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Goos-Hanchen effect on a one transverse dimensional Hermite-Gaussian beam
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We study the lateral displacement (Gooérdhen effect) of a Hermite-Gaussian beam incident on a dielectric interface of lower index of

refraction than the incident media. Unlike previous results on the same subject, the present result can be applied to an infinite family of
higher order solutions (or modes) of the Huygens-Fresnel integral. The final theoretical expression is valid for values that are close to the

critical angled.. Discussion is made for the behavior of the lateral displacement for different modes of the Hermite-Gaussian beam.
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1. Introduction

The Goos-Hinchen phenomenon refers to a deviation of the
classical trajectory of a light beam predicted by the geomet-
rical optics theory, when the light beam is incident upon a
dielectric interface at an angle larger than the critical angle
(see Fig. 1). The first experimental observation dates from
1947 [1], and since then, many authors have tried to give a L
theoretical solution to the problem. Lotsch [2] gave an ex- B N
tended discussion on the whole subject, saying that no rig- R .
orous solution was known back then, but that an analitical p A
solution definitely exists. Renard [3] assumed that there is an / i
energy flow associated to the evanescent wave that penetrate 4 % N

the dielectric interface, then, using conservation of energy, ar- L

rives to an analytical expression that, however, is not valid in / classical " 4 observed

a close neighborhood éf. Horowitz and Tamir [4], using di- e L L

rect integration methods, arrived to the first theoretical impor-

tant result, since they were the first to give an explicit formulaFicure 1. Classical trajectory of a light beam and the real trajec-
valid for angles close té.. Cowan and Argin [5], using a tory affeceted by the lateral displacement

bounded microwave beam, investigated the lateral displace-

ment, and compared their results with the theoretical result&raveguide. Using ray methods and considering the Goos-
of Horowitz and Tamir. They found that their results disagreeHanchen effect, arrived to a predicted phase and group ve-
with the theoretical curve near the critical angle, they argudocity that agree with the usual energy conservation approach.
that this disagreement may be due to the fact that they wer8ince then, various aplications of this physical proccess were
using a short wide beam. Later on, Lai, Cheng and Tang [6§iven. Some include, aplications in acoustics [10], quantum
slighty improved the result presented by Horowitz and Tamirmechanics [11-13] and nonlinear optics [14]. Using photonic
when they used an expansion of the reflectance that retairsystals, Soboleva, Moskalenko and Fedyanin [15] enhanced
terms of second order. Their results give a lateral shift thathe Goos-Finchen effect and observed that the displacement
varies continuously and smoothly around the critical angleis, at least, one order of magnitude larger than in a dielec-
Also, Chan and Tamir [7], using the same expansion, investitric surface. Chremmos and Efremidis [16] give the lateral
gated the lateral displacement and other effects that were ndisplacement for an Airy beam. Finally, Prajapati and Ran-
studied before: focal shift, angular shift and the beam waisganathan [17], using numerical methods, give the total Goos-
modification. Hanchen effect for a three dimensional Hermite-Beam for

This effect has also been studied from the view point oftwo orthogonal components.
physical applications. For example, Chiu and J. J. Quinn [8] Despite all the results above, an analytical expression for
considered a wave packet and interpret the GoaseHen the lateral shift for a Hermite-Gaussian beam does not exist.
effect as a time delay scattering process. Kogelnik and WeGaussian beam is just one of many solutions (or modes) of
ber [9], investigated the light propagation through a dielectriche Huygens-Fresnel integral. It is the purpose of the present
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paper to show the theoretical behavior of the lateral displace-
ment for a higher mode solution. To this end, we use a higher
unidimensional mode solution of the Huygens-Fresnel inte-
gral and use the direct integration method used by Horowitz
and Tamir to derive the theoretical total displacement of the
field incident upon a dielectric interface. The final result is

valid for angles that are in a close neighborhood of the criti-

cal angle. K,
In Sec. 2 we give a derivation of the reflected field for

a Hermite-Gaussian beam in one transverse dimension. We =
write the incident field as a normalized one dimensional |
higher order Hermite-Gaussian field, this field being a so-
lution to the Hygens-Fresnel equation (strictly speaking, it is
a eigenfunction of the Hyghens-Frensnel integral equation).

