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1. Introduction

After the pioneering discovery of Robert Brown of the diffu-
sive motion of granules of 1/4000th to 1/5000th of an inch
in size, extracted from pollen grains of the plantClarkia
pulchella [1], a precise understanding of this phenomenon
–since then known as Brownian motion– was established in
the classic works of Albert Einstein [2], William Sutherland
[3], Marian Smoluchowski [4], and Pierre Langevin [5]. On
the basis of different arguments, they derived the linear time
dependence of the mean squared displacement

〈r2(t)〉 =
∫

r2P (~r, t)dV = 2dDt, (1)

in d spatial dimensions, and the Gaussian nature of the proba-
bility density function for aδ-initial condition (Green’s func-
tion)

P (~r, t) =
1

(4πDt)d/2
exp

(
− r2

4Dt

)
. (2)

In Eqs. (1) and (2), an important role is played by the
diffusion coefficientD, which is given by the Einstein-
Smoluchowski-Sutherland relation

D =
kBT

mµ
=

(R/NA)T
mµ

, (3)

wherem is the mass of the particle,η is the viscosity of the
ambient fluid,R is the gas constant,NA is Avogadro’s num-
ber. The diffusion coefficient (3) prompted a long series of
relevant experiments on diffusive motion, such as Jean Per-
rin’s systematic observations which provided the introduction
of single particle tracking protocols [6,7], those due to Ivar
Nordlund, who suggested time-resolved recordings using a
moving film plate and thus getting around the need to aver-
age over ensembles of test particles [8], and those of Eugen
Kappler, who first mapped out the Gaussian Boltzmann dis-
tribution of the equilibrium distribution of the angles to very
high precision [9].

Recently, Cheng, Primulando and Spinrath introduced a
novel approach to Brownian motion as an effect produced by
the presence of dark matter. They showed that, by assuming
that any movable target particle is actually in a bath of dark
matter, if dark matter has some interaction with ordinary mat-
ter, the effect will be the generation of some random motion
of the target particle, which is conceptually similar to Brow-
nian motion [10]. On the other hand, recent research lead by
the author of this paper suggests that dark matter does not
exist as a primary physical reality but derives from oppor-
tune energy density fluctuations, associated to virtual pairs of
particles-antiparticles, in a polarized three-dimensional (3D)
quantum vacuum which is endowed with a fluctuating vis-
cosity. In this way, in the light of the Cheng, Primulando and
Spinrath insight, the suggestive perspective is opened that, at
a fundamental level, Brownian motion emerges from the in-
teraction between ordinary matter and a polarized 3D quan-
tum vacuum characterized by a fluctuating viscosity. In this
paper our aim is to explore this possibility.

The paper is structured as follows. In Sec. 2 we will re-
view the foundations of the 3D quantum vacuum model de-
veloped by the author. In Sec. 3 we will develop the mathe-
matical formalism which shows how the polarized 3D quan-
tum vacuum endowed with a fluctuating viscosity induces
Brownian motion on a target particle. In Sec. 4 we will ap-
ply the mathematical formalism of our 3D quantum vacuum
model of Brownian motion in the context of a Friedmann-
Robertson-Walker (FRW) spatially flat geometry. In Sec. 5,
we will summarize the results of the paper.

2. The foundations of the three-dimensional
quantum vacuum model with a fluctuating
viscosity

In order to see why and in what sense the Brownian motion
of a particle can be considered as an emerging phenomenon



2 D. FISCALETTI

from a polarized 3D quantum vacuum characterized by a fluc-
tuating viscosity, we need first to realize the interpretation of
ordinary particles of the Standard Model and the concept of
polarized 3D quantum vacuum characterized by a fluctuating
viscosity in the light of some current research.

The model of 3D quantum vacuum proposed by the au-
thor in a series of recent works [11-20], postulates that the
appearance of ordinary matter derives from an opportune ex-
cited state of the 3D quantum vacuum defined by the quantum
vacuum energy density

ρ = ρpE − mc2

V
, (4)

where the Planck energy density

ρpE =
mpC

2

l3p
= 4, 641266× 10113 J/m3, (5)

can be defined as theground stateof the 3D quantum vac-
uum, andm andV are the mass and volume of the particle,
respectively.

The excited state of the 3D quantum vacuum correspond-
ing to the appearance of this material particle is therefore
characterized by the change of the energy density

∆ρqvE ≡ ρpE − ρ =
mc2

V
, (6)

with respect to the ground state. Moreover, the model
predicts that ordinary matter emerges from elementary
reduction-state (RS) processes of creation/annihilation of vir-
tual particles of the vacuum medium. In particular, in epis-
temological affinity with a recent approach proposed by Li-
cata and Chiatti where quantum jumps are processes of entry
and exit from the usual temporal domain to a timeless vac-
uum [21,22], a real quantum massive particle of the Standard
Model is here given by the sum of abaremass produced by
the virtual particles of the 3D quantum vacuum, and an addi-
tional term associated with the self-interaction, which is re-
sponsible of the actualappearance, visibility, tangibility of
the particle.

This model of the 3D quantum vacuum, despite the con-
sideration of a series of specific hypotheses regarding the re-
lations between the states of the vacuum and a variable quan-
tum vacuum energy density, has the merit to suggest interest-
ing perspectives of unification of gravity and quantum and of
a completion of the Standard Model where the action of the
Higgs boson emerges as the interplay of opportune fluctua-
tions of the quantum vacuum energy density (see, in particu-
lar, [20]).

On the other hand, on the basis of the results obtained
in [23], in our model of 3D quantum vacuum, the action of
dark matter, which is invoked to explain the rotation curves
of galaxies, is assimilated to a more fundamental concept of
polarization of the vacuum characterized by a fluctuating vis-
cosity. In this regard, in our theory, the crucial point is that
the flat rotation curves of the spiral galaxies may be explained

in terms of fundamental fluctuations of the quantum vacuum
energy density (and therefore of peculiar excited states of the
3D vacuum), in the range of the ultra-low frequencies, corre-
sponding to excited states of the 3D quantum vacuum which
do not act as a perfect superfluid medium, but are character-
ized by a certain (fluctuating) viscosity of the form

µ(t) = µ cos(Ωt), (7)

and thus correspond to RS processes which produce only the
bare mass of the virtual particles (namely without the self-
interaction which is able to make the particlesvisible).

