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Using the reductive perturbation method, we have derived the Zakharov-Kuznetsov equation for a multi-component plasma model consisting
of electrons, positrons, and fluid ions with positive and negative charges. The extended homogenous balance method has been applied to
obtain the soliton solution in addition to many traveling wave solutions. Various physical parameters have different effects on the profile of
the solitary wave pulses, which can show the propagation of the ion, acoustic waves in laboratory plasmas and many astrophysical plasma
systems as in Earth’s ionosphere.

Keywords: Zakharov-Kuznetsov (ZK) equation; multicomponent plasma; ion-acoustic solitary waves; HB method; nonlinear partial differ-
ential equations.

PACS: 52.35.Fp; 52.35.Sb; 52.90.+z; 02.30.Jr

DOI: https://doi.org/10.31349/RevMexFis.67.061501

1. Introduction

Many research efforts have been devoted to positive-negative
ion plasma, composed of ions with negative and positive
charges and electrons, since it has an important role in study-
ing various plasma science fields. This kind of plasma can be
found in low-temperature laboratory experiments and many
astrophysical plasma environments [1–8]. The (e-p) plasma,
which contains positrons and electrons, can also include pos-
itive ions. This (e-p-i) plasma is created in the laboratory and
also found in many astrophysical contexts like galactic nuclei
and others (see [9–11]). The (e-p-i) plasma model in the pres-
ence of negative ions was discussed in many other works as in
Ref. [12–16]. The predicted nonlinear excitations that occur
in e-p-i plasmas may include electromagnetic solitons, elec-
trostatic oscillations solitons, which depending on the nonlin-
ear plasma in magnetized or unmagnetized cases, including
the Zakharov-Kuznetsov (ZK), Korteweg-De Vries (KdV),
and the nonlinear Schrodinger (NLS) equations [17,18].

The ZK equation has great importance in studying the
propagation of acoustic waves in the magnetized plasma
[19,20]. Various methods were used for obtaining many types
of solutions to the nonlinear evolution equations (N.L.E),
such as the extended tanh method, (G′/G) method, the gen-
eral expansion method, and the extended homogeneous bal-
ance (ext.HB) method [21–29]. Wanget al. had proposed
the HB method, which is an effective algebraic method for
extract a wide class of analytical solutions [30, 31]. Many
N.L.E. had been solved using the extended homogeneous bal-
ance. In this paper, the ext. HB method has been used to solve
the ordinary differential equation (O.D.E.) reduced from the
ZK equation with computer algebra system such as Mathe-
matica to extract various kinds of analytical solutions for ZK

equation, the obtained solutions have new solutions and can-
not be obtained by many other methods like tanh, extended
tanh,G′/G expansion methods.

Many researchers have studied the nonlinear propagation
of the ion-acoustic waves for a two-component plasma con-
sisting of classical ions and electrons. Owing to the impor-
tance of pair-ion plasma, which is composed of positive and
negative ions, as well as the study of the ion-acoustic nonlin-
ear solitary waves for magnetized plasma, it is of paramount
interest. In the present work, we have studied the nonlin-
ear properties of the propagation ion-acoustic (IAW) soli-
tary waves in positive-negative ion plasma with positrons and
electrons. The ZK equation is derived and has been solved
using the ext.HB method to study the small-but-finite ampli-
tude solitary wave. The effects of various physical parame-
ters have been checked on the characteristics of the solitary
waves in such plasma, which can be found in many astro-
physical plasma systems as in the Earth’s ionosphere.

The paper is organized as follows: In the following sec-
tion, the governing equations for the suggested plasma model
are presented, and the ZK equation is derived to describe the
system. The extended homogenous balance method is used
to solve the ZK equation in Sec. 3; different kinds of solu-
tions are obtained as periodic, rational, blow up, and solitary
wave solutions, while we focus on the solitary type solution.
The discussion is presented in Sec. 4, and a summary of these
results is presented in the last section.

2. Model equations and ZK equation

The suggested magnetized multi-component plasma model
consists of electrons, positrons, and fluid ions with positive
and negative charges within a magnetic fieldB = B0x̂. We
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write the system of equations in the normalized form. The
fluid equations for the ions are the following continuity and
momentum equations

∂n+,−
∂t

+∇ · (n+,−u+,−) = 0, (1)

(
∂

∂t
+ u+ · ∇

)
u+ = −Q∇φ +

e

c
(u+ ×B0x̂), (2)

(
∂

∂t
+ u− · ∇

)
u− = ∇φ− e

c
(u− ×B0x̂). (3)

The Poisson equation

∇2φ = ne − np + n− − n+, (4)

while positrons and electrons distributions are given by

ne = ηe exp(sp φ), (5)

np = ηp exp(−φ). (6)

