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One of the most significant tools for expressing physical phenomena in the world around us is to express problems using differential equations
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1. Introduction

Many fields of physics benefit from the nonlinear partial dif-
ferential equations (NPDEs) in a wide variety of applica-
tions to mechanics, electrostatics, quantum mechanics, and
finance. In linear theory, solutions usually have represen-
tation formulas and conform to the superposition principle.
Despite some equations governing nature were recognized to
be linear since the 19th century, this advance was widely crit-
icized in the 20th century. It is possible to observe NPDEs not
only in non-Newtonian fluids, glaciology, rheology but also
in stochastic game theory, nonlinear elasticity, flow through
a porous medium, and image-processing. As a result, no
available superposition can be found for nonlinear equations;
therefore, there is a need for studying those equations. Over
the last few years, a crucial number of new methods have
been proposed to obtain exact solutions for NPDEs. The
Davey-Stewartson equation (DSE) has been studied in many
areas of research such as chemical engineering, nonlinear
mechanics, biology, and physics. To define the evolution of a
three-dimensional wave packet in finite depth water, Davey-
Stewartson (1974) had presented the DSE in his research
study about fluid dynamics [1].

In (2+1)-dimensions, the Davey-Stewartson equation is
known as a solution equation that examines long and short
wave resonances and other wave propagation patterns. For
more details, we refer to the previous research works con-
ducted in Refs. [2-3]. The Davey-Stewartson theory is an
NPDE for a complex field (wave-amplitude)q and a real field
(mean flow)φ which is described by the following nonlinear
coupled system

iqt +
1
2

(qxx + δqyy) + λ|q|2q − φxq = 0, (1)

φxx − δ2φyy − 2λ
(|q|2)

x
= 0. (1.1)

This important system of equations has attracted the attention
of many researchers. For example, the line soliton [4], the
semi-inverse variational principle method (SIVPM), the im-
provedtan(φ/2)-expansion method (ITEM) along with the
generalizedG′/G-expansion method (GGM) [5], the G’/G
method and the 1-soliton solution [6], the Galerkin methods
[7], the extended tanh-function method [8], the generalized
Kudryashov method [9], the traveling wave solutions [10],
the first integral method [11], the solitary wave solution [12],
the dynamical system method [13], the traveling waves so-
lution and the exponential function method [14], the inverse
scattering transform method and the soliton solutions [15],
the self-similar solutions [16], the bilinear method [17, 18],
the single soliton and multi-soliton solutions [19], theG′/G
-expansion method [20], the generalizedtan(φ/2) method
and the He’s semi-inverse variational method [21], and the
bifurcation method [22, 23]. Others popular techniques can
be found in Ref. [24,43].

In Ref. [44], Ghanbari and his collaborator developed an
efficient methodology for obtaining exact solutions to NPDEs
which is known as a generalized exponential rational func-
tion method (GERFM). The authors applied the technique
to solve the resonant nonlinear Schrödinger equation (R-
NLSE). It has been proven over time that the method en-
ables us to be implemented in many different NPDEs arising
in mathematics, physics, and engineering [45-54]. The pro-
posed method reproduces many types of precise solutions,
and it is very useful for finding the exact solutions of the
equation with relative ease. Recently, a new version of the
method for solving partial differential equations with local
fractional derivatives has been considered in Refs. [55,56].

In this paper, the GERFM is used to solve the Davey-
Stewartson equation. This paper consists of the follow-
ing parts: In Sec. 2, we introduce the methodology of the
GERFM. In Sec. 3, the results of using the method in deter-
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mining the solutions of the equation (according to the main
achievement of this article) will be presented. Finally, the
article ends with some concluding remarks.

2. Methodology of the GERFM

The technique is a very efficient method in solving partial dif-
ferential equations [44]. The basic steps of using this method
are listed below.

1. NPDE will be accepted as follows:

F
(

u(x, t),
∂u(x, t)

∂x
,
∂u(x, t)

∂t
,
∂2u(x, t)

∂x2
, . . .

)
= 0. (2.1)

To abbreviate the NPDEs is the following ordinary
differential equation (ODE), it will be usedu(ξ) =
u(x, t) andξ = kx− lt.

F(u, u′, u′′, . . .) = 0, (2.2)

2. The crucial part of the new methodology comes from
the fact that Eq. (2.2) has the formal solution of

u(ξ) = A0 +
m∑

k=1

AkΞ(ξ)k +
m∑

k=1

BkΞ(ξ)−k, (2.3)

where

Ξ(ξ) =
p1e

q1ξ + p2e
q2ξ

p3eq3ξ + p4eq4ξ
. (2.4)

The real (or complex) unknown constants are
A0, Ak, Bk(1 ≤ k ≤ m), andpk, qk(1 ≤ k ≤ 4).
These coefficients are determined in such a way that
Eq. (2.3) satisfies the nonlinear ODE of Eq. (2.2).