The polarization of the 3D quantum vacuum is due to RS
processes involving a background of elementaryperturbative
massµ~/nl2p∆ρqvE0 (wheren is the number of the virtual
particles in the volume into consideration and∆ρqvE0 is the
change of the quantum vacuum energy generating the appear-
ance of matter at a rest mass in itsbarestate) determined by a
perturbativefluctuation of the quantum vacuum energy den-
sity given by relation [23]

∆ρperturbative=
µ~c2

nV l2p∆ρqvE0

. (8)

As regards the explanation of the flat rotation curves of
the spiral galaxies, the perturbative fluctuation of the quan-
tum vacuum energy density (8) can mimic the action of dark
matter in the sense that it provokes an exchange of the energy
of the rotating galactic matter with the quantum vacuum fluc-
tuations, which generates, in regime ultra-low frequencies, a
sort of breathing of the galaxy which can be described by the
small fluctuations in time of the orbital speed

V (r, t) =
Γ

2rn

n∑

i=1

(
1− exp

[
− r2

∑
n(t)

])
, (9)

where

∑
n

(t) = 4

(
∆ρperturbativeV l2p

~Ω2
n

)
sin(Ωnt) + σ2

n. (10)

In Eqs. (9) and (10), the parameterΩn is an oscillation
frequency while the parameterσn is given byσn = 4c/Ωm.
These two parameters determine a wide spectrum of the vis-
cosity coefficients which is discrete with equidistant position
of each component and is condensed in the pointΩ = 0
and imply that the strongest contribution to the vorticity
gives modes with frequencies close to zero. On the ba-
sis of the treatment provided in [23], under the constraints
Γ = 1027 m2/s, Ωn = 10−11 s−1, andn = 25, the param-
eterσn = 4c/Ωn ranges from 10000 to 300000 light years,
which reproduces the diameter of the ordinary spiral galax-
ies and the orbital speed (9) determined by theperturbative
fluctuation of the quantum vacuum energy density (8) can
explain the stabilized behaviour of the speed of the arms of
spiral galaxies, with increasing distance from the core of the
galaxy, compatibly with the experimental observations (and
in agreement with the results obtained by Sbitnev in [24]),

Rev. Mex. Fis.67040706



BROWNIAN MOTION AND POLARIZED THREE-DIMENSIONAL QUANTUM VACUUM 3

reproducing the observed flattening of the orbital speeds of
spiral galaxies, in terms just of the fluctuations of virtual par-
ticles of the vacuum, namely of the polarization of the vac-
uum generated by its fluctuating viscosity.

It must be emphasized that the introduction of a polarized
quantum vacuum characterized by a fluctuating viscosity as
the ultimate origin of the behaviour of the rotation curves of
the spiral galaxies can be considered physically relevant (and
somewhat necessary, according to our point of view) for at
least two orders of motivations. On one hand, because of
the inability of dark matter to explain the so-called Baryonic
Tully-Fisher Relationship

MB = Av4,

where

A = (47± 6) M⊙km−4s4,

between the baryonic mass of the galaxyMB and the
galaxy’s constant outer rotational velocityv. On the other
hand, because Milgrom’s Modified Newtonian Dynamics
[25-27], the most prominent alternative approach to dark mat-
ter, that postulates the inertia of an object varies with acceler-
ation in a manner that reproduces the Baryonic Tully-Fisher
Relationship and turns out to be in good agreement with the
galactic rotational curves, however is not able to explain in
a natural way the flatness of our universe, still requiring the
existence of dark matter in order to explain the accelerated
expansion of space. Instead, our approach of polarized quan-
tum vacuum characterized by a perturbative fluctuation of
the quantum vacuum energy density can face these issues in
a natural way. Moreover, it is compatible with the results
of other interesting approaches existing in the current litera-
ture which provide an alternative to dark matter and Modified
Newtonian Dynamics. For example, in a series of papers [28-
32], Penner proposed the idea that the gravitational field of a
baryonic mass induces an energy contribution from the vac-
uum which leads naturally to the Baryonic Tully-Fisher Rela-
tionship [28], leads to excellent agreement with the rotational
curves of galaxies [29, 30] as well as the velocity dispersion
and shear measurements taken with the Coma cluster [31]. In
an analogous spirit, in [33] Roshan and Rahvar studied the
dynamics of large-scale structures, such as the time evolu-
tion of exponential disk galaxies, in the context of a non-local
theory of gravity. Our theory of 3D quantum vacuum charac-
terized by a perturbative fluctuation of the quantum vacuum
energy density has epistemological affinities with the back-
ground of these models of explanation of dynamics of galax-
ies which are alternative to dark matter and therefore can be
considered as a physically plausible starting-point in order to
throw new light as regards the description of the dynamics
of large-scale structures and to build novel scenarios in our
cosmological theories.

3. Brownian motion induced by the polarized
three-dimensional quantum vacuum with a
fluctuating viscosity

After seeing what is ordinary matter and what is the conse-
quence of the polarization of the vacuum in presence of a
fluctuating viscosity, we can now analyse how emerges the
Brownian motion of a material particle in this background.
When a test particle moves in space, it has the possibility to
meet regions of space characterized by a fluctuating viscosity
and thus to interact with regions of the 3D quantum vacuum
which are in the specific peculiar excited state associated with
the perturbative fluctuation of the 3D quantum vacuum (8). In
order to describe the interaction between the dressed massive
test particle and the perturbative fluctuation of the quantum
vacuum (8), one can introduce the diffusion coefficient:

D =
~2c2n

2∆ρperturbativeV
. (11)

Taking account of (8), Eq. (11) can be expressed as

D =
~n2l2p∆ρqvE0

2µ
. (12)

In this way, the probability density function of Gaussian
nature, invoked by the original treatments of Albert Einstein
[2], William Sutherland [3], Marian Smoluchowski [4] and
Pierre Langevin [5], in our approach reads

P (~r, t) =
1

(
4π
~2n2l2p∆ρqvE0

2µ~

)d/2

× exp


−

r2

4
~n2l2p∆ρqvE0

2µ
t


 , (13)

and the Einstein-Smoluchowski-Sutherland relation becomes

~n2l2p∆ρqvE0

2µ
=

kBT

mη
=

(R/NA)T
mη

, (14)

which yields

η =
2µkBT

m~n2l2p∆ρqvE0

. (15)

In other words, in our theory of the Brownian motion, the
real macroscopic viscosity of the ambient fluidη can be seen
as a collective property which is generated by more funda-
mental properties of the 3D quantum vacuum,i.e. the per-
turbative fluctuation of the quantum vacuum energy density
which describes the polarization of the vacuum determined
by a fluctuating viscosity.

Now, the crucial point regarding how the Brownian mo-
tion of a test particle emerges in the polarized vacuum with a
fluctuating viscosity, invoked by our theory, is the following.
The ultimate source of the Brownian motion is the perturba-
tive fluctuation of the quantum vacuum energy density (8),
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which can be seen as an external potential acting on the test
particle, as a sort of polarized bath inside which the test par-
ticle moves and which therefore produces a friction onto the
particle.

Now, in order to provide a mathematical treatment of the
Brownian motion inside our model, we will make our calcu-
lations, for sake of simplicity, inside a geodesic picture for
a test particle instead of using the hydrodynamic flows of
a typical fluid volume element. This simplification may be
considered physically plausible by virtue of the fact that the
geodesics for a test particle in the polarized 3D quantum vac-
uum are dynamically equivalent to the hydrodynamic flows
in the interior of a fluid volume element of the same vacuum.
In fact, in the model of the 3D quantum vacuum, as shown by
the author of this paper in [14], the perturbative fluctuation of
the quantum vacuum energy density (12) mimicking the ac-
tion of dark matter in the explanation of the observed flatten-
ing of the orbital speeds of the spiral galaxies in a geodesic
picture, may be associated to a energy-momentum tensor of
the form

Tµν = (ε + p)uµuν + pηµν + Πµν , (16)

whereε and p are functions per unit volume expressed in
units of pressure andηµν is the metric tensor having the
spacelike signature (-,+,+,+). In Eq. (16) the crucial term is
Πµν which describes the viscosity of the vacuum in a hydro-
dynamic picture. In other words, we can say that the term
Πµν indicates that the 3D quantum vacuum acts, in general,
as a non-perfect fluid medium characterized by a given de-
gree of viscosity, and can be considered as the hydrodynamic
counterpart of the perturbative fluctuation of the quantum
vacuum energy density (8). By virtue of the correspondence
between the termΠµν and the perturbative fluctuation of the
quantum vacuum energy density, the motion of a test parti-
cle in the 3D quantum vacuum treated in terms of geodesics
which emerge from the interaction with the perturbative fluc-
tuation of the quantum vacuum energy density, turns out to
be dynamically equivalent to its motion in terms of hydrody-
namic flows resulting from the interaction with the viscosity
term Πµν of a typical fluid element of the vacuum. In par-
ticular, the orbital speed (9) determined by the perturbative
fluctuation of the quantum vacuum energy density may be
seen as a collective hydrodynamic property which emerges
from the fundamental energy-momentum tensor (16) in the
sense that it corresponds to a vorticity~ω = ∇ × ~V of the
vacuum satisfying equation

∂~ω

∂t
+ (~ω · ∇)~V =

µ(t)c2

∆ρqvE0

∇2~ω, (17)

which derives directly from the following generalized
Navier-Stokes equation for the excited states of the 3D quan-

tum vacuum

V (ε + P )
n

γ

(
1
c

∂v

∂t
+ [~v · ∇~v ]

)
+∇Q− v

c

∂Q

∂t

+
∂(V µ(t)/n)

∂t
· (π0,i − vπ0,0)

+
V µ(t)

n
(∂(µ)πµ,i − ~v∂µπµ,0)

+
V µ(t)

n
(∂µπµ,i − ~v∂µπµ,0) = 0. (18)

A for Eq. (17) and (18),~V = c~v is the real velocity of
the fluid associated with the fluctuations of the quantum vac-
uum, whileQ is the quantum potential which describes the
influence through the pressures that arise between ensembles
of virtual particles populating the vacuum and is given by re-
lation

Q = V
p1 + p2

n
= −D2

c2

(
∇2∆ρqvE − 1

c2

∂2

∂t2

)

+
D2

2∆ρqvE0c
2

(
[∇∆ρqvE0 ]

2 − 1
c2

[
∂

∂t
∆ρqvE0

]2
)

= − ~2c2n

2∆ρqvE0V

∂µ∂µR

R
, (19)

whereR is the square root of the density distribution of the
virtual particles in the vacuum andD is the diffusion coeffi-
cient given by

D =
~c2n

2∆ρqvE0V
. (20)

In light of the considerations we have made here, there
is a direct physical correspondence between the geodesics
emerging from the interaction with the perturbative fluctua-
tion of the quantum vacuum energy density and the hydrody-
namic flows in the vacuum acting as a non-perfect fluid. As a
consequence, we can develop our treatment of the Brownian
motion of a test particle in the 3D polarized quantum vac-
uum, as a toy-model inside a geodesic picture, without the
necessity to use a hydrodynamic picture.

Now, our toy-model of the Brownian motion of a test par-
ticle in the 3D polarized quantum vacuum can be mathemat-
ically formulated by starting from the following Schrödinger
equation for the coupled system test particle+perturbative
fluctuation of the quantum vacuum energy density:

i~
∂ψ

∂t
=

(
p̂2

2m
+ U +

µ~c2

nl2p∆ρqvE0

+ H∆ρqvE0

)
ψ (21)

where ψ is the wave function of the system,m is the
mass of the Brownian particle,̂p is the momentum opera-
tor of the Brownian particle,U(r) is an external potential
acting on the Brownian particle only (due to the interac-
tion with the virtual sub-particles of the 3D quantum vac-
uum), (µ~c2/nl2p∆ρqvE0) is the perturbative potential due
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to the fluctuating viscosity of the vacuum accounting for the
particle-bath interaction andH∆ρqvE0

is a pure bath Hamil-
tonian (associated with the polarized vacuum). By virtue of
its statistical nature, the wave function which is solution of
(21) can be expressed asψ = Φφ, whereφ is the wave func-
tion of the Brownian particle andΦ is the conditional wave
function of the perturbative fluctuation of the quantum vac-
uum energy density. By following the treatment of Tsekov
in [34], if one substitutesψ = Φφ in Eq. (21), after some
mathematical manipulations, one obtains:

i~
∂φ

∂t
=

(
p̄2

2m
+ U +

µ~c2

nl2p∆ρqvE0

− TS +
bA

m
− b(p̂ · r + r · p̂)

2m

)
φ. (22)

Equation (22) turns out to be a nonlinear Schrödinger equa-
tion whereT is the temperature,S is the Boltzmann entropy
of the particle,b is the friction coefficient of the particle asso-
ciated with its interaction with the polarized vacuum (which
measures the resistance produced by the polarized vacuum to
the Brownian motion of the test particle),A =

∫
p · dr is

the action (which depends on the particle wave functionφ).
The quantity(µ~c2/nl2p∆ρqvE0) − TS means that the work
required to remove quasi-statistically the quantum Brownian
particle from the bath of the polarized vacuum at constant
temperature and volume depends on the perturbative fluctu-
ation of the quantum vacuum energy density. In the light
of Eq. (22), the polarized bath determined by the perturba-
tive fluctuation of the quantum vacuum energy density (12)
not only decreases the kinetic energy of the test particle but
modifies its energy spectrum too because of the termbA/m.
Moreover, as regards the friction coefficientb, observations
of rotation curves of spiral galaxies can set the bounds. In
fact, in order to reproduce the observed flattening of the ro-
tation curves of spiral galaxies, a reasonable estimate for the
friction coefficient appearing in Eq. (22) is represented by
the valueb ∼ mΩn and, thus, if one assumes the value
10−6 Kg for the mass of the test material particle, one has
b ∼ 10−17 Kg·s−1.