Such thatsp = Tp/Te , whereTp andTe are the positron
and electron temperature, respectively. The mass ratio is de-
fined asQ = m−/m+, wherem−,+ are the negative and
positive ion masses, respectively, whileηe = ne0/n+0, and
ηp = np0/n+0. In the last equations,n+,− andu+,− rep-
resent the ions number density and fluid velocity, respec-
tively, while the wave potential is expressed byφ. The den-
sity nα (for α = +,−, p and e) is scaled byn+0 (unper-
turbed positive ion density) ,u+,−, φ and the variablesx and
t are scaled byCs+ = (kBTe/m+)1/2, kBTe/e andλD+ =(
kBTe/4πe2n+0

)1/2
, andω−1

p+ = (4πe2n+0/m+)−1/2, re-
spectively, and the positive/negative ion cyclotron frequency
Ωc± = eB0/(m±c) is scaled byω−1

p+ . The neutrality condi-
tion gives

1 = ηe − ηp + µ, (7)

where µ = n−0/n+0. Using the reductive perturbation
method, we shall study the nonlinear propagation of the
IAWs. According to this method, we use the stretching:

χ = ε1/2(x− λt), Y = ε1/2y, and τ = ε3/2t, (8)

whereλ is the wave velocity andε is a small parameter, while
the dependent physical quantities in the model equations are
expanded as

Γ = Γ(0) +
∞∑

n=1

εnΓ(n), (9)

where Γ = {n+, n−, ne, np, u+, u−, φ}T and Γ(0) =
{1, µ, ηe, ηp, 0, 0, 0}T . Employing the variable stretching (8)
and the expansions (9) in Eqs. (1)-(6), we can isolate distinct
orders inε. The lowest-order inε gives

n
(1)
+ =

1
λ2

φ(1), u
(1)
+,x =

1
λ

φ(1),

u
(1)
+,z =

1
Ωc+

∂φ(1)

∂Y
, (10)

n
(1)
− =

−µQ

λ2
φ(1), u

(1)
−,x =

−Q

λ
φ(1),

u
(1)
−,z =

−Q

Ωc+

∂φ(1)

∂Y
, (11)

n(1)
e = ηespφ

(1), (12)

n(1)
p = ηpφ

(1). (13)

The phase velocity relation can be deduced from Poisson
equation

λ =

√
2[1 + Qµ]
ηesp + ηp

. (14)

The next-order inε gives a system of equations in the
second-order perturbed quantities. Eliminating these quan-
tities with the last equations, we can get the Zakharov-
Kuznetsov (ZK) equation

∂φ(1)

∂τ
+ Aφ(1) ∂φ(1)

∂χ
+ B

∂3φ(1)

∂χ3
+ D

∂3φ(1)

∂χ∂Y 2
= 0. (15)

The coefficients of nonlinear and dispersion terms are given
as

A = B

[
3
λ4
− 3µQ2

λ4
− ηes

2
e + ηp

]
, (16)

B =
[

λ3

(2 + 2µQ)

]
, (17)

D = B

[
1 +

µQ

Ω2
c−

+
1

Ω2
c+

]
. (18)

3. Solution of ZK equation

Now, we shall illustrate the approach of the ext.HB method to
obtain a class of exact solutions, including the solitary wave
kinds for the ZK equation.

Let us first consider the ZK equation

ut + αuux + βuxxx + γuxyy = 0, (19)

we can reduce ZK equation to an O.D.E., using the transfor-
mationu(x, t) = U(ζ), ζ = ax + by − ϑt. So we get

−ϑU ′(ζ) + βU (3)(ζ)a3 + αU(ζ)U ′(ζ)a

+ b2γU (3)(ζ)a = 0, (20)

whereϑ represent a constant speed anda2 + b2 = 1. By
integrating the last equation, we have

−ϑU(ζ) +
1
2
aαU(ζ)2 + U ′′(ζ)(a3β + ab2γ) = 0. (21)
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By balancing the highest order with the highest degree in
the last equation, we can see that the solution should be in the
form

U = a0 + b0 + a1ω

+ b1(1 + ω)−1 + a2ω
2 + b2(1 + ω)−2, (22)

with

ω
′
= k + M ω + P ω2, (*)

whereai andbi are constants, whilek, M , andP are the pa-
rameters to be determined latter,ω = ω(ζ) andω

′
= dω/dζ.

It is noted that equation (*) is the Riccati equation, which
can be solved to give us many forms of solutions depending
on the following cases (see [32] for more details):

Case I: when P = 1, M = 0

Cases(II, III, andIV ): whenPk = (M2 − p2
1)/4.