Also, it is essential to determine the positive integer m
by the principle of balancing.

3. By adding all terms and inserting Eq. (2.3) into
Eq. (2.2), the left-hand side of Eq. (2.2) is converted
into the polynomial equationP (Y1, Y2, Y3, Y4) = 0 in
terms ofYi = eqiξ for i = 1, . . . , 4. With the help
of symbolic calculation in Maple, we obtain a set of
simultaneous algebraic equations forpn, qn(1 ≤ n ≤
4), andk, ω, λ, A0, A1, B1 by eliminating each coeffi-
cient ofP .

4. Finally, exact solutions to Eq. (2.1) are derived through
solving the algebraic nonlinear system of equations in
step 3.

3. The results

The first step is the traveling wave transformation of Eq. (1.1) by utilizing the following new variables

q = (ξ)eiθ, φ = (ξ)eiθ, (3.1)

and

ξ = iµ (x + y − ηt) , θ = αx + βy + γt. (3.2)

In addition, constants ofµ, η, α, andβ should be determined. Using the wave transformation of Eq. (3.1) and Eq. (1.1)
together withη = αδ2 + βδ4, the following system of nonlinear ODE is obtained [5]:

1
2

(
2γ + α2δ2 + β2δ4

) − 1
2
µ2δ2

(
1 + δ2

) ′′ + λ 3 − iµ
′ = 0, (3.3)

µ
(
δ2 − 1

) ′′ − 2iλ
(

2
)′

= 0. (3.4)

Integrating Eq. (3.4), we obtain

=
2iλ

µ(δ2 − 1)

∫
2dξ. (3.5)

Substituting Eq. (3.5) in Eq. (3.3) will turn into the following nonlinear differential equation:

1
2
µ2δ2

(
δ4 − 1

) ′′ +
1
2

(
δ2 − 1

) (
2γ + α2δ2 + β2δ4

) − λ
(
1 + δ2

)
3 = 0, (3.6)

Rev. Mex. Fis.67060702



OPTICAL SOLITON SOLUTIONS OF NONLINEAR DAVEY-STEWARTSON EQUATION USING AN EFFICIENT METHOD 3

where primes denote the derivatives with respect toξ. By balancing terms of ′′ and 3 in Eq. (3.6) using homogenous
principle yields3m = m + 2, som = 1. Accordingly, the solution of Eq.(1.1) is expressed as follows:

(ξ) = A0 + A1Ξ(ξ) +
B1

Ξ(ξ)
. (3.7)

By following the described methodologies in section 2, we obtain several non-trivial solutions of (1.1).
Family 1: We attain the results forp = [1, 1,−1, 1] andq = [1,−1, 1,−1], which gives

Ξ (ξ) =
cosh (ξ)
sinh (ξ)

. (3.8)

Case 1:

α = α, β =
i
√

α2δ4 +
(
2 A1

2λ− α2 + 2 γ
)
δ2 + 2 A1

2λ− 2 γ

δ2
√

δ2 − 1
,

µ =

√
λA1

δ
√

δ2 − 1
, δ = δ, γ = γ, A0 = 0, A1 = A1, B1 = 0.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

1(ξ) =
A1 cosh (ξ)

sinh (ξ)
,

1(ξ) =
2 iλ A1

2 (ξ − coth (ξ))
µ (δ2 − 1)

. (3.9)

Hence, the following exact solution was reached for Eq. (1.1):

q1 (x, y, t) =
(

A1 cosh [ξ]
sinh [ξ]

)
ei(αx+βy+γt),

φ1 (x, y, t) =
(

2 iλA1
2 [ξ − coth (ξ)]

µ [δ2 − 1]

)
ei(αx+βy+γt). (3.10)

Case 2:

α = α, β =
i
√

α2δ4 +
(
8 A1

2λ− α2 + 2 γ
)
δ2 + 8 A1

2λ− 2 γ

δ2
√

δ2 − 1
,

µ =

√
λA1

δ
√

δ2 − 1
, δ = δ, γ = γ, A0 = 0, A1 = A1, B1 = A1.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

2(ξ) =

(
2 [cosh (ξ)]2 − 1

)
A1

cosh (ξ) sinh (ξ)
,

2(ξ) =
2 iλ A1

2
(
4 ξ cosh [ξ] sinh [ξ]− 2 [cosh {ξ}]2 + 1

)

cosh (ξ) sinh (ξ)µ (δ2 − 1)
. (3.11)

Hence, the following exact solution has been reached for Eq. (1.1):

q2 (x, y, t) =




[
2 {cosh (ξ)}2 − 1

]
A1

cosh [ξ] sinh [ξ]


 ei(αx+βy+γt),

φ2 (x, y, t) =


2 iλA1

2
[
4 ξ cosh (ξ) sinh (ξ)− 2 {cosh (ξ)}2 + 1

]

cosh [ξ] sinh [ξ]µ [δ2 − 1]


 ei(αx+βy+γt). (3.12)
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FIGURE 1. Dynamic behaviours modulus of solutionsq3 (x, y, t) (left) andφ3 (x, y, t) (right) for δ = 1.05, γ = 1.3, α = β = 0.5, λ = 1.5,

andt = 1.

