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Theoretical study of the electron correlation and excitation effects
on energy distribution in photon impact ionization
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We performed a detailed theoretical study of the electron correlation and core excitation effects on the energy distribution of the ejected
electrons in the process of photon impact tunnel ionization. We used the Landau-Dykhne approach to obtain analytical formulas for the
transition rate and the energy distribution with included these effects. We have limited ourselves to a non-relativistic domain, in which the
rate and distribution are determined by the electrical component of the laser field, while the influence of magnetic one can be neglected. We
observed helium and helium like atoms. We have shown that the tunneling ionization mechanism may be understood as the combination of
mentioned processes. We considered the case of a monochromatic wave with an elliptically polarized laser field. We compared our results
with experimental and shown that ellipticity plays an important role and that inclusion of additional processes significantly influences the
transition rate, as well as the energy distribution of the ejected photoelectrons.
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1. Introduction

The interaction of a strong laser field with atoms and
molecules resulted in a variety of phenomena [1,2]. Because
of that, particular attention has been dedicated to this “prob-
lem”, both theoretical and experimental [3,4]. The theoretical
approaches are based on the numerical solution of the time-
dependent Schrodinger equation (TDSE) [5,6], the strong-
field approximation (SFA) [7], and the semiclassical model
for the strong-field ionization [8].

In this paper, we consider the case when the conditions
for the semiclassical approximation are satisfied (low fre-
quency and field intensity in the range ofI > 1014 Wcm−2).
The first one who introduced this approach was Keldysh
[9]. It is also well known by Keldysh parameter,γ, (γ =
(ω

√
2Ip/F , whereω is the angular frequency of the laser

field, Ip, is the ionization potential, andF is the field strength
in Wcm−2, introduced to separate two regimes of photoion-
ization: tunneling and multiphoton. Forγ ¿ 1, the tunneling
is dominant, while forγ À 1 multiphoton. Here, it is inter-
esting to note that according to [10] tunnel and multiphoton
ionization in strong laser field co-exist as two channels of ion-
ization. Keldysh’s theory is improved by Perelomov, Popov,
and Terentev (PPT) [11], and later extended by Ammosov,
Delone, and Krainov (ADK) [12]. The ADK theory is one of
the most used ones.

Here we will deal with elliptical polarization of the laser
pulses. Compared with the case of linear (the most often
used), the electron kinematics in elliptically polarized laser
field are quite different. With elliptical polarization, an emit-
ted electron is pulled away transversely because of the addi-
tional polarization direction and its trajectory becomes ellip-
tical, reducing the probability of recolliding with its parent
ion.

The quasistatic tunneling theory in an elliptically polar-
ized laser field for a small Keldysh parameter has been very
successful in explaining experimental data [18]. However, as
the Keldysh parameter increases to the intermediate range, it
was shown that the ADK theory quantitatively deviates from
the experimental results [19]. The reason for this deviation
lies in the fact that above mentioned theory is based on the
independent particle (single active electron). So, in order to
avoid this problem, it is necessary to extend the quasistatic
tunneling theory with the presence of electron interaction in
the system [20,21].

Zon [22] introduced the idea ofinelastic “tunneling”,
whereby the parent ion can be left in an excited state fol-
lowing the ionization of one electron. Release of the electron
through the process of photoionization may leave the resid-
ual positive ion either in the ground state or in an excited
state of higher energy in which at least one electron is pro-
moted to some empty orbital. Excitation is entirely caused
due to electron-electron interaction and probes the electron
correlation in the ground and final state.

In this paper, we introduced the excitation as well as
electron-electron correlation, and as a result we obtained the
formula for transition rate and energy distribution for the si-
multaneous core ionization and core-excitation of a helium
atom (K−2V i process) in an elliptically polarized laser field.
We compared our results with those obtained experimentally
and showed that ellipticity plays an important role and that
inclusion of additional processes significantly influences the
transition rate, as well as the energy distribution of the ejected
photoelectrons [23,24]. We observed a non-relativistic do-
main in which the influence of the magnetic field can be ne-
glected [23]. That is reason why the transition rate and the
energy distribution of the ejected photoelectrons are deter-
mined by the electric component of the laser field.
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2. Theorical Concept