Then, we write this field in a simplified form, assuming that Yi o i
the distance of propagation is so small that we can ignorethe h >< Ve >< '
Guoy phase shift. This approximation allows us to express - X,

the field only in terms of the Hermite polynomials and a ex-

ponential. Thereafter, we study separately the case for ever.

and odd Hermite polynomials. Then, the field is expressed aBIGURE 2. The three set of coordinates. The incident axis, the re-

a superposition of plane waves using the Fourer Transfornflected axis and the interface axis. The plérie the paralell to the

With this expression we write the reflected field in terms ofinterface.

the reflectance and a correction factor. The reason to express

the field in such a way is to simplify the integration of the &"

reflected field. In Sec. 3 we determine the general expression 2, = xcosf + y_ sin 0,

for the lateral displacement. This formula shows explicity ) . (2

the dependence with the incidence angle and the mode of the Yr = asinfd —y_sind.

field. In Sec. 4 we present numerical results that show thgyherey, = y + h, y_ = y — h andh is the position of the

behavior of the lateral displacement for different modes ofyjane where the beam is and parallel to the dielectric inter-

the field and for two different beam widths. An interesting f5ce.

resultis that, in general, the lateral displacement increases as The incident beam is located gt = 0. According to

the mode of the field increases and then decreases again. Adlegman and Sziklas [18] (see also [19] Chapter 16, Eq. 54),

important calculations are derived in the Appendix A and B. 3 higher-order Hermite Gaussian beam in one transverse di-
mension, along thg; = 0 axis, can be represented as

Y

2. Reflected Field

1/4 1/2 " n/2
O imel, )= 2 1 90 [gq0 ¢ ()
We will work under the paraxial approximation. This means = """’ 71' 2nplw q(y) La aly)
that the field is a solution to the Huygens-Fresnel integral.
H [ﬂxtl exp |: . kl‘?

Then, assume a monocromatic one transverse dimensional i }
Hermite-Gaussian beam incident upon a dielectric interface w(y) 2q(y) |

in the planey = 0. In addition, we will assume a linearly

polarized field and troughout the discussion a time depenWhere 1 1 D

dence is implied and supressed. The index of refraction of = R(y) -t ®)

. Pl q(y Tw?(y)’
the dielectric is taken to be = k/ky > 1, wherek andkg here R(v) is th((a 2ad' s of curvat r(e)amd the beam
are the wavenumbers associated to the incident and dielectr{e () i . u urvature (%) o .
media, respectively. We will make the assumption that thewalst as a function of propagation distance. This field is

beam is well defined, that lsw > 1, wherew is the beam generated by a point source (see [20]), so if we assume that

waist. The geometry of the problem is presented in Fig. 2;h2wave IS aé IOC\? distance from th? SOlf[L(:et \t/;/1e v(\jn_IIthave
We have three set of coordinates: the interface coordinate (y) — 0. € can sSuppose, aiso, that the distance

(z,y), the incident coordinate&:;, y;) and the reflected co- °© progaganollr": Itsh ;Z;’E‘:”ﬁggﬁ;‘gf tcr?en ;gjé?d)': o a;r;d
ordinates(x,., ). We are going to work out the problem in w(y) ~ w. , inatg wri

the rotated plane that is paralell to the interface plane. By thié?n_'n the r;taltr?c:hz)t(ljvgaraz”cg)nt\r/]v?i tiliLeeCtgculgttiirr:af%?’a:s
construction, these set of coordinates are related by Li = 2 Cosu. T Y. q
Hermite-Gaussian beam, of orderas

(1) '(/)n,inc(xi; y) = aan [@x} exp\[/_?::ﬂv (4)

x; = xcosf —y, sinb,

y; = xsinf + y4 cosb,
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where is the inverse Fourier Transform. Substituting Eq. (9) into
Eq. (14) yields
o :(27r3)1/4( v )1/2 (5)
n 2"71,' ) 0/2 Z f
an m = = J /
- cos0. (©) J

w

The final field propagating along thg axis will be x exp[—cz? —i(ky — k)z]dz, (15)

approximated by adding a plane-wave variatiom(iky:)  after completig the square and changing variable we will ob-
along the same axis. Using Eq. (1), the coordinates alonggn

the rotated plang = —h will give for the field

25 —2k
o Qonp —k
—22? 1+ ik on (ky) = ijgk( )
Vranel@iy) = oy, [VacTa] 22 ans 7@ cos 24 2~
2
where X exp [_i <k'p - k) ] 7 16)
k= ksin. (8) ¢