Case 3:

α = α, β = β, µ =
i/2
√

2
√

β2δ4 + α2δ2 + 2 γ

δ
√

δ2 + 1
, δ = δ, γ = γ, A0 = 0,

A1 = 0, B1 =
−i
√

2
√

δ4 − 1
√

β2δ4 + α2δ2 + 2 γ√
λ (2 δ2 + 2)

.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

3(ξ) =
−i/2

√
2
√

δ4 − 1
√

β2δ4 + α2δ2 + 2 γ sinh (ξ)√
λ (δ2 + 1) cosh (ξ)

,

3(ξ) =
−i

(
δ4 − 1

) (
β2δ4 + α2δ2 + 2 γ

)
(ξ − tanh (ξ))

µ (δ2 − 1) (δ2 + 1)2
. (3.13)

Hence, the following exact solution has been reached for Eq. (1.1):

q3 (x, y, t) =

(
−i/2

√
2
√

δ4 − 1
√

β2δ4 + α2δ2 + 2 γ sinh (ξ)√
λ [δ2 + 1] cosh [ξ]

)
ei(αx+βy+γt),

φ3 (x, y, t) =

(
−i

[
δ4 − 1

] [
β2δ4 + α2δ2 + 2 γ

]
[ξ − tanh (ξ)]

µ [δ2 − 1] [δ2 + 1]2

)
ei(αx+βy+γt). (3.14)

Figure 1 shows the dynamic behavior of modulus of solutionsq3 (x, y, t) (left) andφ3 (x, y, t) for δ = 1.05, γ = 1.3,
α = β = 0.5, λ = 1.5, andt = 1.
Family 2: We attain the results forp = [i,−i, 1, 1] andq = [i,−i, i,−i], and thus one gets

Ξ (ξ) = − sin (ξ)
cos (ξ)

. (3.15)

Case 1:

α = α, β =
i
√

α2δ4 +
(−8 A1

2λ− α2 + 2 γ
)
δ2 − 8 A1

2λ− 2 γ

δ2
√

δ2 − 1
,

µ =

√
λA1

δ
√

δ2 − 1
, δ = δ, γ = γ, A0 = 0, A1 = A1, B1 = −A1.
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We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

4(ξ) =

(
2 [cos (ξ)]2 − 1

)
A1

sin (ξ) cos (ξ)
,

4(ξ) =
2 iλA1

2
(
−2 [cos {ξ}]2 − 4 ξ cos [ξ] sin [ξ] + 1

)

µ (δ2 − 1) sin (ξ) cos (ξ)
. (3.16)

Hence, the following exact solution has been reached for Eq. (1.1):

q4 (x, y, t) =




[
2 {cos (ξ)}2 − 1

]
A1

sin (ξ) cos (ξ)


 ei(αx+βy+γt),

φ4 (x, y, t) =


2 iλA1

2
[
−2 {cos (ξ)}2 − 4 ξ cos (ξ) sin (ξ) + 1

]

µ [δ2 − 1] sin (ξ) cos (ξ)


 ei(αx+βy+γt). (3.17)

Case 2:

α = α, β =
i
√

α2δ4 +
(
4 B1

2λ− α2 + 2 γ
)
δ2 + 4 B1

2λ− 2 γ

δ2
√

δ2 − 1
,

µ =

√
λB1

δ
√

δ2 − 1
, δ = δ, γ = γ, A0 = 0, A1 = B1, B1 = B1.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

5(ξ) = − B1

sin (ξ) cos (ξ)
,

5(ξ) =
2 iλB1

2
(
−2 [cos (ξ)]2 + 1

)

µ (δ2 − 1) sin (ξ) cos (ξ)
. (3.18)

Hence, the following exact solution has been reached for Eq. (1.1):

FIGURE 2. Dynamic behaviours modulus of solutionsq5 (x, y, t) (left) and φ5 (x, y, t) (right) for B1 = 1, δ = 8.5, γ = 2.01,

α = 4.25, λ = 0.92, andt = 1.
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q5 (x, y, t) =
(
− B1

sin (ξ) cos (ξ)

)
ei(αx+βy+γt),

φ5 (x, y, t) =


2 iλ B1

2
[
−2 {cos (ξ)}2 + 1

]

µ [δ2 − 1] sin (ξ) cos (ξ)


 ei(αx+βy+γt). (3.19)

Figure 2 shows the dynamic behavior of modulus of solutionsq5 (x, y, t) (left) and φ5 (x, y, t) for B1 = 1, δ = 8.5,
γ = 2.01, α = 4.25, λ = 0.92, andt = 1.
Case 3:

α = α, β =
i
√

α2δ4 +
(−2 B1

2λ− α2 + 2 γ
)
δ2 − 2 B1

2λ− 2 γ
√

δ2 − 1δ2
,

µ =

√
λB1

δ

√
δ2 − 1, δ = δ, γ = γ, A0 = 0, A1 = 0, B1 = B1.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

6(ξ) = −B1 cos (ξ)
sin (ξ)

,

6(ξ) =
2 iλB1

2 (− cot (ξ)− ξ)
µ (δ2 − 1)

. (3.20)

Hence, the following exact solution has been reached for equation (1.1):

q6 (x, y, t) =
(
−B1 cos (ξ)

sin (ξ)

)
ei(αx+βy+γt),

φ6 (x, y, t) =
(

2 iλB1
2 [− cot (ξ)− ξ]
µ [δ2 − 1]

)
ei(αx+βy+γt). (3.21)

Family 3: We attainp = [1, 1,−1, 1] andq = [2, 0, 2, 0], which gives

Ξ (ξ) =
e2 ξ + 1
e2 ξ − 1

. (3.22)

Case 1:

α = α, β =
i
√

α2δ4 +
(
8 A1

2λ− α2 + 2 γ
)
δ2 + 8 A1

2λ− 2 γ
√

δ2 − 1δ2
,

µ =

√
λA1

δ

√
δ2 − 1, δ = δ, γ = γ, A0 = 0, A1 = A1, B1 = A1.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

7(ξ) =
2A1

(
e4 ξ + 1

)

e4 ξ − 1
,

7(ξ) =
2 iλ

(−4 + 4 ξ
[
e4 ξ − 1

])
A1

2

µ (δ2 − 1) (e4 ξ − 1)
. (3.23)

Hence, the following exact solution has been reached for Eq. (1.1):

q7 (x, y, t) =

(
2A1

[
e4 ξ + 1

]

e4 ξ − 1

)
ei(αx+βy+γt),

φ7 (x, y, t) =

(
2 iλ

[−4 + 4 ξ
{
e4 ξ − 1

}]
A2

1

µ [δ2 − 1] [e4 ξ − 1]

)
ei(αx+βy+γt). (3.24)
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FIGURE 3.Dynamic behaviours modulus of solutionsq8 (x, y, t) (left) andφ8 (x, y, t) (right) for A1 = 1, δ = 1.01, γ = 2.3, α = 0.2,

λ = 0.5, andt = 1.

Case 2:

α = α, β =
i
√

α2δ4 +
(−4 A1

2λ− α2 + 2 γ
)
δ2 − 4 A1

2λ− 2 γ
√

δ2 − 1δ2
,

µ =

√
λA1√

δ2 − 1δ
, δ = δ, γ = γ, A0 = 0, A1 = A1, B1 = −A1.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

8(ξ) =
4e2 ξA1

e4 ξ − 1
,

8(ξ) =
−8 iλA1

2

µ (δ2 − 1) (e4 ξ − 1)
. (3.25)

Hence, the following exact solution has been reached for Eq. (1.1):

q8 (x, y, t) =
(

4e2 ξA1

e4 ξ − 1

)
ei(αx+βy+γt),

φ8 (x, y, t) =
( −8 iλA1

2

µ [δ2 − 1] [e4 ξ − 1]

)
ei(αx+βy+γt). (3.26)

Figure 3 shows the dynamic behavior of modulus of solutionsq8 (x, y, t) (left) andφ8 (x, y, t) for A1 = 1, δ = 1.01, γ =
2.3, α = 0.2, λ = 0.5, andt = 1.
Family 4: We attain the results forp = [−1, 3, 1,−1] andq = [2, 0, 2, 0]. So, it reads

Ξ (ξ) =
−e2 ξ + 3
e2 ξ − 1

. (3.27)

Case 1:

α = α, β =
i
√

α2δ4 +
(
2 A1

2λ− α2 + 2 γ
)
δ2 + 2 A1

2λ− 2 γ
√

δ2 − 1δ2
,

µ =

√
λA1√

δ2 − 1δ
, δ = δ, γ = γ, A0 = 2 A1, A1 = A1, B1 = 0.
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We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

9(ξ) =
A1

(
e2 ξ + 1

)

e2 ξ − 1
,

9(ξ) =
2 iλ

(−4 + 2 ξ
[
e2 ξ − 1

])
A1

2

µ (δ2 − 1) (2 e2 ξ − 2)
. (3.28)

Hence, the following exact solution has been reached for equation (1.1):

q9 (x, y, t) =

(
A1

[
e2 ξ + 1

]

e2 ξ − 1

)
ei(αx+βy+γt),

φ9 (x, y, t) =

(
2 iλ

[−4 + 2 ξ
{
e2 ξ − 1

}]
A1

2

µ [δ2 − 1] [2 e2 ξ − 2]

)
ei(αx+βy+γt). (3.29)

Case 2:

α = α, β =
i
√

2
√

2 α2δ4 +
(
A0

2λ− 2 α2 + 4 γ
)
δ2 + A0

2λ− 4 γ

2
√

δ2 − 1δ2
,

µ =
A0

√
λ

2δ
√

δ2 − 1
, δ = δ, γ = γ, A0 = A0, A1 = 0, B1 = 3/2 A0.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

10(ξ) = −A0

(
e2 ξ + 3

)

2 e2 ξ − 6
,

10(ξ) =
2 iλ A0

2
(−12 + 2 ξ

[
e2 ξ − 3

])

µ (δ2 − 1) (8 e2 ξ − 24)
. (3.30)

Hence, the following exact solution has been reached for equation (1.1):

q10 (x, y, t) =

(
−A0

[
e2 ξ + 3

]

2 e2 ξ − 6

)
ei(αx+βy+γt),

φ10 (x, y, t) =

(
2 iλA0

2
[−12 + 2 ξ

{
e2 ξ − 3

}]

µ [δ2 − 1] [8 e2 ξ − 24]

)
ei(αx+βy+γt). (3.31)

Family 5: We attain the results forp = [−1, 1, 1, 1] andq = [1,−1, 1,−1], which gives

Ξ (ξ) = − sinh (ξ)
cosh (ξ)

. (3.32)

Case 1:

α = α, β =
i
√

α2δ4 +
(−4 A1

2λ− α2 + 2 γ
)
δ2 − 4 A1

2λ− 2 γ
√

δ2 − 1δ2
,

µ =

√
λA1√

δ2 − 1δ
, δ = δ, γ = γ, A0 = 0, A1 = A1, B1 = −A1.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

11(ξ) =
A1

cosh (ξ) sinh (ξ)
,

11(ξ) =
2 iλA1

2
(
−2 [cosh (ξ)]2 + 1

)

µ (δ2 − 1) cosh (ξ) sinh (ξ)
. (3.33)
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FIGURE 4. Dynamic behaviours modulus of solutionsq11 (x, y, t) (left) and φ11 (x, y, t) (right) for A1 = 1, δ = 1.01, γ = 2.3,

α = 0.2, λ = 0.5, andt = 1.

Hence, the following exact solution has been reached for Eq. (1.1):

q11 (x, y, t) =
(

A1

cosh (ξ) sinh (ξ)

)
ei(αx+βy+γt),

φ11 (x, y, t) =


2 iλA1

2
[
−2 {cosh (ξ)}2 + 1

]

µ [δ2 − 1] cosh (ξ) sinh (ξ)


 ei(αx+βy+γt). (3.34)

Figure 4 shows the dynamic behavior of modulus of solutionsq11 (x, y, t) (left) andφ11 (x, y, t) for A1 = 1, δ = 1.01, γ =
2.3, α = 0.2, λ = 0.5, andt = 1.
Family 6: We attain the results forp = [−1− i, 1− i,−1, 1] andq = [i,−i, i,−i], and one obtains

Ξ (ξ) =
cos (ξ) + sin (ξ)

sin (ξ)
. (3.35)

Case 1:

α = α, β =
i
√

α2δ4 +
(−2 A0

2λ− α2 + 2 γ
)
δ2 − 2 A0

2λ− 2 γ
√

δ2 − 1δ2
,

µ =
A0

√
λ√

δ2 − 1δ
, δ = δ, γ = γ, A0 = A0, A1 = 0, B1 = −2 A0.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

12(ξ) =
A0 (− sin (ξ) + cos (ξ))

cos (ξ) + sin (ξ)
,

12(ξ) =
−2 iλA0

2 (ξ tan (ξ) + ξ + 2)
µ (δ2 − 1) (tan (ξ) + 1)

. (3.36)

Hence, the following exact solution has been reached for Eq. (1.1):

q12 (x, y, t) =
(

A0 [− sin (ξ) + cos (ξ)]
cos (ξ) + sin (ξ)

)
ei(αx+βy+γt),

φ12 (x, y, t) =
(−2 iλ A0

2 [ξ tan (ξ) + ξ + 2]
µ [δ2 − 1] [tan (ξ) + 1]

)
ei(αx+βy+γt). (3.37)

Family 7: We obtainp = [−2− i, 2− i,−1, 1] andq = [i,−i, i,−i], and thus one attains

Ξ (ξ) =
cos (ξ) + 2 sin (ξ)

sin (ξ)
. (3.38)
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Case 1:

α = α, β =
i/2
√

2
√

2 α2δ4 +
(−A0

2λ− 2 α2 + 4 γ
)
δ2 −A0

2λ− 4 γ
√

δ2 − 1δ2
,

µ = 1/2
A0

√
λ√

δ2 − 1δ
, δ = δ, γ = γ, A0 = A0, A1 = 0, B1 = −5/2 A0.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

13(ξ) =
A0 (− sin (ξ) + 2 cos (ξ))

