21 (2011) 559https://doi.org/10.1080/
1/455030.2011.606853

J. Shi, J. Li, S. Li, Analytical travelling wave solutions and pa-
rameter analysis for th@+1)-dimensional Davey-Stewartson-
type equationsPramana J. Phys81 (2013) 747 nttps:
//doi.org/10.1007/s12043-013-0612-6

Propagating wave patterns and17.

20.

22.

24.

25.

26.

27.

V. A. Arkadiev, A. K. Pogrebkov, and M.C. Polivanov, In-
verse scattering transform method and soliton solutions for the
Davey-Stewartson Il equatioRhys. D36 (1989) 189https:
/ldoi.org/10.1016/0167-2789(89)90258-3

X. Zhao, Self-similar solutions to a generalized Davey-
Stewartson systemlath. Comput. Model50 (2009) 1394,
https://doi.org/10.1016/].mcm.2009.04.023

Y. Ohta and J. Yang, Dynamics of rogue waves in the Davey-
Stewartson Il equationd. Phys. A46 (2013) 105202https:
//doi.org/10.1088/1751-8113/46/10/105202

Y. Ohta and J. Yang, Rogue waves in the Davey-
Stewartson | equatiorPhys. Rev. A Math. Theog6 (2012)
036604 https://doi.org/10.1103/PhysReVvE.86.

036604 |

D. Anker and N.C. Freeman, On the Solition Solutions of the
Davey-Stewartson Equation for Long Waved3oc. R. Soc.
Lond. A.360 (1978) 529 https://doi.org/10.1098/
rspa.19/8.0083

B. Zhang, M.N. Xiong, L. Chen, Many New Exact Solutions for
Generalized Davey-Stewartson Equation with Arbitrary Power
Nonlinearities Using NovelG’ / G)-Expansion Method]. Adv.
Appl. Math.4 (2019) 10lhttps://doi.org/10.22606/
jaam.2019.41002

M. Fazli Aghdaei, H. Adibi, New methods to solve the reso-
nant nonlinear sckidinger equation with time-dependent co-
efficients,Opt. Quantum Electronic49 (2017) 316/https:
//do1.org/10.100//s11082-017-1152-y

M. Song, Z.R. Liu, "Qualitative analysis and explicit travel-
ing wave solutions for the Davey-Stewartson equatibtath.
Methods Appl. ScB7(2014) 393https://doi.org/10.
1002/mma.2798 |

3. J. Cao, H.Y. Lu, Exact traveling wave solutions of the gener-

alized Davey-Stewartson equatiagh Shanghai Norm. Univ4
(2015) 330.

K. Munusamy, C. Ravichandran, K. S. Nisar and B. Ghan-
bari, Existence of solutions for some functional integrod-
ifferential equations with nonlocal condition$/ath. Meth-
ods Appl. Sci43 (2020) 10319https://doi.org/10.
1002/mma.6698 .

G. Rahman, K. S. Nisar, B. Ghanbari, and T. Abdel-
jawad, On generalized fractional integral inequalities for
the monotone weighted Chebyshev functionafgjv. Dif-
fer. EqQu.2020(2020) 368https://doi.org/10.1186/
S13662-020-02830-/

M. Eslami and H. Rezazadeh, The first integral method for
Wu-Zhang system with conformable time-fractional derivative,
Calcolo 53 (2016) 475.https://doi.org/10.1007/
S10092-015-0158-8

R. M. Jena Rajarama, S. Chakraverty, H. Rezazadeh, and
D. Domiri Ganji, On the solution of time-fractional dynam-
ical model of Brusselator reaction-diffusion system arising
in chemical reactionsiMathematical Methods in the Applied
Sciencest3 (2020) 3903https://doi.org/10.1002/

mma.6l41.