One of the most used theory for description of the ionization
process of atoms in a laser field, the ADK theory, is based on
the tunneling of an electron through the suppressed potential
barrier of the combined atomic field and the external electric
field. For a monochromatic, elliptically polarized laser field,
the atomic tunneling ionization rate can be calculated using
the following formula [12]:

Welip =
(

ε(1 + ε)
2

)−1/2

a

(
1− ε

3ε

(2Ip)3/2

F

)

× F

8πZ

(
4eZ3

Fn∗4

)n∗2

e(−Z3n∗FIp), (1)

wheren∗ = Z/
√

2Ip is the effective quantum number [25],
F is the field strength in Wcm−2, Z is the ion charge,
a(x) = e−xJ0(x), J0(x) is the Bessel function of imaginary
argument anda(x) is a monotonically decreasing function:
a(0) = 1, a(x) ∼ (2πx)−1)/2 for x À 1. The parameter
ε is the polarization vector in the interval0 ≤ ε ≤ 1 which
for ε = 0 describes the linearly, and forε = ±1, circularly
polarized wave.

But, this theory neglected many aspects of the mentioned
process, such as correlation [23]. But, it is fact that an atom
with more than one electron is a complex system of mutually
interacting electrons moving in the field of the nucleus. Be-
cause of that, we reported theoretical calculations concerning
electrons correlation. Additionally, according to [26], paral-
lel with ionization there is an excitation process. So, based on
that, we modified the aforementioned formula by treating the
ionization rate as a cumulative contribution of simultaneous
processes, ionization and excitation, as a sequence of events.

We calculated a helium (and helium like) atoms within
1014−1015 W/cm−2 range of the laser intensities, with ellip-
tically polarized pulses and without recollision. The atomic
system of unitse = me = ~ = 1 is used throughout this
paper [27]. We assumed that the electron velocity is small
compared to the speed of light and applied a nonrelativistic
calculation.

At the end, based on obtained formula, we formulated
the expression for the energy distribution. As we said, we
considered the general case of a monochromatic wave, with
elliptical polarization,F (t) = F (~ex cos ωt ± ~ε~ey sin ωt).
In the previous inline equation,ε is the polarization vector,
~ε = ~ex cos(ξ/2) + i~eysin(ξ/2), where the ellipticity param-
eter,ξ, describes all degrees of elliptical polarization. This
parameter varied in the rangeπ/2 ≤ ξ ≤ π/2, and forξ = 0
andξ = π/2 correspond to linear and circular polarization,
respectively.

We started with the adiabatic Landau-Dykhne approxi-
mation [28] of the saddle-point method for estimating the
time integrals in the quantum theory of transitions in an ex-
ternal AC field. In order for this approximation be valid, it is
necessary that the photon energy of the was small compared
to the ionization potentialIp(t). If this condition is fulfilled,

according the aforementioned approximation, the transition
rate between the initial bound statei with energyEi(t) and
final, continuum statef with energyEf (t) is given by the
well-known Landau-Dykhne formula [9,29] (with exponen-
tial accuracy):

Wif ∝ exp[−2ImS(τ)]

∝ exp[−2Im

τ∫

0

[Ef (t)− Ei(t)]dt], (2)

i.e. the transition rateWif , is the exponential function of the
imaginary part of the action,S(τ). Here, the final energy
is expressed asEf (t) = (1/2)[p − (( ~A(t)/c)]2, where ~A(t)
is the vector potential of the external electromagnetic field,
A(t) = −cF/ω[sin ωτ − ε cos ωτ ], c is the speed of light
(c = 137.06 in atomic unit),τ is the complex turning point
in the plane of complex time andp is the generalized momen-
tum of the ejected electron. In general, the final energy can
be written asEf (t) = (1/2)[p − (( ~A(t)/c)]2 + U(r) [30],
where last term denotes the electron’s energy in the core field.

We applied the described formalism on a two-electron
transition in a helium (and helium like) atoms after the ab-
sorption of a single photon. Also, we analyzed the photoelec-
tron distribution fromK−2V states that correspond to simul-
taneous1s ionization and1s → valence excitation (1s → 2s
or 1s → 2p excitation), as well as the energy distribution of
the ejected photoelectrons.