2 cos (ξ) + 4 sin (ξ)
,

13(ξ) =
−2 iλA0

2 (4 ξ tan (ξ) + 2 ξ + 5)
µ (δ2 − 1) (8 + 16 tan (ξ))

. (3.39)

Hence, the following exact solution has been reached for equation (1.1):

q13 (x, y, t) =
(

A0 [− sin (ξ) + 2 cos (ξ)]
2 cos (ξ) + 4 sin (ξ)

)
ei(αx+βy+γt),

φ13 (x, y, t) =
(−2 iλA0

2 [4 ξ tan (ξ) + 2 ξ + 5]
µ [δ2 − 1] [8 + 16 tan (ξ)]

)
ei(αx+βy+γt). (3.40)

Family 8: We attain the results forp = [1− i,−1− i,−1, 1] andq = [i,−i, i,−i], and thus we obtain

Ξ (ξ) =
− sin (ξ) + cos (ξ)

sin (ξ)
. (3.41)

Case 1:

α = α, β =
i
√

α2δ4 +
(−2 A0

2λ− α2 + 2 γ
)
δ2 − 2 A0

2λ− 2 γ
√

δ2 − 1δ2
,

µ =
A0

√
λ√

δ2 − 1δ
, δ = δ, γ = γ, A0 = A0, A1 = 0, B1 = 2 A0.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

14(ξ) =
2 A0 sin (ξ) cos (ξ) + A0

2 (cos (ξ))2 − 1
,

14(ξ) =
−2 iλA0

2 (ξ tan (ξ)− ξ + 2)
µ (δ2 − 1) (tan (ξ)− 1)

. (3.42)

Hence, the following exact solution has been reached for Eq. (1.1):

q14 (x, y, t) =

(
2 A0 sin (ξ) cos (ξ) + A0

2 [cos (ξ)]2 − 1

)
ei(αx+βy+γt),

φ14 (x, y, t) =
(−2 iλA0

2 [ξ tan (ξ)− ξ + 2]
µ [δ2 − 1] [tan (ξ)− 1]

)
ei(αx+βy+γt). (3.43)

Family 9: We attain the results forp = [−3,−1, 1, 1] andq = [1,−1, 1,−1], and thus we have

Ξ (ξ) =
− sinh (ξ)− 2 cosh (ξ)

cosh (ξ)
. (3.44)

Case 1:

α = α, β =
i
√

2
√

2 α2δ4 +
(
A0

2λ− 2 α2 + 4 γ
)
δ2 + A0

2λ− 4 γ

2
√

δ2 − 1δ2
,

µ =
A0

√
λ

2
√

δ2 − 1δ
, δ = δ, γ = γ, A0 = A0, A1 = 0, B1 = 3/2 A0.
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We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

15(ξ) =
A0 (2 sinh (ξ) + cosh (ξ))
4 cosh (ξ) + 2 sinh (ξ)

,

15(ξ) =
2iλ (4 cosh (ξ) ln (cosh (ξ)− 1 + sinh (ξ)) + 2 sinh (ξ) ln (cosh (ξ)− 1 + sinh (ξ))) A0

2

µ (δ2 − 1) (16 cosh (ξ) + 8 sinh (ξ))

+
2iλ (−4 cosh (ξ) ln (cosh (ξ)− 1− sinh (ξ))− 2 sinh (ξ) ln (cosh (ξ)− 1− sinh (ξ))− 3 sinh (ξ)) A0

2

µ (δ2 − 1) (16 cosh (ξ) + 8 sinh (ξ))
. (3.45)

Hence, the following exact solution has been reached for Eq. (1.1):

q15 (x, y, t) =
(

A0 [2 sinh (ξ) + cosh (ξ)]
4 cosh (ξ) + 2 sinh (ξ)

)
ei(αx+βy+γt),

φ15 (x, y, t) = 15(ξ)ei(αx+βy+γt). (3.46)

Family 10: We attain the results forp = [−2− i,−2 + i, 1, 1] andq = [i,−i, i,−i], and thus one has

Ξ (ξ) =
sin (ξ)− 2 cos (ξ)

cos (ξ)
. (3.47)

Case 1:

α = α, β =
i
√

2
√

2 α2δ4 +
(−A0

2λ− 2 α2 + 4 γ
)
δ2 −A0

2λ− 4 γ

2
√

δ2 − 1δ2
,

µ =
A0

√
λ

2
√

δ2 − 1δ
, δ = δ, γ = γ, A0 = A0, A1 = 0, B1 = 5/2 A0.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

16(ξ) =
A0 (cos (ξ) + 2 sin (ξ))
2 sin (ξ)− 4 cos (ξ)

,

16(ξ) =
−2 iλA0

2 (ξ tan (ξ)− 2 ξ + 5)
µ (δ2 − 1) (4 tan (ξ)− 8)

. (3.48)

Hence, the following exact solution has been reached for Eq. (1.1):