Rev. Mex. Fis67 060702


https://doi.org/10.1098/rspa.1974.0076�
https://doi.org/10.1016/j.chaos.2008.02.007�
https://doi.org/10.1016/j.chaos.2008.02.007�
https://doi.org/10.1016/j.chaos.2005.04.036�
https://doi.org/10.1016/j.chaos.2005.04.036�
https://doi.org/10.1016/j.crma.2016.02.005�
https://doi.org/10.1016/j.crma.2016.02.005�
https://doi.org/10.1140/epjp/i2017-11463-3�
https://doi.org/10.1140/epjp/i2017-11463-3�
https://doi.org/10.1016/j.mcm.2010.10.005�
https://doi.org/10.1016/j.mcm.2010.10.005�
https://doi.org/10.1016/j.amc.2018.01.044�
https://doi.org/10.1007/s11082-017-0950-6�
https://doi.org/10.1007/s11082-017-0950-6�
https://doi.org/10.15388/NA.17.2.14067�
https://doi.org/10.4236/am.2012.38124�
https://doi.org/10.1080/17455030.2011.606853�
https://doi.org/10.1080/17455030.2011.606853�
https://doi.org/10.1007/s12043-013-0612-6�
https://doi.org/10.1007/s12043-013-0612-6�
https://doi.org/10.1016/0167-2789(89)90258-3�
https://doi.org/10.1016/0167-2789(89)90258-3�
https://doi.org/10.1016/j.mcm.2009.04.023�
https://doi.org/10.1088/1751-8113/46/10/105202�
https://doi.org/10.1088/1751-8113/46/10/105202�
https://doi.org/10.1103/PhysRevE.86.036604�
https://doi.org/10.1103/PhysRevE.86.036604�
https://doi.org/10.1098/rspa.1978.0083�
https://doi.org/10.1098/rspa.1978.0083�
https://doi.org/10.22606/jaam.2019.41002�
https://doi.org/10.22606/jaam.2019.41002�
https://doi.org/10.1007/s11082-017-1152-y�
https://doi.org/10.1007/s11082-017-1152-y�
https://doi.org/10.1002/mma.2798�
https://doi.org/10.1002/mma.2798�
https://doi.org/10.1002/mma.6698�
https://doi.org/10.1002/mma.6698�
https://doi.org/10.1186/s13662-020-02830-7�
https://doi.org/10.1186/s13662-020-02830-7�
https://doi.org/10.1007/s10092-015-0158-8�
https://doi.org/10.1007/s10092-015-0158-8�
https://doi.org/10.1002/mma.6141�
https://doi.org/10.1002/mma.6141�

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

OPTICAL SOLITON SOLUTIONS OF NONLINEAR DAVEY-STEWARTSON EQUATION USING AN EFFICIENT METHOD

M. Inc et al,
formable Klein-Gordon equation with quantic nonlinear-
ity, AIMS Math.5 (2020) 6972 https://doi.org/10.
3934/math.202044 7/

M. Inc, M. Miah, A. Akher Chowdhury Shahadat, H. Reza-

zadeh, M.A. Akinlar, Y.M. Chu, New exact solutions for 43

the Kaup-Kupershmidt equatioAIMS Math, 5 (2020) 6726.
https://dol.org/10.3934/math.2020432

A. C. Cevikel, A. Bekir, S. San, M. B. Gucen, Construction of
periodic and solitary wave solutions for the complex nonlinear
evolution equations]. Franklin Inst.351(2014) 694https:
/ldoi.org/10.1016/j.jfranklin.2013.04.017

A. C. Cevikel, A. Bekir, M. Akar, S. San, A procedure
to construct exact solutions of nonlinear evolution equations,
Pramana79 (2012) 337 /https://doi.org/10.1007/
S12043-012-0326-1

A. Bekir, A. C. Cevikel, New solitons and periodic solutions
for nonlinear physical models in mathematical physitsnlin-
ear Anal. Real World Appll1(2010) 3275https://doi.
org/10.1016/).nonrwa.2009.10.015

A. Bekir and A. C. Cevikel, Solitary wave solutions of two non-
linear physical models by tanh—coth meth@@dmmun. Nonlin-
ear Sci. Numer. Simul.4 (2009) 1804https://doi.org/
10.1016/].cnsns.2008.07.004

A. C. Cevikel and A. Bekir, New solitons and periodic solutions
for (2+1)-dimensional Davey-Stewartson equatio@$jin. J.
Phys, 51 (2013) 1.https://doi.org/10.6122/CJP.

1.1 .

A. Bekir and A. C. Cevikel, New exact travelling wave solu-
tions of non-linear physical modelghaos Solitons Fractakél
(2009) 1733.nttps://doi.org/10.1016/j.chaos.