By substituting Eq. (22) in the integrated O.D.E., we ob-
tain an equation inω. Then, the coefficients ofωi (i =
0, 1, 2, ...) will be equated to0 to get a system of algebraic
equations that can be solved using MATHEMATICA, to give
us:

The first set:

a0 = −12
(
kPβa2 + b2kPγ

)

α
, a1 = 0, b1 = 0, a2 = −12

(
a2βP 2 + b2γP 2

)

α
,

b2 = 0, ϑ = 8kPβa3 + 8b2kPγa + αa0a (23)

The second set:

M = 2P, a0 = −12
(−P 2βa2 + kPβa2 − b2P 2γ + b2kPγ

)

α
, a1 = 0, b1 = 0, a2 = 0,

b2 = −12
(
k2βa2 + P 2βa2 − 2kPβa2 + b2k2γ + b2P 2γ − 2b2kPγ

)

α
,

ϑ = −8P 2βa3 + 8kPβa3 − 8b2P 2γa + 8b2kPγa + αa0a. (24)

In Ref. [32], Abdelsalam et al., the method was explained in detail, and four cases regarding the Riccati equation were
discussed. Here, these cases are not discussed as full details of these four cases are already published. Hence, for the first set,
we can obtain case I solutions withM = 0, P = 1, these solutions (for ZK equation) are: fork > 0,

u1(ζ) =
3ϑ

αa
sec2

(
ζ/

√
[−4a{βa2 + γb2}/ϑ]

)
, (25)

and

u2(ζ) =
3ϑ

αa
csc2

(
ζ/

√
[−4a{βa2 + γb2}/ϑ]

)
, (26)

while for k < 0

u3(ζ) =
3ϑ

αa
sech2

(
ζ/

√
[4a{βa2 + γb2}/ϑ]

)
, (27)

u4(ζ) =
3ϑ

αa
cosh

(
2ζ/

√
[4a{βa2 + γb2}/ϑ]

)
csch2

(
ζ/

√
[4a{βa2 + γb2}/ϑ]

)
, (28)

for k = 0

u5(ζ) =
3ϑ

αa
αζ2. (29)

Now, the compatibility condition for these solutions in the three other cases (II & III & IV) is

Pk =
M2 − p2

1

4
. (30)

Substituting from the values in the first set in the last equation to get a relation forp1:

p1 = 2

√
M2

4
+

αa0

12 (βa2 + b2γ)
, (31)
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which helps us to obtain the following solutions:
For case II:

u6(ζ) =
3ϑ

αa

(
M + 2 tanh

[
ζ/

√
{4a(βa2 + γb2)/ϑ}

])2

, (32)

and

u7(ζ) =
3ϑ

αa

(
M + 2 coth

[
ζ/

√
{4a(βa2 + γb2)/ϑ}

])2

. (33)

For case III, the solution will be

u8(ζ) =
3ϑ

αa


M +

sinh
[
ζ/

√
{4a(βa2 + γb2)/ϑ}

]
+
√

r2 − 1

r + cosh
[
ζ/

√
{4a(βa2 + γb2)/ϑ}

]



2

, (34)

with the condition thatp1 = 1.
However, the case IV solutions are

u9(ζ) =
3ϑ

αa

(
M + coth

[
ζ/

√
{4a(βa2 + γb2)/ϑ}

]
+ csch(ζ)

)2

, (35)

with the condition thatp1 = 1, and

u10(ζ) = −
3ϑ csch2

(
ζ/

√
4a[βa2 + γb2]/ϑ

)(
−M2 + 4 sinh

[
2ζ/

√
4a{βa2 + γb2}/ϑ

]
M − 4kP

)

2α
, (36)

with the condition thatp1 = 2.
For the second set, there no solutions are satisfying case I. Similarly, we can obtain for the second set

p1 = 2

√
− a2βM2

4 (βa2 + b2γ)
− b2γM2

4 (βa2 + b2γ)
+

M2

4
+

αa0

12 (βa2 + b2γ)
. (37)

Hence, the obtained solutions for ZK Eqn., will be

u11(ζ) =
b2M2

(
M − p1

[
M + 2 tanh

{
ζ/

√
4a(βa2 + γb2)/ϑ

}]
p1

)
2

+ a0, (38)

u12(ζ) =
b2M2

(
M −

[
M + 2 coth

{
ζ/

√
4a(βa2 + γb2)/ϑ

}]
p1

)
2

+ a0, (39)

u13(x, t) =
M2b2

(
r + cosh

[
ζ/

√
4a{βa2 + γb2}/ϑ

])2

(
sinh

[
ζ/

√
4a{βa2 + γb2}/ϑ

]
+
√

r2 − 1
)2 + a0, (40)

with conditionp1 = 1,

u14(ζ) = a0 +
b2

(
coth

[
ζ/

√
4a{βa2 + γb2}/ϑ

])
+ csch

(
ζ/

√
4a[βa2 + γb2]/ϑ

)2 , (41)

for p1 = 1, and

u15(ζ) =
1
4
M2b2 tanh2

(
ζ/

√
4a[βa2 + γb2]/ϑ

]
+ a0, (42)

for p1 = 2.
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FIGURE 1. The periodic solution profile [given by Eq. (25)].