- . .. where
We need now an explicit representation for the Hermite

. . . . 2j
polynomials. Hermite polynomialas can be of even or odd B (29)! (—i)2i—2 1 (17)
order, for each case we must derive an expression for the lat- 9k = EN25 — 2k)! 2¢ '

eral displacement. We consider, as a first case, an even ord? is important to note that the lateral displacement will de-
Hermite-Gaussian beam, which can be written as: P P
pend upon the polarization of the field through the func-

n _ 2.2 T tion r (which, in turn, depends on polarization through
Ganine(Ti,y) = 020 > fiz% | C\/f ha ka], (9) the cc()nsian'm) We will make all calculations assuming a
j=0 i field in which the polarization is normal to the plane of inci-
dence. The effect of parallel polarization will only re-scale
where (—1)m+3 (2n)! the graphics and will not affect the shape of the final curves.
fi= (2F) (20) Proceeding now like Horowitz and Tamir, we can write
(27)!(n =)t the reflectance in such a way that we may extract the part
The reflected wave can be written as a continuous superesponsible for the geometric-optics result,
position of plane waves, each of one are affected by the Fres- .
nel reflectance;, , i.e., r(ke) = r(R)[1 4 re(ks)], (18)
o where (k)
1 ~ - (R
wgnﬂ.(:}j’y) = % / r(kl)¢2n(kl) Tc(k:n) = - |:]. — ’r‘(]_g) :| . (19)
-0 The termr.(k,) represents a correction term and takes
x expli(kyr — kyy_ )] dks, (11) into account the ondulatory behavior of the incident field; that
is, the functiorr. (k) is responsable for the deviation of the
where Hermite-Gaussian beam from the geometric-optics trajectory.

This way, we can write the reflected field like
(k* — k"2 — m(k§ — k3)'/?

(k2 — ]{12)1/2 + m(k% — k3)1/2 ’ (12) an,T(xa y) = an,rg(x» y)[l + 1/}2n,ro(x, y)}, (20)

7(ky) =

andk,, k, are the components of the wave numbamnd are  Where
related byk:2 + k= (2m/))?. The termk is ko = k sin 6.

The constantn |s the coefficient that depends on the polar- Yon rg(T,y) = 5 7 / )
ization of the incident wave,e., Teosy J o
m=1 or m=n2 (13) x expli(kyx — kyy-)] dks, (21)
o - and
for normal and parallel polarization to the plane of incidence,
respectively, and r (k) 7 AT
Yanro(T,y) = g (1,9) / Te(kz ) (k)

an :c / 1/}271 inc CL’ y) exp( ik x)d (14) % exp[ (k} r— kiyy_)] dkjy. (22)
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Now, if we substitute Eq. (16) into Eq. (21) we arrive to After performing and substituting Eq. (25) into Eq. (28), (see
Appendix B) we will obtain,