2008.0/.01/

A. Bekir, A. C. Cevikel, O. Guner, S. San, Bright and Dark
Soliton Solutions of the (2+1)-Dimensional Evolution Equa-
tions, Math. Model. Anal.19 (2014) 118 /https://doi.
0rg/10.3846/13926292.2014.893456

O. Gilner, A. Bekir, and A. C. Cevikel, Dark soliton and peri-
odic wave solutions of nonlinear evolution equatiofdy. Dif-

fer. EQu.2013(2013) 68/https://doi.org/10.1186/
168/-184/-2013-638

A. C. Cevikel, New Exact Solutions of The Space-Time Frac-
tional KdV-Burgers and Non-Linear Fractional Foam Drainage
Equation, Therm. Sci.22 (2018) 15.https://doi.org/
10.2298/TSCI11/0615267C

A. Bekir,O. Guner, A. C. Cevikel, The Exp-function Method for
Some Time-fractional Differential Equation&EE/CAA J. Au-
tom. Sinica4 (2017) 315https://doi.org/10.1109/
JAS.2016./5101/2

A. Bekir, O. Guner, A. Burcu, A. C. Cevikel, Exact Solutions 92-

for Fractional Differential-Difference Equations by (G/G)-
Expansion Method with Modified Riemann-Liouville Deriva-
tive, Adv. Appl. Math. Mech8 (2016) 293 https://doi.
0rg/10.4208/aamm.2014.m /98

E. Aksoy, A. Bekir, A. C. Cevikel, Study on Fractional Dif-
ferential Equations with Modified Riemann-Liouville Deriva-
tive via Kudryashov Method,Int. J. Nonlinear Sci. Nu-
mer. Simul20(2019) 511 https://doi.org/10.1515/
1Insns-2015-0151

New solitary wave solutions for the con- 42.

44.

45.

46.

47.

48.

49.

50.

51.

53.

17

H. Gunerhan, Exact traveling wave solutions of the Gard-
ner equation by the improvethn(©(9))-expansion method
and the wave ansatz methodviath. Probl. Eng. 2020
(2020) 5926836, https://doi.org/10.1155/2020/

5926836 .

H. Dutta, H. Ginerhan, K.K. Ali, R. Yilmazer, Exact Soliton
Solutions to the Cubic-Quartic Non-linear S&fdinger Equa-
tion With Conformable Derivativekront. Phys, 8 (2020) 62.
https:/idoi.org/10.3389/fphy.2020.00062

B. Ghanbari and M. Inc, A new generalized exponential ra-
tional function method to find exact special solutions for the
resonance nonlinear Scittinger equationEur. Phys. J. Plus
133 (2018) 142.|https://doi.org/10.1140/epjp/
i2018-11984-1

B. Ghanbari and J.F. @nez-Aguilar, The generalized ex-
ponential rational function method for Radhakrishnan-Kundu-
Lakshmanan equation wiff-conformable time derivativ&iev.
Mex. Fis.65 (2019) 503https://doi.org/10.31349/
RevMexFis.65.503

H.M. Srivastava, H. @nerhan, B. Ghanbari, Exact traveling-
wave solutions for resonance nonlinear Schinger equation
with intermodal dispersions and the Kerr law nonlinearity,
Math Meth Appl Scj.42(2019) 7210https://doi.org/
10.1002/mma.5827

B. Ghanbari, H. @nerhan, O.Ajlhan, and H.M. Baskonus,
Some new families of exact solutions to a new extension of
nonlinear Schivdinger equationPhys. Scr95 (2020) 075208.
https://doi.org/10.1088/1402-4896/ab8f42 |

B. Ghanbari and C-Ku. Kuo, A variety of solitary wave solu-
tions to the (2+1)-dimensional bidirectional SK and variable-
coefficient SK equations,Results in Physicsl8 (2020)
103266 .https://doi.org/10.1016/].rinp.2020.

103266 .

B. Ghanbari, M. Inc and L. Rada, Solitary wave solutions to the
Tzitzeica type equations obtained by a new efficient approach,
J. Appl. Anal. Comput9 (2018) 568 https://doi.org/
10.11948/2156-90/X.20180103

B. Ghanbari, H. Gnerhan, S. Momani, Exact optical solutions
for the regularized long-wave Kadomtsev-Petviashvili equa-
tion, Phys. Scr95(2020) 10520€&https://doi.org/10.
1088/1402-4896/abb5c8

B. Ghanbari, K. S. Nisar, and M. Aldhaifallah, Abundant soli-
tary wave solutions to an extended nonlinear 8dhger’s
equation with conformable derivative using an efficient inte-
gration method, Adv. Differ. Eq.2020 (2020) 328!nttps:
/ldoi.org/10.1186/s13662-020-02787-7 |