In order to explore the consequences of the non-linear
Schr̈odinger Eq. (22) - and in order to study its limit cases
T → 0 and T → ∞ - we recast this equation by the
Madelung transformation, writing the wave function as

ψ = ReiA/~. (23)

By substituting (23) into Eq. (22) and separating real and
imaginary parts, one obtains a continuity equation

∂ρ

∂t
+
~
m
∇(ρ∇A) = 0, (24)

and the Hamilton-Jacobi equation

m
∂

∂t
V + mV · ∇V + bV =

−∇
(

Q + U +
µ~c2

nl2p∆ρqvE0

− TS

)
, (25)

whereV = (∇A− br)/m, ρ = n/∆V , wheren is the num-
ber of the virtual particles in the volume∆V and

Q =
P1 + P2

ρ
=
~2

8m

(∇ρ

ρ

)2

− ~2

4m

∇2ρ

ρ
, (26)

is the quantum potential which is responsible of quantum ef-
fects and thus of non-local correlations in this background. In
the light of the results obtained in [20], the quantum potential
(26) can also be expressed in a similar form to (19), namely
as

Q = V
p1 + p2

ρ
= − ~2c2n2

4∆ρ2
qvE0

V 2

×
(
∇2∆ρqvE0 −

1
c2

∂2

∂t2
∆ρqvE0

)
+

~2c2n2

8∆ρ3
qvE0

V 2

×
(

[∇∆ρqvE0 ]
2 − 1

c2

[
∂

∂t
∆ρqvE0

]2
)

. (27)

Equation (27) shows that the quantum potential of the
vacuum describes the geometry via the pressuresp1 andp2

that arise by the collisions between the virtual particles pop-
ulating the vacuum. In this picture, the collective excitations
of the virtual particles of the physical vacuum (which pro-
vide the polarized bath determining the Brownian motion of
the test ordinary particle) define therefore a mesoscopic level
which is characterized by a degree of non-locality. The delo-
calization degree regarding the mesoscopic level of these col-
lective excitations may also be evaluated by defining a Bell
length of the vacuum ultimately associated with the osmotic
pressure arising as a consequence of the motion of the virtual
particles in the vacuum:

Lvacuum=
2√

−
(
∇ρ
ρ

)2

+ 2∇
2ρ
ρ

, (28)

which, by following [20], may be expressed as

Lquantum=
c2~

Dn

√
V
n

(
− [∇∆ρqvE0 ]

2 + 1
c2

[
∂
∂t∆ρqvE0

]2 −∆ρqvE0

[∇2∆ρqvE0 − 1
c2

∂2

∂t2 ∆ρqvE0

]) , (29)
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whereDn = (c2n~)/2∆ρqvE0V .
On the basis of relation (29), the points where the quan-

tum potential (27) tends to zero –which correspond to an in-
finite value of the Bell length of the vacuum (29)– indicate
the boundary of the region where the virtual particles of the
vacuum are delocalized. Therefore the following re-reading
of the motion of the test particle in the bath provided by the
polarized 3D vacuum becomes permissible: the virtual parti-
cles of the vacuum which are associated with a perturbative
fluctuation determined by a fluctuating viscosity generate a
Brownian motion of the test particle and the interaction be-
tween the test particle and the virtual particles of the medium
implies that the background of the processes can be described
by a quantum potential of the vacuum (27) and thus by a Bell
length of the vacuum (29), which turns out to be exclusively
dependent on the rapidity of the variation of the quantum po-
tential (27) in the entire set of coordinates of the configuration
space and can be considered as a measure of the spatial length
on which non-local effects of the vacuum are generated in a
semi-classical description.

In light of Eqs. (27) and (29) one can evaluate the condi-
tions in which the contributions of the quantum potential, de-
scribing the quantum effects in the Brownian motion –which
are negligible for all practical purposes in the thermodynamic
limit– become relevant. In this regard, one can use the con-
sideration that, in the light of some recent research, the maxi-
mum de-localization of a quantum system corresponds to the
value 1 of the Bell length [22]. By applying this constraint,
one obtains the following simple relation which are satisfied
by the number of virtual particles-antiparticles of the RS pro-
cesses of the 3D quantum vacuum in the condition of max-
imum entanglement, and thus when the quantum effects de-
scribed by the quantum potential become relevant:

2
∇2ρ

ρ
−

(∇ρ

ρ

)2

= 4, (30)

which, by taking account of relation (29), may be written as

n =
16∆ρ2

qvE0
V(

− [∇∆ρqvE0 ]
2 + 1

c2

[
∂
∂t∆ρqvE0

]2 −∆ρqvE0

[∇2∆ρqvE0 − 1
c2

∂2

∂t2 ∆ρqvE0

]) (31)

Now, in the limit of zero temperature, the entropic term
in Eq. (22) drops out and the solutions of Eqs. (24) and (25)
are

ρ =
exp

(
− (x− ξ)2

2σ2
x

)

√
2πσ2

x

, (32)

and

V =
∂ξ

∂t
+ (x− ξ)

1
σx

∂σx

∂t
(33)

where the mean valueξ and dispersionσx obey the following
dynamic equations

m
∂2

∂t2
ξ + b

∂

∂t
ξ =

−U − µ~c2

nl2p∆ρqvE0

x
, (34)

m
∂2

∂t2
σ2

x + b
∂

∂t
σ2

x =

~2

4mσ3
x

x
. (35)

Equation (34) can be considered as a sort of generalized
version of the Ehrenfest theorem in the polarized vacuum.
Equation (35) is a nonlinear equation by virtue of the pres-
ence of the quantum potential. In the simple case of ab-
sence of friction effects of the polarized vacuum (namely
b = 0) the solution of Eqs. (34) and (35) is given byσ2

x =
σ2

x(0) + (~t/2mσ2
x(0))2 which describes the spreading of a

Gaussian wave packet. Instead, in the case of strong friction

produced by the polarized vacuum, the first inertial term in
Eqs. (34) and (35) is negligible with respect to the other terms
and the solution isσ2

x = ~
√

t/mb; in the limit b → ∞ the
initial state will last forever because the Brownian particle
is constrained in a kinetic well and, as a consequence of the
Heisenberg relations, in the quantum regime one has a re-
striction of the relaxation of the momentum dispersion.

However, in general, the temperature, which is introduced
in Eq. (22) as a parameter describing the chaotic motion of
the bath virtual particles of the polarized vacuum, is the lo-
cal non-equilibrium temperature. When the temperature is
increasing, one expects an increasing of the chaotic motion
of the virtual particles of the polarized vacuum. In the limit
of T → ∞, the energetic scenario of non-equilibrium ther-
modynamics corresponds to a throughput of heat, namely a
kinetic energy at the subquantum level, and one expects that
the test Brownian particle will not only receive kinetic en-
ergy from the thermodynamic environment, but, in order to
balance the stochastic influence of the supplementary mo-
mentum fluctuations determined by the interaction with the
perturbative fluctuation of the quantum vacuum energy den-
sity, it will also dissipate heat into the environment. On the
basis of the “vacuum fluctuation theorem” introduced in [35],
the larger the energy fluctuation of the oscillating “system of
interest” is, the higher is the probability that heat will be dis-
sipated into the environment rather than be absorbed.
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As a consequence of the motion of a very fast Brownian
particle, one has a complete destruction of the local thermo-
dynamic equilibrium. Therefore, we must focus the attention
on the relatively low velocities in order to be able to employ
the equilibrium statistical temperature, which occurs when
the interaction of the test particle with the perturbative fluc-
tuation of the quantum vacuum energy density determines a
linear response. Under these constraints, one can linearize
Eq. (22) onV obtaining

m
∂2

∂t2
ρ = ∇ ·

(
bρV + ρ∇

[
Q + U +

µ~c2

nl2p∆ρqvE0

− TS

]