o ro(229) r(k) En:zj:fg 7 (km _k)2j2k R
2n,rg\ <L = - 719k n
2meos == e ¢ Yanro(T,y) = ZZ Z figex (29)
P2n lr/wr i—0 k=0 1—=0
1 (ky —k\° " B
X exp [-4 ( - ) ] (kwd)> =2 (=6)1 25 Hy(7/v2) - (30)
X eXp[i(k‘me‘ - kyyf)} dk. (23) 5PIF1/2+Z(7)} ) (31)
The reason to express the reflected figdd , (z,y) interms  where
of oy rg(z,y) andis, ro(x,y) is that in such way we can
simplify the integration because it is esier to handle the func- O () — 4m cos? 0. sin 0
tionr.(k,) (see Appendix A.2 where we made the integration 1(0) = cosl/2 f(sin § + sin 6,)1/2
using series expansion for(k,)) than the function-(k,). 1
Of course, we can still make a calculation usir(@..), but 5 YR — , (32)
in the present work we only focus in the much simplified [cos 62 + m?(sin” § — sin” 0c)]
version of the problem. In future papers we will handle the § = (sin@ — sin 6,.) sec ), (33)
problem using-(k,) an we will compare those results with
the ones presented here. n
Now, making the integration (see Appendix A.1) we get Ponlz/w) = Z_;)kz_;f sl (z/w), (34)
the following expression for the reflected field (geometric- T
optical field): o @j-2k)
= g k) (35)
ogp Il .
1/}2n,7'g('ra y) = - _ (2.7 - 2k>' /2 _ z
v b= l!(2j "ok — l)!(l) P [ Zgl] » (36)
n o J
X Z Z fihHo gy (0 /w;), (24) 8= T )1/2 exp(in/4), (37)
j=0 k=0
. . . . kw6
whereHy(;_y, is the Hermite polynomial of orde(j — k) = ( 5 ) , (38)
and
) Fijoni(y) = exp [v?/4] D1j20(7), (39)
Ty .
I = - — ky.), 25 , )
P [ (wr> ] exp(ikyr) (25) and H; and D, /5, are the Hermite polynomial and the
9 Parabolic cylinder function of ordef and 1/2 + I, re-
w? = w? — i2% sec 0, (26)  spectevily. The termPy,(z,/w,) is just the geometric-
k 4 optical field without the constant part. Notice that the real
T part of v is a measure of the distance between the observa-
hi = (_wr> 9k 27)  tion point and the reflected axis, while the imaginary part is

For the correction field we subsitute Eg. (16) into Eq.
(22)

r(k)

1/}271 ro ({I? y) w

x expli(kyx — kyy—)] dks. (28)

a measure of the deviation of the incidence angle from the
critical angle.

Now, if we consider the odd Hermite polynomials, the
incident field will be

n
YontLine(T,y) = 02ng1 Y a0t

§=0
exp[tj;j;r ik] ’ (40)

where
fi= Ot L gjivaa@pi

(25 +Dn —j)!
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Making the same procedure we did before, we arrive tovhere Ly, has dimensions of length. Notice now the argu-
the following expression for the correction term ment of the exponential, we can interpigt, as a distance
that is displaced with respect 1 and is, therefore, a quan-

Yoni1.00(T,y) = __AlB) tity that can be interpreted as a lateral displacement for the
Pon (2r /wr) even Hermite-Gaussian beam. Notice that the important step

n j 2j-2k in obtaining such result is present in Eq. (44), where we

<3N Fige(kw) ! rewrite the correction factor as a natural logarithm, this shows

j=0 k=0 1=0 the importance of rewriting the reflected field in terms of the

s correction factor. This allow us to make a series expansion
X {(*5) s H(v/V2) — 5P1F1/2+z(’7)}, (42)  and, finally, re-arrange the terms so that we get the lateral
shift Ls,,. This lateral shift is, then, given by

where %
~ (2))! k < i ) 1 w a
g = —t—(-D"{=] -. 43 ~ !
= ae e () o @ Lon QCOSG‘ReLCLZ | (48)
Equations (29) and (42) are expressions for the correc-
tion term; it is not, strictly speaking, the total reflected field. Where
Nevertheless, the reflected field is expressed in terms of the A(B S
: . > =IEESS _ _A9) fa(9)
classical reflected field (geometric-optical field) and the cor- @ =5 0) £6)° (49)
rection factor. For our purpouses, the correction term can be 2n !
used to arrive to an expression for the lateral displacement, as _AWG) J1£0) 1[AO)] 50
it will be discussed in the following section. Notice that the a2 = Py (0) 1 2 £1(8) 2 [ f1(6) ’ (50)
difference between the correction factor for the even and odd
cases are just the summation terfasandgy, the rest of the  gpq
terms are exactly the same.
A6
) f1(5)=1+P((()))
3. Lateral Displacement 2n
n Jj 2j—2k
The objective of the present section is to obtain the lateral X Z figr(kwd)?~ 2k—1
shift. To this end we need to rewrite the reflcected field in =0 k=0 1=0
such way that the equation shows explicitly the trajectory of o
the beam. In order to obtain this expression (for the even X [( 0) 251 H(0/V2) — ﬂplFl/Z-&-l('YO)}» (51)
Hermite-Gaussian beam), we first recognize that if the dis- i 2ok
tance of propagation is sufficiently small compared to the B = — 2j—2k—1
beam width, then the beam will remain well collimated, that F(0) = Z Z Z Figr(kwo)
meansw, ~ w. Then, we rewrite Eq. (20) in the following J=OR=0 120
form X { )2 s1(20) Hy—1(v0/V'2)
o 2
nr(&,Y) = ————————— exp|—(z,/w
Vonir (@) = = Ty P (/) — Bp(1/2+ 1) F- 1/2+z(70)} (52)
+ ln(]- + wQTL,ro)] exp[lky}v (44) n j 2j—2k
— k 5 2j—2k—1
if we expand the logarithm into a Taylor series around :Ogo ; Jign(kwo)
(z,/w) = 0 (y = ikwd/+/2) we get
x |(=6)2s1(4) (1 = 1) Hi-2(70/V2)
ln[1+w2n,ro(xv y)] ~ ap+ag (l‘r/w)—f—ag(.ﬂr/’LU)—i-..., (45) |:
where — Bpi(—1/4+ P)F_5/2.11(70) |- (53)
. — 1 a (1 + Yo ro) . (46) For the lateral displacement for the odd case, we use
" nld(z, Jw)m " (2 Jw)=0
Making the substitution and after algebraic manipula- [l + Yant1.r0(2, y)] = bo
tions, we arrive to the following expression: + by (2 /w) + ba(x Jw) + ..., (54)
exp[—(z, /w)? + In[1 4 9,.,)] =~ exp < L —2a2> where
w
1 mn
X exXp [Z‘T — Lgn} 5 (47) bn = ln(l + ¢2n+1,r0) . (55)

n! d(z, /w)" (@ /w)=0
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For this casels,+1 will be
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w b1 n j 2j—2k R .
Lonr = 2cos ‘Re[l — bg} ’ (58) 93(0) = Z Figr(kws)? =28
j=0k=0 =0
where
A(0) g2(9) [0 84D = DHi-00/ VD
by = , (57)
P, (0 1
2n(0) 91(9) —ﬁpl(—1/4+lQ)F—3/2+l(Wo)] (61)
AO) [1gs(0) 1 [g2(6)]
b=5 ((())) {2?’8 ~3 BZ&H }, (58) Equations (48) and (56) are our final result. It should
an ! ! be noted that we are taking the positive value, since the dis-
and placement is always a positive magnitude. Notice, also, that
i 2j2k we take terms of second order in Eqgs. (48) and (56) since
_ A(6) = X~ 2j—2k—1 in our case, the terms, andb, cannot be neglected. In the
9(0) =1+ Py, (0) Z_(:)kz_o — 151 (k) next section, we use Eqgs. (48) and (56) with Eqgs. (46-50)
IR and (54-58), respectevily, to obtain the lateral displacement
% [(,5)1/2&]{[(%/\@) — BpiFyjasi(10)], (59)  for beams of different order.

X |[(=6)25(20)Hy—_ 1 (70/V/2)

4. Numerical Results

We did calculations (programming was done using Wolfram
Mathematica 7.0) for the lateral displacement for a Hermite-
Gaussian beam, of even order and of width = 10000,

reflected from a dielectric interface of index of refraction
— Bp(1/2 4 DF_ } 60 ‘
BApi(1/2+ DF-1/21(%) (60) n = 1.52, for the following valuesN = 0, 2, 4, 6, 8, and 10.
10 10
—— N=0 — H=6
8F - --— N=2 8 --— N=§
w = N - - =~ N=10
Q= 8 - - = - i Q |~ ¢ o .
= -
=] 2 ] = af T e
0 1 L L 0 L L S 1=~
0 0.00005 0.0001 0.00015 0.0002 0 0.00005 0.0001 0.00015 0.0002

o°

O‘ [e]

FIGURE 3. Lateral Displacement for an even Hermite-Gaussian Beam, ferl.52 (glass crown) and a beam width bfv = 10000. Only
normal polarization is shown. Parallel polarization only has the effect of resclaing the curve. Graphics are shown in semilog scale.

— N=0 — N=6
8 - vassicses Nl 8 woores N
——= N=4 TS -—- N=10
—_— G 7 N —t gl = S
Q= TS it Q= .
—— -

0 L L

0 0.00005 0.0001
50

0.00015 0.0002

log
g
e
LY
|
'
[
|

O Il I "B i
0 0.00005 0.0001 0.00015

§°

0.0002

FIGURE 4. Lateral Displacement for an odd Hermite-Gaussian Beam, for n=1.52 (glass crown) and a beam width-0f0000. Only
normal polarization is shown. Parallel polarization only has the effect of resclaing the curve. Graphics are shown in semilog scale.
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5 0
of N - it -5 N - _—
i _ . -
_ N U R Sy
Q= \ f N Q= B %
[211) > | I [=11) Ve l— B
s) | ! S Bl
N=0 —— N=6 i
~10}+ il =15 -—- N=8 P
== N=2 }
S - - N=10
15 ! : ‘ 20 i : ‘
0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02

6°

0°

FIGURE 5. Lateral Displacement for an even Hermite-Gaussian Beam, for n=1.52 (glass crown) and a beamvidth o. Only normal
polarization is shown. Parallel polarization only has the effect of resclaing the curve. Graphics are shown in semilog scale.

0= —— =5
Rk e = . , ——
s /\ / e = \ ///
—_—— s —_—— “‘H
JE | Q= - {5, #
£ | = —N=7 o
= =——N=1 |} = i -
-10} -15 ---N=9 | s
LNy oo
- —=N=11 | ."‘
e =S )
-15 ‘ -20 ‘
0 0.005 0.01 0.005 0.01

B

R

FIGURE 6. Lateral Displacement for an odd Hermite-Gaussian Beam, for n=1.52 (glass crown) and a beam kidth @f). Only normal
polarization is shown. Parallel polarization only has the effect of resclaing the curve. Graphics are shown in semilog scale.

The results are shown in the Fig. 3 in a semilog scale. We wave of parallel polarization to the plane of incidence we
see that the lateral displacement increasesMos 2 until must include the index of refraction this only will re-scale

N = 4, and then starts to decrease. This peculiar behavioall the curves and wil not affect the shape of these curves.
may be due to the fact that we are cosidering just one dimen- Take into account that the present simulations are new
sional transverse beam and the fact that we are not consideand, to our knowledge, haven't been made before, so what we
ing the Guoy phase shift. We also did the calculations for thedo here is only compare the results with the case for a Gaus-
odd case; that is, fov = 1, 3, 5, 7, 9 and 11 (see Fig. 4). sian beam, result that is known since the results presented
We see the same behavior as the even case; that is, an oy Horowitz and Tamir. In future papers we will make an
crease in the magnitude of the lateral displacement, and theequivalent procedure to obtain the lateral shift and compare
a decrease in the value of the lateral displacement. the results with the ones presented here.

Finally, we did the same calculation, but for a very low
beam widthkw = 10. In Fig. 5 and 6 it is shown the results 5. Conclusions
for N =0,2,6,8,10andN = 1,3,5,7,9,11 in a semilog
scale. In this case, we see that the behavior is, except for thgreviously, Horowitz and Tamir [4] arrived to an analitic
caseN = 2 where the displacement is larger thdih= 0, a2 equation for the lateral displacement for a Gaussian beam of
steadily decrease of the lateral displacement as the order g&ro order. Some years after, Lai, Cheng and Chang [6], us-
the mode of the beam increases. We see, also, that the maxy an alternative method, arrived to a similar formula. How-
imum displacement occurrs at different angles for the everver, until now, no analitic formula has been derived for a
and odd case. For the even case, the displacement attains f#f®re general Hermite-Gaussian beam. By the same meth-
maximum for angles above= 0.001°, and for the odd case, ods described above, we could arrive to an expression for the
for angles below = 0.001°. Goos-Hanchen shift for the more general case of a Hermite-
One point of consideration, as was mentioned before, i$saussian beam. Using such formula, we gave numerical re-
that all the present calculations were made assuming a wawilts of the lateral displacement in fuction of the order of
which is normal to the plane of incidendeg., for the case the Hermite-Gaussian beam and the beam width. We found
of normal polarization. This dependence is given by the conthe peculiar behavior that the lateral displacement first in-
stantm in the reflectance (see Eq. (13)). For the case otreases and then decreases steadily as the order of the beam
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increases. Assumptions, such as not taking in account thdsing now the fact that
Gouy phase shift as the beam propagates, has been made. If

such phase is taking into account, the mathematical problem 5321 Vv for leven
becomes, analitically, inmanageable and numerical methods / u exp(—u?) du = { (A.6)
should be used. We will consider, for a future paper, the be- = 0 for lodd

havior of the lateral displacement when the beam incides on

a finite dielectric interface. Another investigation that will be we get as a result

considered in another paper is the behavior of the lateral dis- 279k

placement when we use the reflectan@e,) and not the cor- = 112/ kwr)(2w/we)™

rection factorr.(k,); then, using these results we will make ik (2 — 2k)! 2j—2k—21

a comparision with the results presented in the present work. X m [ ] TR (A.7)
Also, we will consider the efect of the Guoy phase shift in the 1=0 (25 )!

problem; such consideration will requiere the use of numeri-

cal methods to solve the integrals. We can simplify the previous result by observing that

j—k 2] _ 2k 2j—2k—21
Appendix ZZ 1125 — 2k — 21! [’ ]
A. Reflected Field - Geometric Optical field VT ( 1)23'2’“
221 9
The first integral we need to solve is
0B/ (g5 o)
0o . l
hy — k)2 1k — k2 < Y maeme Y
I = / exp | —— 1=0 J
c 4 c
e . 2j—2k—21
x expli(kyx — kyy—)] dks. (A.1) x <2w,) ' (A-8)

To accomp“sh th|s we first need to expr%QS a function We reCOgniZe that the term in the Summatory are the Hermite
of k,. Sincek, = (k2 — k2)!/2 is not managable the way it Polynomials of ordeR(j—k). For this reason, our final result
is, we expandc in a Taylor series, to second order, aroundis
the critical valueky = ksin ... The result is

2j—2k
I = T1(2/kw, ) (2w /w, )52 /7 <;>

X H2(jfk)(mr/wr)' (A9)

ky = kcos 0 + kusin 0 — k(u?/2) sec? 6, (A.2)

where

w=(sinf — k,/k)/ cos6. (A.3) ) )
B. Reflected Field - Correction Factor
Substituting Eq. (A.2) into Eq. (A.1), we get
The other integral we need to solve is

Ilzn(k,w)Zj—2k/’u2j—2k' [e%e] k 7]{: 2j—2k 1 k 71{: 2
/ e ot (528 [ (522)]

c 4 c

2 2
X exp [— (k;ljr) ( +1i 22$k> ] du, (A.4) x expli(kzx — kyy—)] dks. (B.1)

wherell andw, are given by Egs. 25 and 27. The integral For this case, it is convenient to use the following variable

can be solved easily if we make= (kw, /2)[oc+i(2z/kw?)] e B .
and using Newton’s binomial, v=p—0=(sincd —ky/k)/ cos. (B.2)

Since we are interested in a small regiordpthe main con-

2j—2k ) | tribution to the integral arise for a small valuesofAlso, the
I = 11(2/kw,) (2w/w,) 2 ~2F Z '(23_—%) principal contribution arise from values &f, in a neighbor-
IN2j — 2k 1) hood centered around the valkig= & sin §. In terms of this

o op_y O variable k, can be expanded in Taylor series around —§

2k ; L -
o {Zx,} / ot exp(—u2) du (A.5) (the axis of the geometric-optics reflected beam) giving
Wy
—00 ky,=k cos 0+k(v+6) tan 0—k[(v+6)? /2] sec62.  (B.3)
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We now focus our attention on the functiongk,) and

r.(ky). First, the second term of the numerator and the de- - -
nomitaror in the reflectance i3 — k2)'/2. Second, we ob-

serve that this function varies rapidly arouhg ~ &k, due

to the singularity ak, = kq. For this reason it is possible
to make the change of variable #¢/2. We then rewrite the and

functionr(k,) (see Eq. (20)) as

1 p('/?)

W) = -1 B.4
T (V ) ’]"(k) q(yl/z) ( )
where
r(k) = r(ksin )
o en2h w2 g)1/2
_ cost m(sTn2 0. S?Il2 0) (B.5)
cos 0 + m(sin® 6, — sin” 0)1/2
2
p(vt/?) = cos O + (v + ) sinh — (v+9) sec — m cos 6
1/2
X [E+2(w+06)2tand + (v +0)%| (B.6)
2
q(W'/?) = cos 0 + (v + 6)sin 0 — Mse00+mc059
1/2
X [E42(v+ ) tanf + (v +0)*| (B.7)
and
¢ = (sin0? — sin 6?) sec 6. (B.8)

We now expand-.(#'/?) in Tylor series in powers of'/2

)

— 2(_6)1/2 1— m£71/2

v=—0 L _

()

=2(=)Y2 |14+ me~ V2.

v=—4 L i

q(v)
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(B.14)

(B.15)

Substituting Egs. (B.12)-(B.15) into Eqg. (B.11) gives (after

algebraic simplification)
4m cos® 6, sin 0
cost/2 f(sin 0, + sin 9)1/2
1
X . 9 . 9
[cos 02 + m?2(sin“ 6 — sin” 6,.)]

01(0) = Cl =

So, the functiorr.(v'/2) is, finally:
re(V!/?) = =Cr(0)[W"/? — (=5)"/7].
The integrall; is then

I = (kcos ) (kw)? 2 T exp[y%/2]C1(0)

~ /[V1/2 - (75)1/2}(V+5)2j72k

— 00

X exp [ <lﬂ;r)2y2 +1 <k’\)//I§UT) l/‘| dv.

aroundr = —d, obtaining (keeping only terms of first order) |f now we use Newton’s binomial we get

re(v) = Co — C [VW — (=2, (B9
where
Co =re(v) ;
nu=—39
Ci = —dr;(/”) (B.10)
v=—9

The evaluation o’ gives zero. The evaluation 6f; is easy
but cumbersome. First, we obserbe that

1 p()d'(v) —p'(v)a(v)
“=w® wr |, ©W
where
p(v) = cosf [1 — mflml , (B.12)
v=—0
q(v) =cosf|1+ mflﬂl , (B.13)
v=—0

I = (kcos 8)(kw) 2 T exp[y?/2]C1(0)

2j—2k—1

X [Jy = (=0)'/2 72,

where

oo

J = /V1/2+l

— 00
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(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)
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The integral/; can be split into two parts:

0

Ji = /yl/Q'H

— 00

" [ <kwr)2 2+<k7w7‘)
Xp | — v 1 v
2 V2

2
X exp [— (k;ur) vi i (k’y\;;) 1/] dv, (B.22)

after changing variable in the first integral

1 1/2+1 kwy ? 2
J=0-1% v exp | — (= v
0

()

2
X exp [— (k;UT) vi i (k‘;y/zg,) V‘| dv. (B.23)

0o
dy+/yl/2+l
0

dl/+/yl/2+l

P. C. ROMERO SORIA AND A. S. OSTROVSKY

We obtain

—(3/2+1) 2
kw, 3 ¥
= F _ J—
g (\@) (Q—H)exp( 4>

X [(=1)'iD_(3241)(i7) + D_(3/241)(—i7)] , (B.24)

after using the identity 9.248-1 in [21] we get

kw, \ ~¢/2+0 i

Ji = (\/%> \/%exp {—4(1—21)]
2

X exp (—1) Dijai(v)- (B.25)

The integralJ, can be solved directly after completing

the square an changing the variable of integration. We obtain

() el 2)
« (k;)lm(y/\/ﬁ).

Substitution of Eq. (B.25) and (B.26) into Eq. (B.19)

(B.26)

Each integral can be found in tables (see 3.462-1 in [21])gives the final expression for the integral
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