We firstly considered the excitation process. Simultane-
ous excitation ionization is only possible due to electron-
electron correlations [31]. To introduce it into transition’s
formula, we included the correlation effect into the initial en-
ergy, which now can be written as:

Ei = −Ip +
5z

8
, (3)

where the second term describes the correlation effect [32].
Here, we omit the Stark shift of the initial binding state. Ap-
plied laser field causes a shift of the atom’s energy levels and
this displacement of the energy level is determined by expres-
sionIst = 1/2(αN − α1)F 2 whereαN is the static polariz-
ability of the atom andα1 of its ion [33]. Also, we included
the ponderomotive potential which correlates to the oscillat-
ing movement of charged particles in the final expression for
the initial energy:

Ei = −Ip +
5z

8
+

1
2
(αN − α1)F 2 +

F 2

4ω2
. (4)

Now, we incorporated excitation of the second electron
by modifying the final energy,Ef (t), with the energy’s terms
which describes excitation processes,E± = Ip+J(1s, 2s)±
K(1s, 2s) [34], and the Coulomb interaction,Ec, [35], where
the termsJ(1s, 2s) andK(1s, 2s) represent the Coulomb re-
pulsion and the exchange integrals respectively [36]. The
lower sign describes the state of lower energy, thus making
the configuration1s2s of the triplet state lower in energy than
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the singlet state. So, the final energy now has the following
form:

Ef (t) =
1
2

[
p− 1

c
~A(t)

]2

+ Ip + J(1s, 2s)±K(1s, 2s)− Ec. (5)

For the correlation of two electrons, the Coulomb re-
pulsion and exchange integrals have the following form:
J(1s, 2s) = 17/81ZEh, K(1s, 2s) = 16/729ZEh, (Eh

is the energy of a two-electrons atom given by the formula
Eh = (2Z2)/n2) [36]. Additionally, the Coulomb interac-
tion is described asEc = (2n2+ | m | +1)/η

√
2Ip [37],

whereη is the parabolic coordinate,n2 is parabolic andm
is magnetic quantum number. With all aforementioned, the
resultant energy for the final state becomes:

Ef =
1
2

[
p− F

ω
[sinωτ − ε cosωτ ]

]2

+ Ip +
17
81

Z
2Z2

n2

+
16
729

Z
2Z2

n2
− 2n2+ | m | +1

η

√
2Ip. (6)

In Eq. 6,τ is the complex turning point in the plane of
complex time and it can be determined from the condition
Ei(τ) = Ef (τ) [28]:

p +
F

ω
[sin(ωτ)− ε cosωt] =

√
2

(
−2Ip +

5Z

8
− Z3

n2

(
34
81
± 32

729

)
+

2n2+ | m | +1
η

√
2Ip

)
. (7)

We used some simple transformations and Maclaurin expan-
sion in order to express the turning point,τ . The obtained
solution for theτ is complex and it has the following form:

τ =
F

ω

(
p + i

√
2Ieff

p

)
− 1

F

(
p− i

√
2Ieff

p

)

+
1
6ω

(
F

ω

ε2

p2 + 2Ieff
p

(
p + i

√
2Ieff

p

)

− ω

F

(
p− ii

√
2Ieff

p

) )3

, (8)

here, Ieff
p is some kind of the effective energy,Ieff

p =
2Ip + Z3/(5n2)(4 ± 2/5) − 2((2n2 + |m| + 1)/η)

√
2Ip.

It is obvious that it contains correction of the binding en-
ergy,Ip, in regard to the electron-electron correlation and the
Coulomb interaction effects incorporated through the initial
and final energy.