+ m∇ · [ρV V
]
)

= −b
∂p

∂t
+∇ ·

(
ρ∇

[
Q + U

+
µ~c2

nl2p∆ρqvE0

− TS

])
+ O(V 2). (36)

On the basis of the treatment of Tsekov in [34], since the
thermodynamic entropy

St = − ∂

∂T

(
Q + U +

µ~c2

nl2p∆ρqvE0

− TS

)

p.b

is the temperature derivative of the free energy, one can ex-
press (

Q + U +
µ~c2

nl2p∆ρqvE0

− TS

)

by integration onT , thus obtaining:

m
∂2

∂t2
ρ + b

∂ρ

∂t
= KBT∇

×
(

ρ∇
β∫

0

1√
ρ

[
Ĥ + 2

∂

∂β

]√
ρdβ

)

b

, (37)

where the subscriptb indicates that in this relation the fric-
tion coefficientb is considered constant during the integra-
tion onβ. Equation (37) is a non-linear differential equation
describing the quantum Brownian motion beyond the linear
response. Instead, if the friction coefficient is not constant,
and for example depends on the temperature, this means that
the interaction of the Brownian particle with the polarized
vacuum corresponds to variable fluctuations of the quantum
vacuum energy density which generate the maximum degree
of chaotic motion of the Brownian particle (and, in this re-
gard, further research is obviously required in order to clarify
the physical details of these processes).

Moreover, at zero temperature, Eq. (37) becomes the fol-
lowing non-linear equation describing a purely quantum dif-
fusion

m
∂2

∂t2
ρ + b

∂ρ

∂t
= ∇

×
(

ρ∇
[
Q + U +

µ~c2

nl2p∆ρqvE0

])
. (38)

According to Eq. (39) the quantum diffusion associated
with the Brownian motion of the test particle in the polar-
ized bath is guided by the quantum potential and is influenced
by the mediatory action of the perturbative fluctuation of the
quantum vacuum energy density. In the case of strong fric-
tion, Eq. (38) implies a dispersion-dependent quantum diffu-
sion coefficient of the form

DQ =
~2

4mbσ2
x

. (39)

By substituting (12) into (39), one finds

σ2
x =

~µ
2mn2l2p∆ρqvE0

, (40)

namely the dispersion of the wave packet turns out to be a
collective property generated by the polarized vacuum char-
acterized by a fluctuating viscosity,i.e. by the perturbative
fluctuation of the quantum vacuum energy density.

As regards the problem of finding the exact solutions of
Eq. (37), there are obvious mathematical difficulties. How-
ever, a reasonable assumption is that, at the first order, the ex-
ternal potential is a harmonic one of the formU = mω2

0x2/2
where

ω0 =
2∆ρqvE0

~n
, (41)

is the frequency associated with the motion of the virtual sub-
particles of the vacuum, namely

U =
2∆ρ2

qvE0
V 2mx2

~2n2
, (42)

and that the polarized bath represented by the perturbative
fluctuation of the quantum vacuum energy density provides a
correction in terms of dissipative, dispersive effects. Under
these constraints, the general solution of the non-equilibrium
Eq. (37) will be given by a Gaussian distribution at the lowest
order, plus corrections expressed by dissipative, dispersive
terms linked with the perturbative fluctuation of the quantum
vacuum energy density:

ρ =
exp(−[x− ξ]2/2σ2

x)√
2πσ2

x

− (x− ξ)√
2
~n2l2p∆ρqvE0

2µ
t

− (x− ξ)2√
4
~n2l2p∆ρqvE0

2µ
t

− (x− ξ)3

12

√
2
(~n2l2p∆ρqvE0

2µ
t

)3
− . . .

(43)

and

V =

∂

∂t
ξ + (x− ξ)

∂

∂t
σx

σx
. (44)
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The corresponding mean valueξ and dispersionσx sat-
isfy the following dynamic equations

m
∂2

∂t2
ξ + b

∂

∂t
ξ + mω2

0ξ =
µ~c2

nl2p∆ρqvE0

(45)

m
∂2

∂t2
σ2

x + b
∂

∂t
σ2

x + 2m

(
ω2

0 − kBT

×
β∫

0

~2

4m2σ4
x

dβ

)

b

σ2
x = 2kBT. (46)

Despite the mathematical difficulties, Eqs. (45) and (46)
lead to obtain the equilibrium dispersion

σ2
x =

(
~

2mω0

)
coth

(
β~ω0

2

)
,

which coincides with the results of statistical thermodynam-
ics, where nowω0 is given by Eq. (41), namely

σ2
x =

(
~2n

4m∆ρqvE0

)
coth

(
β∆ρqvE0

n

)
. (47)

In other words we can say that, in our model, the equi-
librium dispersion emerges as a collective property which is
generated by the fundamental frequencies of the 3D quantum
vacuum, given by (41).

Moreover, if one considers the case of a free Brownian
particle (ω0 = 0) in the high friction limit relevant to the Ein-
stein law of Brownian motion, Eqs. (40) and (41) become the
following one:

∂σ2
x

∂t
= 2D

(
1 + σ2

x

β∫

0

~2

4mσ4
x

dβ

)

b

(48)

whereD = (kBT )/b = (~n2l2p∆ρqvE0)/2µ is the Ein-
stein diffusion coefficient, which here can be seen as a collec-
tive property emerging from a more fundamental perturbative
fluctuation of the quantum vacuum energy density describing
the polarized vacuum. In the light of Eq. (48), we can say that
the quantum potential, and thus the pressure provoked by the
virtual particles of the vacuum, determine a relative increase
of the diffusion coefficient.