FIGURE 5. Dynamic behaviours modulus of solutionsq16 (x, y, t) (left) andφ16 (x, y, t) (right) for A0 = 1, δ = 1.1, γ = 0.8, α = 0.9,

λ = 0.2, andt = 1.
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q16 (x, y, t) =
(

A0 [cos (ξ) + 2 sin (ξ)]
2 sin (ξ)− 4 cos (ξ)

)
ei(αx+βy+γt),

φ16 (x, y, t) =
(−2 iλA0

2 [ξ tan (ξ)− 2 ξ + 5]
µ [δ2 − 1] [4 tan (ξ)− 8]

)
ei(αx+βy+γt). (3.49)

Figure 5 shows the dynamic behavior of modulus of solutionsq16 (x, y, t) (left) and φ16 (x, y, t) for A0 = 1, δ = 1.1,
γ = 0.8, α = 0.9, λ = 0.2, andt = 1.
Family 11: We attain the results forp = [1− i, 1 + i, 1, 1] andq = [i,−i, i,−i], and then one results

Ξ (ξ) =
cos (ξ) + sin (ξ)

cos (ξ)
. (3.50)

Case 1:

α = α, β =
i
√

α2δ4 +
(−2 A1

2λ− α2 + 2 γ
)
δ2 − 2 A1

2λ− 2 γ
√

δ2 − 1δ2
,

µ =

√
λA1√

δ2 − 1δ
, δ = δ, γ = γ, A0 = −A1, A1 = A1, B1 = 0,

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

17(ξ) =
A1 sin (ξ)
cos (ξ)

,

17(ξ) =
2 iλA2

1 (tan (ξ)− ξ)
µ (δ2 − 1)

. (3.51)

Hence, the following exact solution was reached for Eq. (1.1):

q17 (x, y, t) =
(

A1 sin (ξ)
cos (ξ)

)
ei(αx+βy+γt),

φ17 (x, y, t) =
(

2 iλA2
1 [tan (ξ)− ξ]

µ [δ2 − 1]

)
ei(αx+βy+γt). (3.52)

Figure 6 shows the dynamic behavior of modulus of solutionsq17 (x, y, t) (left) and φ17 (x, y, t) for A1 = 1, δ = 1.5,
γ = 0.5, α = 0.1, λ = 0.2, andt = 1.

FIGURE 6. Dynamic behaviours modulus of solutionsq17 (x, y, t) (left) and φ17 (x, y, t) (right) for A1 = 1, δ = 1.5,

γ = 0.5, α = 0.1, λ = 0.2, andt = 1.
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FIGURE 7. Dynamic behaviours modulus of solutionsq18 (x, y, t) (left) andφ18 (x, y, t) (right) for A0 = 1, δ = 5, γ = 0.1, α = 1.5,

λ = 0.3, andt = 1.

Family 12:
We attain the results forp = [−3,−2, 1, 1] andq = [0, 1, 0, 1], and we get

Ξ (ξ) =
−3− 2 eξ

1 + eξ
. (3.53)

Case 1:

α = α, β =
i/5

√
25 α2δ4 +

(
2 A0

2λ− 25 α2 + 50 γ
)
δ2 + 2 A0

2λ− 50 γ
√

δ2 − 1δ2
,

µ =
2A0

√
λ

5
√

δ2 − 1δ
, δ = δ, γ = γ, A0 = A0, A1 = 0, B1 =

12 A0

5
,

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

18(ξ) = −A0

(
2 eξ − 3

)

15 + 10 eξ
,

18(ξ) =
2 iλA0

2
(
2 ξ eξ + 3 ξ + 12

)

µ (δ2 − 1) (75 + 50 eξ)
. (3.54)

Hence, the following exact solution has been reached for equation (1.1):

q18 (x, y, t) =

(
−A0

[
2 eξ − 3

]

15 + 10 eξ

)
ei(αx+βy+γt),

φ18 (x, y, t) =

(
2 iλA0

2
[
2 ξ eξ + 3 ξ + 12

]

µ [δ2 − 1] [75 + 50 eξ]

)
ei(αx+βy+γt). (3.55)

Figure 7 shows the dynamic behavior of modulus of solutionsq18 (x, y, t) (left) andφ18 (x, y, t) for A0 = 1, δ = 5, γ = 0.1,
α = 1.5, λ = 0.3, andt = 1.
Family 13:

We attain the results forp = [−1,−2, 1, 1] andq = [1, 0, 1, 0], and one finds

Ξ (ξ) =
−eξ − 2
eξ + 1

. (3.56)
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Case 1:

α = α, β =
i
√

9 α2δ4 +
(
2 A0

2λ− 9 α2 + 18 γ
)
δ2 + 2 A0

2λ− 18 γ

3
√

δ2 − 1δ2
,

µ =
2A0

√
λ

3
√

δ2 − 1δ
, δ = δ, γ = γ, A0 = A0, A1 = 0, B1 = 4/3 A0.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