In the interest of calculating the action,S(τ), we substi-
tuted Eq. 3 and Eq. 6 into Eq. 2. As a result, we obtained a
sum of four terms:

S(τ) =
1
2
p2

τ∫

0

(sinωt− ε cos ωt)dt

+
F 2

2ω2

τ∫

0

(sinωt− ε cos ωt)2dt +

τ∫

0

Ieff
p dt. (9)

Following Wif ∝ exp[−2ImS(τ)], we integrated Eq. 9
over the time. After integration, we separated real and imag-
inary parts and obtained the action,S(τ), in the form:

S(τ) = τ

(
Ieff
p +

p2

2
+

pFε

2
+

F 2

2ω2

(
3− ε

ω

))

+
Fε

ω3
τ2 − 1

6
(pFω + 4F 2)τ3 − pF

2
. (10)

We would like to note that Eq. 10 strongly depends, among
other, on the momentump of the ejected electrons. The
momentump can be expressed as:p = 1/2(

√
Fη − 1 +

1/η
√

Fη − 1) [37], where η is the parabolic coordinate,
η > 1/F [38]. The momentum is conserved along the clas-
sical path,pη = p [29] when a system’s total energy is inde-
pendent of the parabolic coordinateη.

Finally, in order to obtain the expression for the ioniza-
tion rate we incorporated Eq. (8) and Eq. (10) into already
mentioned formulaWif ∝ exp[−2ImS(τ)]. As a result, the
ionization rate with simultaneous contribution of ionization
and excitation processes were obtained:

Wie(p) ∝ exp

[
− 2

(
− Fε

4(1 + ε2)3ω3
+

Fε

12(1 + ε2)ω4

+

√
Ieff
p F

2
√

2(1 + ε2)ω4
−

√
Ieff
p Fε

6
√

2(1 + ε2)ω3

+
p2

√
Ieff
p

6
√

2(1 + ε2)
+

εp2

108(1 + ε2)ω

)]
. (11)

For the sake of optimizing Eq. (11) we introduced the ef-

fective Keldysh parameterγ∗ = ω

√
Ieff
p as well as the new

effective quantum numbern∗∗ = Z/

√
2Ieff

p and obtained:

Wie(p) ∝ exp

[
− 2

(
− Fε

2(1 + ε2)ω3

(
1
6ω

− Z

2n ∗ ∗
)

+
p2

12ω(1 + ε2)

(
γ ∗+

ε

9ω(1 + ε2)

))]
. (12)

During our calculation, we supposed that the termp2 af-
fect the ionization rate the most, and for that reason, the terms
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of pn order,n > 2, can be neglected.
Next, we were interested to examine how mentioned ef-

fects influence the energy distribution spectra. We started
from the expression for the energy distribution spectra [40]:
W (p‖) = W (0) exp[−(p2

‖ω
2(2Ip)3/2/3F 2)], whereW (0)

presents considered tunneling ionization rate,Welip for stan-
dard andWie for our case. The exponential part of inline
equation describes the energy spectrum of ejected electrons
along the polarization direction, andp‖ is the electron mo-
mentum along the field polarization direction. Because the
energy spectrum of the ejected electrons along the polar-
ization is wider than in the case of perpendicular direction,
we chose the energy spectrum of ejected electrons along the
polarization direction [30]. Combined with the well-known
expressions for longitudinal energy of the ejected electron
E = (p2

‖)/2 [40], the energy distribution of the ejected pho-
toelectrons for standard ADK formula can be written as:

Welip(E) =
(

ε(1 + ε)
2

)−1/2

a

(
1− ε

3ε

(2Ip)3/2

F

)
F

8πZ

×
(

4eZ3

Fn∗4

)n∗2

e(−Z/3n∗FIp)

× exp
[
−2Eω2(2Ip)3/2

3F 2

]
, (13)

while our theoretical result based on Eq. (12), takes the form:

W (E) ∝ exp

[
− 2

(
− Fε

2(1 + ε2)ω3

(
1
6ω

− Z

2n ∗ ∗
)

+
p2

12ω(1 + ε2)

(
γ ∗+

ε

9(1 + ε2)

))]

× exp

[
2Eω2(2Ip)3/2

3F 2

]
, (14)

Eq. (13) and Eq. (14) describes the exponential dependence
of the energy distribution on the amplitude of the laser field,

F , unperturbated ionization potential,Ip, as well as the effec-
tive Keldysh parameter,γ∗, and the new effective quantum
number,n∗∗. Additional terms, which can be seen in the Eq.
(14), compared to the standard ADK formula, Eq. (13), are
directly related to the included electron excitation process.

3. Results and Discussion

In this section we investigated the ratio between the transi-
tion rate and the energy distribution spectra of the ejected
photoelectrons, obtained based on our analytical formula for
the ionization rate and the energy distribution (Eq. (12) and
Eq. (14), respectively) and the standard formula (Eq. (1)
and Eq. (13)), for single ionized helium atom, He, Z=1.
The calculations were made for the linearly, circularly and
elliptically polarized laser pulses obtained by Ti:sapphire
laser which provides pulses of a wavelengthλ = 800 nm
(ω = 0.05696). Additionally, we assumed that the ejected
photoelectrons have the initial momentum,p, p 6= 0.

We started from the comparative review of the energy dis-
tribution spectra obtained based on the standard ADK for-
mula, Eq. (13), (left plot) and our formula, Eq. (14), (right
plot), for limiting case of the laser field polarization,ε = 0,
which corresponds to the linearly polarized laser field. In
order to present the energy distribution, we transformed the
intensity axis into units of energy. In a limited case, the
energy shift of the continuum is equal to the ponderomo-
tive energy, the cycle averaged kinetic energy of an elec-
tron in a laser field,∆E∞ = Up. For a peak intensity,I,
in Wcm−2 and wavelength, inµm, the ponderomotive en-
ergy can be estimated in electron volts (eV) using the relation
9.33× 10−14Iλ2.

From Fig. 1, it can be seen that both theoretical curves
are qualitatively similar. They continuously increase, reach
prominent peak and then decrease, but on the different en-
ergy range. The theoretical ADK curve reaches a peak at
E ∼ 1 MeV, while our at aroundE ∼ 0.96 keV. After reach-
ing the maximum the ADK curve gradually decreases, while
our decreases considerably faster in comparison to the ADK.

FIGURE 1. Comparative calculation of the energy distribution of photoelectrons (in arbitrary units) versus energy, for the limiting case of an
elliptically polarized laser field,ε = 0, obtained based on: a) the ADK theory,Welip(E), b) our formula,W (E). The parabolic coordinate
is set onη = 20.
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FIGURE 2. Comparative calculation of the energy distribution of photoelectrons in a circularly polarized laser field obtained based on: a) the
ADK theory,Welip(E), b) our formula,W (E). The parabolic coordinate is set onη = 20.

One can observe the shift to the lower intensity of the
curve obtained based on our formula, which is in accordance
with [41] where this movement to lower field intensity was
distinguished. Also, its energy range is significantly nar-
rower. This is in accordance with [42]. The ADK curve lies
above our curve by a few orders of magnitude. Significant de-
viation of the ADK curve in comparison to experimental re-
sults was observed in [43], where it was concluded that ADK
theory often overestimates the ionization rate [23,43]. This
is in accordance to our results for the same range of inten-
sities. Also, our curve follows the trend of the experimental
data and has a similar shape to [44] .

Next, we repeated procedure for the case of a circularly
polarized laser field,ε = 1. As a result, we obtained the line
graphs on Fig. 2. As in previous, we gave the comparative
review of the ADK and our curve.

Unlike the previous, Fig. 2 shows significantly differ-
ent behavior of the observed theoretical curves. For both
curves is common that they decline after reaching their max-
imum values. The difference between these curves lies in the
fact that the ADK curve decreases slowly, compared to ours
which approaches to the energy axis on aboutE ∼ 0.94 keV.
The ADK curve has a maximum atE ∼ 1 MeV, while our at

aroundE ∼ 0.92 keV and it is obvious that has a defined en-
ergy range. For both graphs, under the same conditions, we
observed a shift to the lower values of energy. We attribute
this shift to additional processes that we considered (electron
correlation, excitation), and their influence on tunneling of
electron. It is important to highlight that these energies are
still above the low energy range which is in accordance to
[42,45]. It is also important to note that the curves for the
case of circularly polarized laser field are a few magnitudes
higher that in the case of linear [24].

Next, we examined how the ellipticity influences the tran-
sition rate and the energy distribution range of the ejected
photoelectrons. Figure 3 displays theoretical curves obtained
based on our formula for the transition rate, Eq. (12), (left
plot) and the energy distribution, Eq. (14), (right plot), for
ellipticities in the range of0.2 ≤ ε ≤ 0.7.