FIGURE 2. The explosive/blowup pulse profile [given by Eq. (33)].

4. Numerical results and discussion

To investigate the nonlinear dynamics of IAWs, the reduc-
tive perturbation technique is used to obtain the ZK equa-
tion for a collisionless, four-component magnetized plasma
model composed of negative and positive ions with electrons
and positrons. The ext.HB method has been used to obtain
various types of traveling wave solutions for ZK equation
as periodical, singular, rational, and solitary wave solutions.
For example, Eq. (25) represents a periodical solution as de-
picted in Fig. 1, and it is clear that the solution (29) is a
rational-type solution. In Fig. 2, we can notice that the so-
lution (33) is an explosive/blowup solution, while the bal-
ance between the dispersion term and the nonlinear term in
the PDE gives the soliton solution represented in Eq. (27),
the balance between nonlinearity and dispersion may be dis-
turbed by plasma quantities variations (e.g.density, pressure,
temperature, etc).

Now, to study the properties of the ion-acoustic waves
IAWs, we should focus on the soliton wave pulses repre-
sented in (27),

φ = φ0sech2 (ζ/W ) , (43)

where the amplitude of the soliton pulse is expressed as
φ0 = 3ϑ/αa and the width isW =

√
4a(βa2 + γb2)/ϑ.

FIGURE 3. The variation of solitary wave profile forηe = 0.4

(solid line) andηe = 0.6 (dashes line).

FIGURE 4. The variation of solitary wave profile forsp = 0.8

(solid line) andsp = 0.84 (dashes line).

FIGURE 5. The variation of solitary wave profile forµ = 0.88

(solid line) andµ = 0.9 (dashes line).

In Fig. 3, we notice that by increasing the electron con-
centration (ηe), the values of the soliton pulse amplitude and
width will decrease, while in Fig. 4, we can see the role of
the electron and positron temperature in variation the pro-
file of the soliton pulse, it is clear that increasingsp makes
the soliton pulse shorter but has no effect on the width of the

Rev. Mex. Fis.67061501
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FIGURE 6. The variation of the soliton widthW vsΩc+ andΩc−.

wave shape. In Fig. 5, it is clear that the soliton shape is
taller and wider by increasing the negative ion concentration
µ. However, increasing the values of the magnetic fieldΩc+

andΩc− will decrease the value of the width but does not af-
fect the amplitude value. As depicted in Fig. 6, we can see
the effect of the magnetic field on the widthW of the soliton
wave. At the lowest values ofΩc−, W is found to be high in
value. With the increasing values ofΩc−, W has been found
to decrease. Again, at the lowest values ofΩc+, W is found
to be high in value. With the increasing values ofΩc+, W
has been found to decrease in values very sharply more than
found forΩc−.

Physically, when the amplitude increases, then the non-
linearity increases and vis versa. When the physical parame-
ter increases, the amplitude then more energy is pumped into
the plasma system, and the nonlinearity increases. We can

notice that when the negative ion concentrationµ increases,
more energy is pumped into the plasma, which leads to en-
hance the amplitude.

5. Summary

In this study, the properties of the IAWs have been investi-
gated for four-component magnetized plasma contains fluid
ions with negative and positive charges in addition to elec-
trons and positrons. The solitary pulses have been described
by the ZK equation, which is solved analytically using the
ext.HB method. The used method extracts many types of
traveling solutions as periodical, singular, rational, and soli-
tary wave solutions. The ZK equation has new solutions that
cannot be obtained by many other methods like tanh, ex-
tended tanh,G′/G expansion methods. By the numerical
analysis of the obtained solitary wave solution, the effects
of some physical parameters have been checked to the propa-
gation and the shape of the produced acoustic waves. The
increase of the concentration of electrons makes the pulse
shape shorter and narrower, while it will be taller and wider
by increasing the negative ions, and we can see that the mag-
netic field affects only the width of the solitary pulse. How-
ever, the effect of the electron-to-positron temperature ratio
will be on the amplitude of soliton pulse shape. The present
study should be helpful to understand the properties of the
nonlinear IAWs in laboratory plasmas and many astrophysi-
cal plasma systems as in Earth’s ionosphere.
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