19(ξ) = −A0

(
eξ − 2

)

3 eξ + 6
,

19(ξ) =
2 iλ A0

2
(
ξ eξ + 2 ξ + 8

)

µ (δ2 − 1) (9 eξ + 18)
. (3.57)

Hence, the following exact solution has been reached for equation (1.1):

q19 (x, y, t) =

(
−A0

[
eξ − 2

]

3 eξ + 6

)
ei(αx+βy+γt),

φ19 (x, y, t) =

(
2 iλA0

2
[
ξ eξ + 2 ξ + 8

]

µ [δ2 − 1] [9 eξ + 18]

)
ei(αx+βy+γt). (3.58)

Family 14: We attain the results forp = [2, 1, 1, 1] andq = [1, 0, 1, 0], and then we obtain

Ξ (ξ) =
2 eξ + 1
eξ + 1

. (3.59)

Case 1:

α = α, β =
i
√

9 α2δ4 +
(
2 A0

2λ− 9 α2 + 18 γ
)
δ2 + 2 A0

2λ− 18 γ

3
√

δ2 − 1δ2
,

µ =
2A0

√
λ

3
√

δ2 − 1δ
, δ = δ, γ = γ, A0 = A0, A1 = 0, B1 = −4/3 A0.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

20(ξ) =
A0

(
2 eξ − 1

)

6 eξ + 3
,

20(ξ) =
2 iλ A0

2
(
2 ξ eξ + ξ + 4

)

µ (δ2 − 1) (18 eξ + 9)
. (3.60)

Hence, the following exact solution has been reached for equation (1.1):

q20 (x, y, t) =

(
A0

[
2 eξ − 1

]

6 eξ + 3

)
ei(αx+βy+γt),

φ20 (x, y, t) =

(
2 iλA0

2
[
2 ξ eξ + ξ + 4

]

µ [δ2 − 1] [18 eξ + 9]

)
ei(αx+βy+γt). (3.61)

Family 15: We attain the results forp = [−1, 0, 1, 1] andq = [0, 0, 1, 0], and then we find

Ξ (ξ) = − 1
1 + eξ

. (3.62)

Rev. Mex. Fis.67060702



OPTICAL SOLITON SOLUTIONS OF NONLINEAR DAVEY-STEWARTSON EQUATION USING AN EFFICIENT METHOD 15

FIGURE 8. Dynamic behaviours modulus of solutionsq21 (x, y, t) (left) andφ21 (x, y, t) (right) for A0 = 1, δ = 2, γ = 0.9, β = 0.5,

λ = 0.7, andt = 1.

Case 1:

α =
i
√

β2δ6 − β2δ4 +
(
2 A0

2λ + 2 γ
)
δ2 + 2 A0

2λ− 2 γ
√

δ2 − 1δ
, β = β,

µ =
2A0

√
λ

δ
√

δ2 − 1
, δ = δ, γ = γ, A0 = A0, A1 = 2 A0, B1 = 0.

We have replaced the above values with Eqs. (3.7) and (3.8) together with (3.5)

21(ξ) =
A0

(
eξ − 1

)

1 + eξ
,

21(ξ) =
2 iλA0

2
(
ξ eξ + ξ + 4

)

µ (δ2 − 1) (1 + eξ)
(3.63)

Hence, the following exact solution has been reached for equation (1.1):

q21 (x, y, t) =

(
A0

[
eξ − 1

]

1 + eξ

)
ei(αx+βy+γt),

φ21 (x, y, t) =

(
2 iλA0

2
[
ξ eξ + ξ + 4

]

µ [δ2 − 1] [1 + eξ]

)
ei(αx+βy+γt). (3.64)

Figure 8 shows the dynamic behavior of modulus of solutionsq21 (x, y, t) (left) andφ21 (x, y, t) for A0 = 1, δ = 2, γ =
0.9, β = 0.5, λ = 0.7, andt = 1.

Remark 1 In each of the above cases, we takeξ = iµ
(
x + y − (

αδ2 + βδ4
)
t
)
.

4. Conclusion

Partial differential equations have many applications in modeling practical problems in our lives. This importance has created
additional motivation for researchers to develop new and efficient methods. Some of these techniques enable us to achieve
exact solutions to such problems. However, determining such solutions is impossible or very difficult for some categories of
equations. The method used in this paper, called the GERFM, is a powerful technique to determine the exact solutions to
different types of PDEs. In this survey, the method has been utilized to solve the Davey-Stewartson equation. It was shown
that the method is a suitable technique to solve the Davey-Stewartson equation with this study. The results are quite reliable
for solving this problem. Further, we believe that the presented methods and results in this paper are valuable to all researchers
in the field of mathematical physics. Therefore, GERFM offers an excellent opportunity for future research studies on related
topics of the research. This emphasizes the power of the method used in providing exact solutions to various real-world applied
models.
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