As we said, on the left graph, we considered transition
rates curves, in the given ellipticity range. For the higher
values of ellipticity ε = 0.6, 0.5 curves are symmetrical
with very prominent peaks, but for the smaller,ε = 0.4, 0.3
they become asymmetrical and their peaks are less promi-
nent. Also, with the decrease of ellipticity, curves shift to

FIGURE 3. The transition rate as a function of field intensity (left plot) and the energy distribution as a function of energy (right plot) for the
different ellipticities. In order from left to right: a)ε = 0.6, ε = 0.5, ε = 0.4, ε = 0.3; b) ε = 0.7, ε = 0.6, ε = 0.5, ε = 0.4. The field
intensity varies within the rangeI = 1 × 1014 − 2 × 1015 Wcm−2 (left plot), while energyE = 0 − 21 keV (right plot). The parabolic
coordinate is fixed onη = 20.
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FIGURE 4. 3D graphs forW (E) as a function of: a) the parabolic coordinateη = 20 − 21 and the energy,E = 4 − 9 keV. Ellipticity is
fixed onε = 0.6, and b) the ellipticityε = 0.5− 0.51 and the energy,E = 5− 21 keV. The parabolic coordinate is fixed onη = 20.

higher value of the field intensity, but the transition rate is
noticeably smaller [46]. From the first curve on the left with
the ellipticity ε = 0.6 to the last one withε = 0.3, our
curves reach the maximum on the following field intensities,
I: 7× 1014 Wcm−2, 1× 1015 Wcm−2, 1.5× 1015 Wcm−2,
2.8 × 1015 Wcm−2. This is in accordance with [47]. In the
Fig. 3 (right plot), we presented how the change in elliptic-
ity affects observed energy distribution spectra. It is obvious
that the shape of the curves is maintained with the change
of ellipticity. For ellipticities until approximatelyε = 0.4 the
laser field is considered to be near linearly polarized. One can
observe a rapid shift to lower energies around this value of el-
lipticity [45,46]. Described curve’s behavior is in accordance
with experimental investigation by Chenet al. [44] and Diet-
rich et al. [48]. Based on all aforementioned, our results are
closer to experimental data than those by the standard ADK.
Conclusion is that additional processes (which we included
in our formula), lead to better agreement between theoreti-
cal and experimental results. That is why the behavior of our
curves is consistent with [23,44,48].

In Fig. 4, we wanted to show how the energy distribu-
tion depends from two parameters. First, on left plot, we dis-
played the 3D graph which demonstrates the transition rate
obtained from our analytical formula, Eq. (14), as a function
of the energy,E, and ellipticity, ε, while parabolic coordi-
nateη was fixed. Next, on right plot, we fixed ellipticity,
ε and showed the 3D dependence from the energy,E, and
parabolic coordinate,η.

From Fig. 4 (left plot), it can be seen that 3D curve
raises faster for the change of the parabolic coordinate,η.
Its peak is prominent and the approximately same value of

energyE ∼ 7 keV is kept. For fixed parabolic coordinate
(right plot), this effect is even more drastic. It can be seen
that a small change of ellipticity affects strongly the energy
distribution spectra. In some definite range of the energy, 3D
curve raises exponentially until reaching maximum at around
E ∼ 10.5 keV, then rapidly decreases, and approaches to en-
ergy axis. Also, with increase of ellipticity, the maximum of
the energy distribution shifts to higher values of energy [46].

From all aforementioned, we can conclude that the pho-
toelectron energy distribution spectra is very sensitive to the
parabolic coordinate and ellipticity.

4. Conclusion

In conclusion, by applying a semiclassical model, we ob-
served the tunneling ionization process in an elliptically po-
larized laser field. We presented results for the transition rate
and energy distribution spectra with the contribution of ad-
ditional processes, such as excitation and electron-electron
correlation. The obtained results substantially deviate from
the predictions of the ADK tunneling theory. We attributed
the difference in results to the electrons correlation and ex-
citation. Related to the influence of laser field polarization
on the energy distribution spectra, we showed that it plays an
important role.
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