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This Letter reports the breaking of the spherical symmetry in the complete electromagnetic multipole expansion when its sources are dis-
tributed on spherical toroidal surfaces, identifying the specific geometrical and physical changes from the familiar case of sources on a
spherical surface. In fact, for spherical toroids defined by concentric spherical rings and symmetric conical rings, the boundary conditions
at the latter are not compatible in general with integer values for the orbital angular momentum label of the multipole moments: the polar
angle eigenfunctions become Legendre functions of orderλ and associativity m represented as infinite series with a definite parity, and their
complementary associated radial functions are spherical Bessel functions of the same orderλ. Consequently, the corresponding multipole
sources for the electric, magnetic and toroidal moments and their connections are identified within the Debye formalism, and the appropriate
outgoing wave Green functions are constructed in the new basis of eigenfunctions of the Helmholtz equation. Our familiarity with the exact
solutions, for the cases of the complete sphere and of cylindrical toroids, allow us to give a preliminary account of the electromagnetic fields
for the spherical toroids via the integration of their sources and the Green function for resonant cavities and optimum-efficiency antennas.
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1. Introduction

This Letter is motivated by the observations of toroidal dipole
interactions in metamaterials [1,2] and nanomaterials [3],
and attempts to establish the difference between electric and
toroidal moment electromagnetic radiations using the famil-
iar spherical multipole expansions in the far-away zone [4].
The works in [1-3] and [5,6] have cited our work [7] on
the complete electromagnetic multipole expansion including
toroidal moments, which is complete on two accounts: 1)
it describes the fields inside and outside a spherical toroidal
surface where the sources are confined, and 2) it includes
the toroidal moments. The use of the multipole expansion
in the far-away zone ignores the roles of the sources and of
Maxwell’s equations in the boundary condition form, which
are indispensable to connect the inner and outer solutions sat-
isfying the homogeneous Helmholtz equation. The citations
of our work motivated us to revisit it [8], and we have just re-
alized that when going from sources confined on a spherical
surface [9] to sources confined on a spherical toroidal sur-
face, the spherical symmetry of the first one is broken in the
second one. Consequently, this contribution is focused on the
manifestations of the symmetry breaking and its general con-
sequences, which hopefully will be particularly useful for the
metamaterials and nanomaterials communities. We may add
that we have just completed the identification of the complete

and exact solutions of a family of electromagnetic multipole
moments in cylindrical toroids as reported in [10], which has
been an important point of reference and guidance in our
writing of this Letter. It is also important to mention that
Refs. [1-3] were reviewed in [11], recognizing that the ideas
of Superintegrability and Symmetry Breaking apply not only
for atoms and molecules, but also to the electromagnetic mul-
tipole expansion, when its sources are confined on toroidal
surfaces.

The confinement of the sources and Dirichlet and
Neumann boundary conditions for resonant cavities and
optimum-efficiency antennas, respectively, lead to quantiza-
tion of wave numbers and frequencies, and to complete and
orthonormal sets of eigenfunctions. Symmetry breaking in-
volves the same constants of motion but different eigenval-
ues:` becomesλ with non integer values. Correspondingly,
the associated Legendre Polynomials become Legendre func-
tions with (λ,m) parameters in their hypergeometric func-
tion representation, with a well defined parity for symmet-
ric toroids. The radial spherical functions becomeRλ, well-
behaved superpositions of spherical Bessel functionsjλ and
nλ inside the toroid, and outsidejλ in the hole andh(1)

λ out-
going spherical wave.

The longitudinal, toroidal and poloidal current densities
of a given multipolarity, on each section of the spherical
toroidal surface, are constructed from a common scalar De-
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bye potential involving one eigenfunction of the sets men-
tioned above, via the application of the gradient∇∇∇, angular
momentumL = −ir×∇∇∇ and curl∇×∇×∇× operators, in the suc-
cession already identified for cylindrical toroids [10]. They
are the sources of the electric intensity fields in the inhomo-
geneous Helmholtz equation. The complementary sources of
the magnetic induction field in the same equation are also
identified.

The Green functions for the spherical toroids are also
constructed using the bases of the above-mentioned radial
and polar angle eigenstates, as the counterpart of those in
[10]. In [7] the point unit charge Green function was used,
with the sources of Eqs. (23) and (24) involving Heaviside
step functions, representing uniform distributions on each
section of the spherical toroidal surface. It is appropriate at
this point to recognize that the orthonormality and complete-
ness of the radial and polar angle eigenfunctions at the bound-
ary defined by the other variable provide the representations
of the difference of the respective Dirac-delta functions, and
that their integrations become the difference of the Heavi-
side step functions. These relationships are important to un-
derstand the connections between the Green functions and
sources in [7,8] and this contribution, as well as the equiva-
lence of their integrated results.

Consequently, the successive sections of this Letter in
2. Spherical Symmetry Breaking, explain the reasons be-
hind it and identify its explicit manifestations, 3. Sources
Distributed on the Surfaces of Spherical Toroids, identify
them from a common Debye scalar potential for the succes-
sive electric, magnetic and toroidal moments on the basis of
their multipolarities and directionalities, including their suc-
cessive connections, 4. Scalar Green Functions, to be con-
structed using the solutions of the homogeneous Helmholtz
equations inside and outside the toroidal surface, satisfying
Dirichlet boundary conditions for resonant cavities and Neu-
mann boundary conditions for optimum-efficiency antennas,
respectively, and 5. Discussion of the anticipated results for
the electromagnetic fields, to be evaluated from the integra-
tions of the sources in Sec. 3 and the Green functions in
Sec. 4. The Appendix serves as a guide to the readers in-
terested in understanding the details of the text.

2. Spherical symmetry breaking

The restriction of distributing the sources on the surface of a
spherical toroid formed by spherical concentric rings of ra-
dius r = a andr = b, and symmetric conical rings at the
polar anglesθ = θ1 y θ2 = π − θ1, and0 < ϕ < 2π,
in spherical coordinates, allows the construction of solutions
of Maxwell equations using the basis of solutions for the
scalar homogeneous Helmholtz equation, inside and outside
the toroid, as Debye potentials subject to Dirichlet and Neu-
mann boundary conditions for the electromagnetic radiation
fields in resonant cavities and optimum-efficiency antennas,
respectively. In general, for arbitrary values of the polar an-
gle θ1, the above mentioned boundary conditions can not be

satisfied by the familiar associated Legendre polynomials of
degree(`,m) . The quantum label̀ takes non integer values
λ, and the polynomials are replaced by Legendre functions
of orderλ, associativitym, and definite parity, represented
as infinite series superpositions of hypergeometric functions
with arguments(1−cos θ)/2 and(1+cos θ)/2, with common
labels inλ andm = 1:

Θ1
λ(cos θ) = N1

λ sin θ
1√
2

×
(

2F1

[
−{λ− 1}, λ + 2, 1;

1− cos θ

2

]

± 2F1

[
−(λ− 1), λ + 2, 1;

1 + cos θ

2

])
. (1)

The orderλ is determined by the nodes and the extreme
points of the series inθ1. The companion radial functions are
superpositions of the corresponding ordinary and Neumann
type spherical Bessel functions inside the toroidr ∈ [a, b]:

Rλ(kr) = Aλ(k)jλ(kr) + Bλ(k)nλ(kr) , (2)

ordinary spherical Bessel function in the hole of the toroid
r ∈ [0, a], and outgoing wave spherical Bessel function
outsider ∈ [b,∞]. The respective boundary conditions
on the radial eigenfunctions at the inner and outer spheri-
cal rings can be satisfied only for specific choices of coeffi-
cientsAλ(k), Bλ(k), leading to resonant wave numbers and
their associated frequencies, which turn out to be interlaced
for the successive modes of the cavities and antennas. Addi-
tionally, their nodal lines combined with those of their com-
panion polar eigenfunctions determine the positions of four-
sided perimeters in each meridian plane; as well as the corre-
sponding positions of extreme amplitudes inside the perime-
ter. The product of the radial and polar eigenfunctions apply
to the magnetic moments. For the electric and toroidal mo-
ments there is an extra radial factor, argument of the spherical
Bessel functions, as justified at the end of Sec. 3. Reference
[11] illustrates the symmetry breaking in the context of con-
fined atoms and molecules, and also included reviews of [1-
3].

3. Sources distributed on the surfaces of
spherical toroids

The sources of the electromagnetic fields distributed on the
surface of the spherical toroids are identified from a common
Debye scalar potential, for each spherical and conical ring
sections at the respective positionsr = a, b andθ = θ1, θ2,
respectively; with multipole distributions and directionalities
to be described next for the successive multipole moments.
For the electric moments, the starting point is the longitudinal
current density with a gradient of the Debye scalar potential
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of the chosen multipolarity:

KEl = κr0 r̂

(
d

dr
Rλ(kr)

)
[Yλ 0(θ1, φ) + Yλ 0(θ2, φ)]

+ κθ0

θ̂

r

(
d

dθ
Yλ 0(θ, φ)

)
[Rλ(ka) + Rλ(kb)] . (3)

Its divergence leads to the surface charge density via the con-
tinuity equation,

∇∇∇ · KEl = iωσ = κr0

(
1
r2

d

dr

[
r2Rλ(kr)

])

× [Yλ 0(θ1, φ) + Yλ 0(θ2, φ)]

+ κθ0

1
r2

(
1

sin θ

d

dθ

[
sin θ

d

dθ
Yλ 0(θ, φ)

])

× [Rλ(ka) + Rλ(kb)] . (4)

In turn, the cross product of(r sin θ)ϕ̂ and (r + rθ̂)
with the longitudinal current density leads to the poloidal
current densityKEp of the electric intensity field, and the
source densitySEt of the magnetic induction, in the respec-
tive Helmholtz equations:

KEp = κr0 θ̂

(
r

d

dr
Rλ(kr)

)
sin θ [Yλ 0(θ1, φ) + Yλ 0(θ2, φ)]

−κθ0 r̂

(
sin θ

d

dθ
Yλ 0(θ, φ)

)
[Rλ(ka) + Rλ(kb)] , (5)

SEt = ϕ̂

(
− κr0

[
r

d

dr
Rλ(kr)

]
[Yλ 0(θ1, φ) + Yλ 0(θ2, φ)]

+ κθ0

[
d

dθ
Yλ 0(θ, φ)

]
[Rλ(ka) + Rλ(kb)]

)
. (6)

In turn, the curl ofKEp becomes the toroidal current den-
sity for the magnetic momentsKMt as the source density of
the electric intensity field:

KMt =
ϕ̂

r

(
κr0

[
d

dr

{
r2 d

dr
Rλ(kr)

}]
sin θ
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d
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sin θ

d
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}])
. (7)

Additionally, the curl ofKMt leads to the poloidal source
densitySMp of the magnetic induction field:
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(
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d
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. (8)

Similarly, the curl ofSEt is identified as the poloidal current
density of the toroidal momentsKTp, source ofETp:

KTp =
(

κr0 θ̂

[
1
r

d
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Additionally, the curl ofKTp yields the toroidal source den-
sity STt for BTt:

STt =
ϕ̂

r

(
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d
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(10)

Notice that the longitudinal, poloidal and toroidal source
densities involve first derivatives of the radial and polar an-
gle eigenfunctions, for the electric moments. The curls of
the last two transverse current densities yield the toroidal and
poloidal current densities, for the magnetic and toroidal mo-
ments, respectively, involving second derivatives associated
with the Laplace operator, and yielding the radial and po-
lar eigenvalues and eigenfunctions of the Helmholtz equa-
tion. In turn, the additional curls of the current densities lead
to the source densities for the respective magnetic induction
fields, with third order derivatives in the radial and polar an-
gle eigenfunctions. These dependences are behind the dif-
ference by a factor ofk2 between the electric and toroidal
moment electromagnetic fields, sharing otherwise the same
space dependences in their transverse fields. as well as their
resonant frequencies for cavities and antennas. On the other
hand, the electromagnetic fields for magnetic moments differ
from the other two by exchange of the directionalities of their
electric intensity and magnetic induction fields, and even ver-
sus odd orders of derivatives, as well as different resonance
frequencies. In the case of electric moments, it is important
to point out the presence of the common radial factor in the
vectorsr , rθ̂ andr sin θϕ̂, which via their successive vector
products with the longitudinal current density yield the re-
spective components of the toroidal source ofBEt and the
poloidal current source ofEEp. The extra factor of the spher-
ical Bessel functions mentioned in Sec. 2 for electric and
toroidal moments is thus justified.
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4. Green functions

This section contains the scalar Green functions of the
Helmholtz equation with a unit charge at the pointr ′, on
the toroidal surface, using the inner solutions of the homo-
geneous equation, Eqs. (1) and (2), satisfying the Dirichlet
boundary condition for the resonant cavities, and the Neu-
mann boundary conditions for the optimum-efficiency anten-
nas, as well as for the near fields produced by the longitudinal
current and charge densities in the electric moments:

G(+)(r , r ′) =
∑
m

∑
nθ

∑
nr

gnrnθ
(k)Rλnθ

(krint)h
(1)
λnθ

(krext)

×Θ1
λnθ

(cos θ)Θ1
λnθ

(cos θ′)
eim(ϕ−ϕ′)

2π
. (11)

The outgoing Green function in (11) uses the same angu-
lar bases and the linear superposition of the products of the
inner and outer Bessel functions with coefficientsgnrnθ

(k),
taking into account the quantization and order of excitation in
the respective degrees of freedom. The coefficients are eval-
uated by integrating the radial part of the Helmholtz equa-
tion involving the Wronskian of the inner and outer spherical
Bessel functions:

gnrnθ
(k) =

−4π

kr2W
(
Rλ(kr), h(1)

λ (kr)
)

=
−4πk

(iAλ(k)−Bλ(k))
. (12)

5. Discussion

This section describes the anticipated results for the electro-
magnetic fields to be obtained from the integration of the
source densities identified in Sec. 3 and the Green functions
of Sec. 4, for the successive magnetic, toroidal and electric
moments. This order is followed because the first two share
transverse sources and only radiation fields, while the last
one also involves the longitudinal current and charge densi-
ties and their near fields in the vicinity of the spherical toroid.
The presence of the latter illustrates clearly the difference be-
tween the toroidal and electric moments.

For the magnetic moments, the toroidal surface cur-
rent densitiesKMt yield the toroidal electric intensity field
E(r, θ, ϕ), while their poloidal curls,SMp, yield the poloidal
magnetic induction fieldsB(r, θ, ϕ), for the interior of the
resonant cavities and for the interior and exterior of the
toroidal optimum-efficiency antennas, respectively. The van-
ishing of the radial functions inside the toroidal surface at
the inner and outer spherical rings of radiia andb, required
by the Dirichlet boundary condition, guarantees that the outer
fields vanish in the first case. On the other hand, in the second
case, the extensions of the radial functions with Neumann
boundary conditions to the outer intervals,[0, a] in the hole
and [b,∞] to the far-away zone, guarantee their proper be-
haviors in their respective domains. In both cases, the electric

intensity field turns out to be consistent with Gauss’ and Fara-
day’s laws, while the magnetic induction field is also con-
sistent with Gauss’, Ampere’s and Maxwell’s laws in their
boundary condition forms. Additionally, their field lines may
be written in their differential forms and turn out to be inte-
grable for the poloidal fields, yielding their vortex structure
in each meridian plane within four-sided radial and circular
separatrices.

For the toroidal moments, the poloidal current densities
KTp yield the poloidal electric intensity fieldsEMp, while
the toroidal sourceSTt yields the toroidal magnetic induc-
tion field BMt. Notice the changes in directionalities of
the respective sources and fields when going from the mag-
netic multipoles to the toroidal ones, directly connected with
the connections of the fields themselves via Faraday and
Maxwell laws in both cases. This observation is pertinent
here, in order to avoid the repetition of the discussion of the
last part in the previous paragraph.

For the electric moments, the difference with respect to
the toroidal moments, besides the extrak2 in BMt compared
to BEt, is obviously the presence of the longitudinal current
density and its associated charge density. The evaluation of
the longitudinal electric field from the integration of the lon-
gitudinal current density and the respective Green functions
for the resonant cavities and antennas,EEl, yields the surface
charge density distribution at the toroidal surface via Gauss’s
law in its boundary condition form; on the other hand, its
normal components at the first separatrices of the radiation
fields, inside and outside the toroid, vanish at the separatrices
becoming tangential near them, and consistent with Faraday’s
law. The reader may see their counterparts for the sphere in
[9], and for circular cylindrical toroids in [10].

The analytical elements described in the successive sec-
tions are the basis for the numerical computations of the re-
spective electromagnetic fields, for specific values of the geo-
metrical parameters of the spherical toroids. The correspond-
ing results will be reported in the near future.

The comparison of the contents of this Letter and our pre-
vious works may help the readers to appreciate the differ-
ences in them. In fact, the Letter is the natural extension of
[7,8], recognizing explicitly the spherical symmetry breaking
and its implementation. The comparison with [9] shows their
common structure allowing for the difference in their respec-
tive inner and outer solutions. In the comparison with [10], its
separation into independent axial and circular radial compo-
nents is replaced by the separation into spherical radial and
common polar angle components; in the first one, both de-
grees of freedom determine the resonant frequencies, and in
the second one, the spherical radial component determines by
itself the resonant frequencies.

We conclude this Letter by pointing out that its contents
provide the new elements of spherical symmetry breaking
eigenfunctions of the scalar homogeneous Helmholtz equa-
tions, the connections between the sources of the succes-
sive electromagnetic multipole fields for electric, magnetic
and toroidal moments, and the respective Green functions for
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spherical toroidal resonant cavities and optimum-efficiency
antennas, needed for the evaluation of the respective electric
intensity and magnetic induction fields. One of its impor-
tant results is the identification of the difference between the
toroidal and electric moments in the presence of the local-
ized near field in the latter produced by the longitudinal cur-
rent and its associated charge density. Hopefully, this will be
useful and of interest for the Metamaterials and Nanomateri-
als communities, by providing exact results to compare with
their different interpretations of the toroidal moments, as il-
lustrated in [4].

Appendix A.

The additional material in this Appendix, included for the
benefit of a wider readership of Revista Mexicana de Fisica
interested in this Letter, is presented in two complementary
parts: 1) A guide to the References, in connection with the
motivation for writing the Letter, its antecedents and new re-
sults; and 2) The Debye formalism and its application needed
to understand the results reported in Sec. 2-5.

1) As explained in the Introduction, the motivation of this
Letter is associated with the citations of our work [1] in [1-
3], reporting the observations of toroidal dipole interactions
in metamaterials and nanophotonics, respectively. Our work
[11] included reviews of reports related to [1-3]. Additional
reports on toroidal moments [4-6] show different interpreta-
tions about them. Our additional works on the electromag-
netic moments with sources confined on spherical, spherical
toroidal and cylindrical toroidal surfaces [8-10] are the imme-
diate antecedents of the Letter. The ideas of superintegrabil-
ity and symmetry breaking in [11] are applicable for atoms
and molecules, and also for electromagnetic fields. Super-
integrability of a wave equation implies separability and in-
tegrability in more coordinate systems than degrees of free-
dom. Symmetry breaking in [11] and the Letter is due to
the change from the spherical boundary [9] to the spherical
toroidal boundary [7,9], with the consequences described in
Secs. 2-5. Each Reader may find in the respective sets of
Refs. [1-6] and [7-11], the detailed antecedents needed to
understand the context and the contents of the Letter.

2) Section 2 in [7] discusses the solutions of Maxwell’s
Eqs. (1-4) and the Helmholtz equations for the electric inten-
sity and magnetic induction fields Eqs. (5-6), via the integra-
tion of their respective sources in the latter with the Green
function from Eqs. (7-8), as expressed in Eqs. (9-10). The
second part of the same section, based on [14] in [7], il-
lustrates the decomposition of any field into its longitudinal,
toroidal and poloidal components. While the Helmholtz the-
orem recognizes the decomposition of any vector field into
its longitudinal and transverse components, the Debye for-
malism recognizes that in three dimensions the latter may be

of two different types. Equation (11) shows the successive
directionality selecting operators: gradient, angular momen-
tum, and rotational of the angular momentum acting on the
respective Debye scalar potentials, which are solutions of the
homogeneous Helmholtz equation. Equation (12) is the con-
tinuity equation connecting the longitudinal current density
and the charge density, and its counterpart in Eq. (13) con-
nects the longitudinal Debye potential with the charge den-
sity. Equation (14) shows the decomposition of the rotational
of the current density into its poloidal and toroidal compo-
nents, identifiable by their respective operators and the ex-
change of their Debye scalar potentials. The integrations of
Eqs. (9-10) lead to the decompositions of the respective fields
Eqs. (15-16) and the identifications of their respective Debye
scalar potentials Eqs. (17-22).

We consider now, [8,9] and the Letter, in order to appre-
ciate the changes of going from sources confined on a spheri-
cal surface to sources confined on spherical toroidal surfaces.
The change of geometry brings in additional boundary con-
ditions, from a single spherical surface to the surfaces of the
four sections of the toroidal surface: two spherical and two
conical coaxial rings. This explains the spherical symmetry
breaking in the Letter, and its consequences in the multipole
solutions of the homogeneous Helmholtz equation, as new
Debye scalar potentials in Eqs. (1-2) of Sec. 2.

Concerning the vector sources reported in Sec. 3, they
are constructed and identified from a common Debye scalar
multipole potential, under the action of the successive op-
erators of gradient, which becomes angular momenta when
multiplied by the appropriate vectors, and successive rota-
tionals in Eqs. (3, 5-10). The continuity Eq. (4) also yields
the charge density. Notice the correspondences and differ-
ences with their counterparts in [7].

The construction of the Green functions in Sec. 4, for a
unit point source on the toroidal surface, is constructed by the
standard method using its expansion in multipole harmonics
and spherical Bessel functions of orderλ of Eqs. (1-2).

The idea of superintegrability and the exact results for
spheres [9] and for cylindrical toroids [10] allow us to antici-
pate the results discussed in Sec. 5. In fact, apart from the dif-
ferent geometries the physical solutions, for the correspond-
ing electric, magnetic and toroidal moments, have common
qualitative and quantitative features.
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