Let us see now what are the consequences of equation
(48) at large times and at short times respectively. At large
times, since the dispersionσ2

x increases in time, the action
of the quantum potential can be neglected and thus the so-
lution of Eq. (48) tends asymptotically to the Einstein law
σ2

x = 2Dt, which here reads as

σ2
x =

~n2l2p∆ρqvE0

µ
t. (49)

On the contrary, at small times t the quantum term is dom-
inant and one can neglect the unity in the brackets of Eq. (48).
In this way, one obtains a solution in terms of the expression
for the purely quantum diffusion

σ2
x = ~

√
t

mb
, (50)

which here reads

σ2
x = ~

√
~n2l2p∆ρqvE0t

2µmkBT
. (51)

At small times, in the thermodynamic limit, the back-
ground has the possibility to reach the maximum degree of
non-locality expressed by the value 1 of the Bell length of
the vacuum, where the constraint (31) holds. Therefore, the
dispersionσ2

x in this condition becomes

σ2
x = ~

√√√√√√√~




16∆ρ4
qvE0

V 2

[
− {∇∆ρqvE0

}2 + 1
c2

{
∂
∂t∆ρqvE0

}2 −∆ρqvE0

{∇2∆ρqvE0
1
c2

∂2

∂t2 ∆ρqvE0

}]




l2p∆ρqvE0t

2µmkBT
. (52)

In the light of the formalisms (49), (51) and (52), a fun-
damental result of the approach to the Brownian motion de-
veloped in this chapter is the following. Both for large times
(when the action of the quantum potential is negligible) and
for small times (when the action of the quantum potential
is dominant), the dispersion of the wave packet correspond-
ing to the test particle is a collective property which emerges
from the perturbative fluctuation of the quantum vacuum en-
ergy density and thus from the polarized vacuum character-
ized by a fluctuating viscosity. Therefore, the following re-
reading of the results regarding the dispersion of the wave

packet in the Brownian motion of a test particle inside the
3D quantum vacuum model, becomes permissible. It is the
specific interplay between the perturbative fluctuation of the
quantum vacuum energy density –associated with the pecu-
liar excited state of the 3D quantum vacuum interacting with
the test particle– and the viscosity of the vacuum which im-
plies that in some situations the dispersion of the wave packet
is given by relation (49) and in some situations the dispersion
of the wave packet is given by relation (51). In other words,
in the model of the Brownian motion here presented, we can
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say that the dominance of quantum effects or the dominance
of classical effects can be seen as collective behaviours which
emerge from a more fundamental interplay between the per-
turbative fluctuation of the quantum vacuum energy density
and the viscosity of the vacuum, having a specific behaviour;
and, in the thermodynamic limit, at small times, in the con-
dition of maximum degree of non-locality the dispersion as-
sumes the peculiar form (52).

At the end of this section, we will make some consider-
ations regarding numerical parameters which give rise to a
Brownian motion at intergalactic level, in light of the results
obtained at the end of Sec. 2. On the basis of the results
obtained in [10], the total event rate of interaction of ordi-
nary matter with the specific fluctuations of quantum vacuum
energy density mimicking the action of dark matter may be
expressed as follows:

R = (Z + N)2ρDM
qve−N

MT

Mmol

ρDM
qve−N

MDM
qve−N

v̄DM
qve−N = 0.37

×
(

Z + N

12
ρDM

qve−N

10−31 cm2

MT

10−3 g

ρDM
qve−N

0.3 GeV/cm3

× 20 MeV

MDM
qve−N

v̄DM
qve

341 Km/s

)
1
s

(53)

whereZ andN are the atomic number and the number of
neutrons respectively,ρDM

qve−N is the average cross section of
the virtual particles of the medium mimicking the action of
dark matter with the target nucleon,MT is the target mass,
Mmol is the molar mass of the target,ρDM

qve = 0.3 GeV/cm3

is the assumed value for the energy density associated with
the regions of quantum vacuum mimicking the action of dark
matter, v̄DM

qvE is the velocity of the region of quantum vac-
uum into consideration. Here, it must be emphasized that,
although the interaction rate has units of inverse time, it does
not correspond to a well-defined frequency since the hits oc-
cur at random intervals with random recoil momenta. As re-
gards the interaction between the target mass and the virtual
particles of the medium mimicking the action of dark mat-
ter, here two are the main sources of these events of inter-
action: neutrinos and hits from residual air molecules. The
largest neutrino flux on Earth is from solar pp neutrinos with
φv ≈ 6 · 1010 cm−2s−1 at an energy of about 0.4 MeV corre-
sponding to a nucleon cross section to carbon of about10−44

cm2. This means that, if one assumed a target material par-
ticle of 10−3 g, in correspondence there is a neutrino event
rate of O(10−14) s−1.

On the other hand, the differential event rate of air
molecules hitting the target, after integrating over all veloci-
ties, is given by relation

dN

dt
= PA

√
2

πmkBT
≈ 8.3× 109

×
(

P

10−10 mbar

√
20K

T

A

mm2

)
1
s

(54)

whereP is the pressure,A is the surface of the target,T is
the temperature,kB is the Boltzmann constant. As regards
the pressure provided by the air molecules, one can assume
a vacuum system like in the LHC [36] or advanced LIGO
[37] and for the temperature a cryonic system as in KAGRA
[38]. By assuming a target surface of 1 mm2, the variance
of the Gaussian distribution of the recoil momenta from vir-
tual particles of the medium mimicking dark matter and the
atmosphere, on the basis of [10], is given by the following
relation

σ2
qatm

= 8

√
2
π

PAδt
√

mkBT ≈ 6.1−48

×
(

P

10−10 mbar
A

mm2

δt

0.1 ns

√
20K

T

)
Kg2m2

s2
(55)

where δt are the data bins, which are of 0.1 ns in com-
mon optical measurements. From data bin to data bin we
hence expect a momentum uncertainty of order ofσqatm ≈
2.5× 10−24 Kg m/s. In every realistic experiment, we would
expect such minimal resolution of the recoil momentum gen-
erated by the interaction between the residual gas and the vir-
tual particles of the 3D quantum vacuum.

Moreover, one must take into account the uncertainty of
the position measurement. The minimum position resolution
is related with the minimum momentum resolution by rela-
tion

qmin = MT ω0dmin. (56)

As regards the frequencyω0, since the rotating motion
of the spiral galaxies reproducing the observed flattening of
the orbital speeds is explained through a frequency of fluc-
tuations of the viscosity of the polarized vacuum given by
Ωn = 10−11 s−1, we can assimilate the frequencyω0 to this
value. Therefore, by substitutingω0 = 10−11 Hz in Eq. (56),
in order to obtain a minimal momentum resolution of the or-
der of O(10−23)Kg m/s, we will have a minimum position
resolutiondmin = 10−6 m. This number corresponds to the
uncertainty of position which gives rise to the maximum re-
coil momentum for quantum vacuum with a energy of a few
MeV with an order one uncertainty from the velocity distri-
bution so that we can expect to potentially see a signal for
fluctuations of quantum vacuum energy density mimicking
the action of dark matter masses above that. In other words,
dmin = 10−6 m can be considered the minimum resolution
in the measurement of position which is associated with the
Brownian motion of the polarized quantum vacuum repro-
ducing the observed flattening of the orbital speeds of spiral

Rev. Mex. Fis.67040706



10 D. FISCALETTI

galaxies. Furthermore, with this choice the background from
the residual air molecules is very efficiently suppressed and
we end up with an effective rate of interaction of ordinary
matter with the specific fluctuations of quantum vacuum en-
ergy density mimicking the action of dark matter

Rcut
atm≈ 5× 10−6 Hz. (57)

Taking account of the minimal position resolutiondmin =
10−6 m, the dispersion of the wave packet characterizing the
Brownian motion of the test particle, which is connected di-
rectly to the perturbative fluctuation of the quantum vacuum
energy density and thus to the polarized vacuum character-
ized by a fluctuating viscosity, given by relation (49) at large
times, and by relation (51) at small times, respectively be-
comes

~n2l2p∆ρqvE0

µ
t = 10−12 m2, (58)

at large times, and

~

√
~n2l2p∆ρqvE0

2µmkBT
= 10−12 m2, (59)

at small times. We can say that Eqs. (58) and (59) can be con-
sidered the fundamental constraints which provide the con-
ditions in order to have a Brownian motion at intergalactic
level.

4. Brownian motion in a three-dimensional
quantum vacuum characterized by an ana-
log FRW geometry

The spatially-flat FRW spacetime, by predicting and de-
scribing cosmological phenomenon such as the Cosmic Mi-
crowave Background Radiation and formation of both large
scale structure and light elements (hydrogen, deuterium, he-
lium, etc.), can be considered the Standard Model of Cos-
mology. It provides the best scheme for the observational
data to describe our large-scale homogeneous and isotropic
expanding universe [39,40]. As a consequence, it is interest-
ing to explore the quantum Brownian motion determined by
quantum vacuum fluctuations in the context of a spatially-flat
FRW spacetime.

In this regard, in the recent paper [41] Bessa and his col-
laborators Bezerra, Bezerra de Mello and Mota, by studying
the effects of quantum scalar field vacuum fluctuations on
scalar test particles in an analog model for the FRW spatially
flat geometry, found that the particles can undergo Brown-
ian motion with a nonzero mean squared velocity induced by
the quantum vacuum fluctuations due to the time dependent
background and the presence of the boundaries.

Here, by following the philosophy that underlies Bessa’s
research, we want to analyse the motion of a test particle in
the context of our model of 3D quantum vacuum character-
ized by a FRW geometry and by a perturbative fluctuation

of the quantum vacuum energy density. We will see how,
in the picture of a spatially-flat FRW geometry, the motion
of a scalar test particle in the 3D quantum vacuum undergoes
Brownian motion determined by the quantum vacuum energy
density fluctuations associated with the elementaryRS pro-
cesses of creation/annihilation of virtual particles.

By following the treatment of [41], we can say that the
equation of motion in a FRW spatially-flat geometry, for a
free particle, assumes the following form

1
a2

d

dt
(a2ui) =

fi

m
, (60)

while, if the particle is bounded, becomes

dui

dt
=

fi + fext

m
(61)

wherea is the scale factor of the FRW metric,fi is a quantum
force linked with the fluctuations of the quantum vacuum en-
ergy density,fext = 2m(ȧ/a)ui is the external force respon-
sible of the bound state of the particle. The fluctuating force
in the FRW geometry may be expressed as

fi = qa−2∂iφ(∆ρperturbative), (62)

whereφ(∆ρperturbative) is a scalar field depending on the per-
turbative fluctuation of the quantum vacuum energy density,
q is the mass of the particle. Equation (62) expresses the fact
that, in the 3D quantum vacuum characterized by a FRW ge-
ometry, the force acting on the test particle, which is owed
to the 3D quantum vacuum, is linked with the scale factor as
well as the perturbative fluctuation of the quantum vacuum
energy density.

Now, as regards the Brownian motion of a free particle in
analog FRW geometry, by integrating (60) –and taking Eq.
(62) into account– one obtains the following expression for
the correlation function for the velocity in terms of the fluc-
tuating force:

〈
ui(t1,∆ρperturbative 1)ui(t2,∆ρperturbative 2)

〉

=
q2

m2a4

∫∫
dt1dt2

× 〈
φ(t1,∆ρperturbative 1)φ(t2,∆ρperturbative 2)

〉
FRW

(63)

Here, since the correlation function for the scalar field
in the conformal 4-dimensional FRW spacetime is related to
Minkowski flat spacetime by relation

〈
φ(η1, ∆ρperturbative 1)φ(η2,∆ρperturbative 2)

〉
FRW

= a−1(η1)a−1(η2)

× 〈
φ(η1, ∆ρperturbative 1)φ(η2,∆ρperturbative 2)

〉
flat

, (64)

whereη is the conformal time, defined asdt = a(η)dη, the
subscript in the right-hand side denotes that the vacuum fluc-
tuation is taken in a flat spacetime, Eq. (63) becomes
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〈
ui(t1, ∆ρperturbative 1)ui(t2, ∆ρperturbative 2)

〉

=
q2

m2a4
∂i1∂i2

∫∫
dη1dη2

× 〈
φ(η1, ∆ρperturbative 1)φ(η2, ∆ρperturbative 2)

〉
flat

. (65)

Taking account thatv = au, Eq. (65), in terms ofv, may be
written in the form

〈
vi(t1, r1)vi(t2, r2)

〉
=

q2

m2a2
∂i1∂i2

∫∫
dη1dη2

× 〈
φ(η1, ∆ρperturbative 1)φ(η2, ∆ρperturbative 2)

〉
flat

. (66)

Equations (62-66), in light of the mathematical formal-
ism developed in Sec. 3, imply that, even if a particle is free,
the presence of the perturbative fluctuation of the quantum
vacuum energy density –contained inside the scalar fieldφ–
generate a Brownian motion for these particles.

As for the Brownian motion for bounded particles in the
spatially-flat FRW geometry, by integrating Eq. (61) with a
null initial velocity, we obtain

ui(tf ) =
1
m

∫
f i(t,∆ρperturbative), (67)

wheretf is the final time and the correlation function for the
coordinate velocity is

〈
ui(tf , ∆ρperturbative 1)ui(tf ,∆ρperturbative 2)

〉

=
1

m2

∫∫
dt1dt2

× 〈
f i(t1, ∆ρperturbative 1)f i(t2, ∆ρperturbative 2)

〉
FRW

. (68)

By considering a fluctuating force (62) which satisfies the
constraints

〈
f i(t1,∆ρperturbative 1)f i(t2, ∆ρperturbative 2)

〉
FRW

6=
0 and

〈
f i(t, ∆ρperturbative)

〉
FRW

= 0, from Eq. (68) one gets

〈
ui(t1,∆ρperturbative 1)ui(t2,∆ρperturbative 2)

〉

=
q2

m2
∂i1∂i2

∫∫
dt1dt2a

−1(t1)a−1(t2)

× 〈
φ(η1,∆ρperturbative 1)φ(η2, ∆ρperturbative 2)

〉
. (69)

When Eq. (66) is expressed in terms of the conformal
time, dt = a(η)dη, and in terms of the massless two point
function given by relation (64), it provides the following ex-
pression for the velocity dispersion of the bounded particles

〈
ui(η1, ∆ρperturbative 1)ui(η2, ∆ρperturbative 2)

〉

=
q2

m2
∂i1∂i2

∫∫
dη1dη2a

−2(η1)a−2(η2)

× 〈
φ(η1,∆ρperturbative 1)φ(η2, ∆ρperturbative 2)

〉
. (70)

In this case, the proper velocity is given by

〈
vi(η1, ∆ρperturbative 1)vi(η2, ∆ρperturbative 2)

〉

=
q2a2

m2
∂i1∂i2

∫∫
dη1dη2a

−2(η1)a−2(η2)

× 〈
φ(η1, ∆ρperturbative 1)φ(η2,∆ρperturbative 2)

〉
. (71)

As regards the proper velocity, by comparing Eqs. (66)
and (71), we can note that, differently from free particles,
in the case of bounded particles, the scale factor appears in
the integrand of Eq. (71). This is a consequence of the fact
that, for bounded particles, there is also an external force re-
sponsible of the bounded state of the particle. This external
force cancels out locally the effects of the expansion and it is
just this cancellation that makes the time dependent scale fac-
tor appear in the integrand of Eq. (71), which represents the
quantum dispersion in the velocity for bound particles, and
not appear in Eq. (66), which represents the quantum disper-
sion in the velocity for the free particles.

Moreover, we must observe that the scalar field depend-
ing on the perturbative fluctuation of the quantum vacuum en-
ergy densityφ(∆ρperturbative) satisfies the Klein-Gordon equa-
tion

(
1√|√g|

)
∂µ

[√
|√g|gµν∂ν

+ ξR
]
φ(∆ρperturbative) = 0 (72)

wheregµν is the metric characterizing the FRW geometry,
g = det(gµν), R is the Ricci scalar,ξ is the curvature cou-
pling. The solutionϕ(∆ρperturbative) of Eq. (62) may be ex-
pressed as

φ(∆ρperturbative) =

(
~pηn2l2p∆ρqvE0

16π2µc2

)1/2

× exp

(
− i

2µc2

~n2l2p∆ρqvE0

t

+
1
c~

[
i

2µc2

n2l2p∆ρqvE0

x− 2µc2

n2l2p∆ρqvE0

|x− x0|
])

, (73)

wherep is a parameter depending on the viscosity of the vac-
uum and the Newton gravitational constant on the basis of
relationp = (1 − 4G2µc2/nl3p∆ρqvE0)

−1, x0 is the max-
imum of the amplitude of the wave function. In summary,
in the light of the Eqs. (63)-(73), we can conclude that a test
particle with mass m moving with proper velocity v in a FRW
geometry exhibits a Brownian motion characterized by oscil-
lations in the physical vacuum as a consequence of the action
of the perturbative fluctuation of the quantum vacuum energy
density which is contained in the scalar fieldφ(∆ρperturbative).
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5. Conclusions and perspectives

Brownian motion emerges as a collective property originated
by a fundamental 3D quantum vacuum characterized by a
variable energy density as a consequence of the interaction
between a test particle and an opportune perturbative fluctua-
tion of the quantum vacuum energy density associated with a
fluctuating viscosity. The quantum diffusion associated with
the Brownian motion of a test particle is guided by the quan-
tum potential and is influenced by the mediatory action of
the perturbative fluctuation of the quantum vacuum energy
density. The perturbative fluctuation of the quantum vacuum
energy density provides a correction in terms of dissipative,
dispersive effects into the Brownian motion of the particle.
As a consequence, the dispersion turns out to be a collective
property generated by the ultimate properties of the polar-
ized 3D quantum vacuum. The interplay between the per-
turbative fluctuation of the quantum vacuum energy density
–associated with the peculiar excited state of the 3D quantum
vacuum interacting with a test particle– and the viscosity of
the vacuum, having a specific behaviour, can be considered
the ultimate visiting card which generates Brownian motion
at intergalactic level, reproducing the observed flattening of
the orbital speeds of spiral galaxies. Moreover, the correla-
tion function for the velocity of a Brownian particle in a FRW
spatially-flat geometry, turns out to depend on a scalar field
which is directly correlated with the perturbative fluctuation
of the quantum vacuum energy density.

An interesting perspective introduced by our model lies in
the interpretation of the deviation of the dynamics of galax-
ies from the Newtonian behaviour on large scales in terms of
the Brownian motion generated by a perturbative fluctuation
of the energy density of the ultimate 3D quantum vacuum
characterized by processes of creation/annihilation of virtual
particles. In fact, another relevant topic to be addressed inside
our model would be the treatment of the anomalous rotations
of other type of galaxies. In order to extend our model to
other type of galaxies, according to the author, a possible way
could be represented by some fruitful considerations made re-
cently by Jurisch [42] that the phenomenon of anomalous ro-
tation can be described by the equilibrium state of a stochas-
tic process in a picture where the weak-interacting limit of
a metric-skew-tensor-gravity theory can be derived from the
ordinary Brownian motion with spherical symmetry. In line
with the treatment of Jurisch, one can start from a spherical
model of the quantum vacuum energy density of the form

∆ρqvE0(r) = ∆ρqvE0

(
r

Rc + r

)3β

, (74)

whereRc denotes the radius of the core andβ describes the
different types of the phenomenology associated with the dif-
ferent types of the galaxies. In particular,β = 1 corresponds
to high-surface-brightness galaxies, whileβ = 2 corresponds
to low-surface-brightness galaxies and dwarf galaxies. The
rotational curve can be computed by equating the gravita-
tional acceleration with the centripetal acceleration

v2

r
=

V

c2
∆ρqvE0

(
r

Rc + r

)3β
∂φ

∂r
, (75)

which gives

v(r) =

√
r
V

c2
∆ρqvE0

(
r

Rc + r

)3β
∂φ

∂r
, (76)

whereφ is the gravitational potential. By following [42], the
form of the gravitational potentialφ may be obtained by start-
ing from the following equation describing the Brownian cor-
rection to the classical trajectory of the galaxy:

drB(t) = −γdt +
√

DdW (t), (77)

wheredrB(t) is the Brownian correction of the classical tra-
jectory,dW (t) is a Gaussian Wiener-process,D is the diffu-
sion coefficient given by Eq. (11) andγ is a drift-parameter
(having the dimension of velocity) that determines skewness
in the sense that a test particle tends to move in the direc-
tion of the drift. After some mathematical manipulations,
the gravitational potential which allows us to reproduce the
anomalous rotation of galaxies turns out to be given by rela-
tion

ϕ(r) = −G
V

c2r
∆ρqvE0 + G

√
V

c2
∆ρqvE0

µ~
n2l2p∆ρqvE0

× exp(−r/r0)
r

. (78)

A model based on this gravitational potential (78) can repro-
duce the flatness of the tail of the velocityv(r) over a large
distance, and the heavy attraction it provides, which corre-
sponds to the drift-motion of the Brownian trajectory towards
the centre of gravity, has the effect to generate a flat rotation
curve also on large distance. As regards the cosmological
perspectives opened by this type of approach, further research
will give you more information.
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