M. S. Osman, B. Ghanbari, and J. A. T. Machado, New
complex waves in nonlinear optics based on the complex
Ginzburg-Landau equation with Kerr law nonlinearitgur.
Phys. J. Plus.134 (2019) 20. https://doi.org/10.
1140/ep|p/i2019-12442-4

B. Ghanbari, A. Yusuf, and D. Baleanu, The new ex-
act solitary wave solutions and stability analysis for
the(2+1)-dimensional Zakharov-Kuznetsov equatisdy. Dif-
fer. Eq, 2019 (2019) 49.https://doi.org/10.1186/
$13662-019-1964-0

Rev. Mex. Fis67 060702


https://doi.org/10.3934/math.2020447�
https://doi.org/10.3934/math.2020447�
https://doi.org/10.3934/math.2020432�
https://doi.org/10.1016/j.jfranklin.2013.04.017�
https://doi.org/10.1016/j.jfranklin.2013.04.017�
https://doi.org/10.1007/s12043-012-0326-1�
https://doi.org/10.1007/s12043-012-0326-1�
https://doi.org/10.1016/j.nonrwa.2009.10.015�
https://doi.org/10.1016/j.nonrwa.2009.10.015�
https://doi.org/10.1016/j.cnsns.2008.07.004�
https://doi.org/10.1016/j.cnsns.2008.07.004�
https://doi.org/10.6122/CJP.51.1�
https://doi.org/10.6122/CJP.51.1�
https://doi.org/10.1016/j.chaos.2008.07.017�
https://doi.org/10.1016/j.chaos.2008.07.017�
https://doi.org/10.3846/13926292.2014.893456�
https://doi.org/10.3846/13926292.2014.893456�
https://doi.org/10.1186/1687-1847-2013-68�
https://doi.org/10.1186/1687-1847-2013-68�
https://doi.org/10.2298/TSCI170615267C�
https://doi.org/10.2298/TSCI170615267C�
https://doi.org/10.1109/JAS.2016.7510172�
https://doi.org/10.1109/JAS.2016.7510172�
https://doi.org/10.4208/aamm.2014.m798�
https://doi.org/10.4208/aamm.2014.m798�
https://doi.org/10.1515/ijnsns-2015-0151�
https://doi.org/10.1515/ijnsns-2015-0151�
https://doi.org/10.1155/2020/5926836�
https://doi.org/10.1155/2020/5926836�
https://doi.org/10.3389/fphy.2020.00062�
https://doi.org/10.1140/epjp/i2018-11984-1�
https://doi.org/10.1140/epjp/i2018-11984-1�
https://doi.org/10.31349/RevMexFis.65.503�
https://doi.org/10.31349/RevMexFis.65.503�
https://doi.org/10.1002/mma.5827�
https://doi.org/10.1002/mma.5827�
https://doi.org/10.1088/1402-4896/ab8f42�
https://doi.org/10.1016/j.rinp.2020.103266�
https://doi.org/10.1016/j.rinp.2020.103266�
https://doi.org/10.11948/2156-907X.20180103�
https://doi.org/10.11948/2156-907X.20180103�
https://doi.org/10.1088/1402-4896/abb5c8�
https://doi.org/10.1088/1402-4896/abb5c8�
https://doi.org/10.1186/s13662-020-02787-7�
https://doi.org/10.1186/s13662-020-02787-7�
https://doi.org/10.1140/epjp/i2019-12442-4�
https://doi.org/10.1140/epjp/i2019-12442-4�
https://doi.org/10.1186/s13662-019-1964-0�
https://doi.org/10.1186/s13662-019-1964-0�

18 H. GUNERHAN

54. S. Kumar, A. Kumar, A-M Wazwaz, New exact solitary wave Math. Methods Appl. S0j2020) 4673https://doi.org/
solutions of the strain wave equation in microstructured solids  [10.1002/mma. /060

via the generalized exponential rational function mettial, 55 g Ghanbari, On the non-differentiable exact solutions to

Phys. J. Plus.35(2020) 1. Schamel’s equation with local fractional derivative on Cantor
55. B. Ghanbari, On novel non-differentiable exact solutions to lo- sets, Numer. Methods Partial Differ. Equto be published),
cal fractional Gardner’s equation using an effective technique, |https://doi.org/10.1002/num.22740

Rev. Mex. Fis67 060702


https://doi.org/10.1002/mma.7060�
https://doi.org/10.1002/mma.7060�
https://doi.org/10.1002/num.22740�

