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Goos-Hänchen effect on a one transverse dimensional Hermite-Gaussian beam
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We study the lateral displacement (Goos-Hänchen effect) of a Hermite-Gaussian beam incident on a dielectric interface of lower index of
refraction than the incident media. Unlike previous results on the same subject, the present result can be applied to an infinite family of
higher order solutions (or modes) of the Huygens-Fresnel integral. The final theoretical expression is valid for values that are close to the
critical angleθc. Discussion is made for the behavior of the lateral displacement for different modes of the Hermite-Gaussian beam.
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1. Introduction

The Goos-Ḧanchen phenomenon refers to a deviation of the
classical trajectory of a light beam predicted by the geomet-
rical optics theory, when the light beam is incident upon a
dielectric interface at an angle larger than the critical angle
(see Fig. 1). The first experimental observation dates from
1947 [1], and since then, many authors have tried to give a
theoretical solution to the problem. Lotsch [2] gave an ex-
tended discussion on the whole subject, saying that no rig-
orous solution was known back then, but that an analitical
solution definitely exists. Renard [3] assumed that there is an
energy flow associated to the evanescent wave that penetrates
the dielectric interface, then, using conservation of energy, ar-
rives to an analytical expression that, however, is not valid in
a close neighborhood ofθc. Horowitz and Tamir [4], using di-
rect integration methods, arrived to the first theoretical impor-
tant result, since they were the first to give an explicit formula
valid for angles close toθc. Cowan and Anĭcin [5], using a
bounded microwave beam, investigated the lateral displace-
ment, and compared their results with the theoretical results
of Horowitz and Tamir. They found that their results disagree
with the theoretical curve near the critical angle, they argue
that this disagreement may be due to the fact that they were
using a short wide beam. Later on, Lai, Cheng and Tang [6]
slighty improved the result presented by Horowitz and Tamir,
when they used an expansion of the reflectance that retains
terms of second order. Their results give a lateral shift that
varies continuously and smoothly around the critical angle.
Also, Chan and Tamir [7], using the same expansion, investi-
gated the lateral displacement and other effects that were not
studied before: focal shift, angular shift and the beam waist
modification.

This effect has also been studied from the view point of
physical applications. For example, Chiu and J. J. Quinn [8]
considered a wave packet and interpret the Goos-Hänchen
effect as a time delay scattering process. Kogelnik and We-
ber [9], investigated the light propagation through a dielectric

FIGURE 1. Classical trajectory of a light beam and the real trajec-
tory affeceted by the lateral displacement

waveguide. Using ray methods and considering the Goos-
Hänchen effect, arrived to a predicted phase and group ve-
locity that agree with the usual energy conservation approach.
Since then, various aplications of this physical proccess were
given. Some include, aplications in acoustics [10], quantum
mechanics [11-13] and nonlinear optics [14]. Using photonic
crystals, Soboleva, Moskalenko and Fedyanin [15] enhanced
the Goos-Ḧanchen effect and observed that the displacement
is, at least, one order of magnitude larger than in a dielec-
tric surface. Chremmos and Efremidis [16] give the lateral
displacement for an Airy beam. Finally, Prajapati and Ran-
ganathan [17], using numerical methods, give the total Goos-
Hänchen effect for a three dimensional Hermite-Beam for
two orthogonal components.

Despite all the results above, an analytical expression for
the lateral shift for a Hermite-Gaussian beam does not exist.
Gaussian beam is just one of many solutions (or modes) of
the Huygens-Fresnel integral. It is the purpose of the present
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paper to show the theoretical behavior of the lateral displace-
ment for a higher mode solution. To this end, we use a higher
unidimensional mode solution of the Huygens-Fresnel inte-
gral and use the direct integration method used by Horowitz
and Tamir to derive the theoretical total displacement of the
field incident upon a dielectric interface. The final result is
valid for angles that are in a close neighborhood of the criti-
cal angle.

In Sec. 2 we give a derivation of the reflected field for
a Hermite-Gaussian beam in one transverse dimension. We
write the incident field as a normalized one dimensional
higher order Hermite-Gaussian field, this field being a so-
lution to the Hygens-Fresnel equation (strictly speaking, it is
a eigenfunction of the Hyghens-Frensnel integral equation).
Then, we write this field in a simplified form, assuming that
the distance of propagation is so small that we can ignore the
Guoy phase shift. This approximation allows us to express
the field only in terms of the Hermite polynomials and a ex-
ponential. Thereafter, we study separately the case for even
and odd Hermite polynomials. Then, the field is expressed as
a superposition of plane waves using the Fourer Transform.
With this expression we write the reflected field in terms of
the reflectance and a correction factor. The reason to express
the field in such a way is to simplify the integration of the
reflected field. In Sec. 3 we determine the general expression
for the lateral displacement. This formula shows explicity
the dependence with the incidence angle and the mode of the
field. In Sec. 4 we present numerical results that show the
behavior of the lateral displacement for different modes of
the field and for two different beam widths. An interesting
result is that, in general, the lateral displacement increases as
the mode of the field increases and then decreases again. All
important calculations are derived in the Appendix A and B.

2. Reflected Field

We will work under the paraxial approximation. This means
that the field is a solution to the Huygens-Fresnel integral.
Then, assume a monocromatic one transverse dimensional
Hermite-Gaussian beam incident upon a dielectric interface
in the planey = 0. In addition, we will assume a linearly
polarized field and troughout the discussion a time depen-
dence is implied and supressed. The index of refraction of
the dielectric is taken to ben = k/k0 > 1, wherek andk0

are the wavenumbers associated to the incident and dielectric
media, respectively. We will make the assumption that the
beam is well defined, that iskw À 1, wherew is the beam
waist. The geometry of the problem is presented in Fig. 2.
We have three set of coordinates: the interface coordinates
(x, y), the incident coordinates(xi, yi) and the reflected co-
ordinates(xr, yr). We are going to work out the problem in
the rotated plane that is paralell to the interface plane. By this
construction, these set of coordinates are related by

xi = x cos θ − y+ sin θ,

yi = x sin θ + y+ cos θ,
(1)

FIGURE 2. The three set of coordinates. The incident axis, the re-
flected axis and the interface axis. The planeh is the paralell to the
interface.

and

xr = x cos θ + y− sin θ,

yr = x sin θ − y− sin θ.
(2)

wherey+ = y + h, y− = y − h andh is the position of the
plane where the beam is and parallel to the dielectric inter-
face.

The incident beam is located atyi = 0. According to
Siegman and Sziklas [18] (see also [19] Chapter 16, Eq. 54),
a higher-order Hermite Gaussian beam in one transverse di-
mension, along theyi = 0 axis, can be represented as

ψn,inc(xi, y)=
(

2
π

)1/4 (
1

2nn!w

)1/2
q0

q(y)

[
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− i
λ

πw2(y)
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whereR(y) is the radius of curvature andw(y) the beam
waist as a function of propagation distance. This field is
generated by a point source (see [20]), so if we assume that
the wave is at long distance from the source we will have
1/R(y) −→ 0. We can suppose, also, that the distance
of propagation is so small that we can takeq(z) ' q0 and
w(y) ' w. In the same manner, the coordinatexi, writ-
ten in the rotated axis paralell to the dielectric interface, is
xi = x cos θ. In that way, we can write the equation for a
Hermite-Gaussian beam, of ordern, as

ψn,inc(xi, y) = αnHn

[√
2c2x

] exp[−c2x2]√
πw

, (4)
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where

αn =
(
2π3

)1/4
( w

2nn!

)1/2

, (5)

c =
cos θ

w
. (6)

The final field propagating along they axis will be
approximated by adding a plane-wave variationexp(ikyi)
along the same axis. Using Eq. (1), the coordinates along
the rotated planey = −h will give for the field

ψn,inc(xi, y) = αnHn

[√
2c2x

] exp[−c2x2 + ik̄x]√
πw

, (7)

where
k̄ = k sin θ. (8)

We need now an explicit representation for the Hermite
polynomials. Hermite polynomialas can be of even or odd
order, for each case we must derive an expression for the lat-
eral displacement. We consider, as a first case, an even order
Hermite-Gaussian beam, which can be written as:

ψ2n,inc(xi, y) = α2n

n∑

j=0

fjx
2j exp[−c2x2 + ik̄x]√

πw
, (9)

where

fj =
(−1)n+j(2n)!
(2j)!(n− j)!

(2
√

2c2)2j . (10)

The reflected wave can be written as a continuous super-
position of plane waves, each of one are affected by the Fres-
nel reflectancerkx , i.e.,

ψ2n,r(x, y) =
1
2π

∞∫

−∞
r(kx)ψ̃2n(kx)

× exp[i(kxx− kyy−)] dkx, (11)

where
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x)1/2 + m(k2

0 − k2
x)1/2

, (12)

andkx, ky are the components of the wave numberk and are
related byk2

x + k2
y = (2π/λ)2. The termk0 is k0 = k sin θc.

The constantm is the coefficient that depends on the polar-
ization of the incident wave,i.e.,

m = 1 or m = n2, (13)

for normal and parallel polarization to the plane of incidence,
respectively, and

ψ̃2n(kx) =

∞∫

−∞
ψ2n,inc(x, y) exp(−ikxx) dx, (14)

is the inverse Fourier Transform. Substituting Eq. (9) into
Eq. (14) yields

ψ̃2n(kx) =
α2n√
πw

n∑

j=0

fj

∞∫

−∞
x2j

× exp[−c2x2 − i(kx − k̄)x]dx, (15)

after completig the square and changing variable we will ob-
tain

ψ̃2n(kx) =
α2n

cos θ

n∑

j=0

j∑
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fjgk
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c
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, (16)

where

gk =
(2j)!

k!(2j − 2k)!
(−i)2j−2k

(
1
2c
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. (17)

It is important to note that the lateral displacement will de-
pend upon the polarization of the field through the func-
tion r(kx) (which, in turn, depends on polarization through
the constantm). We will make all calculations assuming a
field in which the polarization is normal to the plane of inci-
dence. The effect of parallel polarization will only re-scale
the graphics and will not affect the shape of the final curves.

Proceeding now like Horowitz and Tamir, we can write
the reflectance in such a way that we may extract the part
responsible for the geometric-optics result,

r(kx) = r(k̄)[1 + rc(kx)], (18)

where

rc(kx) = −
[
1− r(kx)

r(k̄)

]
. (19)

The termrc(kx) represents a correction term and takes
into account the ondulatory behavior of the incident field; that
is, the functionrc(kx) is responsable for the deviation of the
Hermite-Gaussian beam from the geometric-optics trajectory.
This way, we can write the reflected field like

ψ2n,r(x, y) = ψ2n,rg(x, y)[1 + ψ2n,ro(x, y)], (20)

where

ψ2n,rg(x, y) =
r(k̄)

2π cos θ

∞∫

−∞
ψ̃(kx)

× exp[i(kxx− kyy−)] dkx, (21)

and

ψ2n,ro(x, y) =
r(k̄)

2πψrg(x, y)

∞∫

−∞
rc(kx)ψ̃(kx)

× exp[i(kxx− kyy−)] dky. (22)
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Now, if we substitute Eq. (16) into Eq. (21) we arrive to

ψ2n,rg(x, y) =
r(k̄)

2π cos θ

n∑

j=0
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k=0
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]
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The reason to express the reflected fieldψ2n,r(x, y) in terms
of ψ2n,rg(x, y) andψ2n,ro(x, y) is that in such way we can
simplify the integration because it is esier to handle the func-
tion rc(kx) (see Appendix A.2 where we made the integration
using series expansion forrc(kx)) than the functionr(kx).
Of course, we can still make a calculation usingr(kx), but
in the present work we only focus in the much simplified
version of the problem. In future papers we will handle the
problem usingr(kx) an we will compare those results with
the ones presented here.

Now, making the integration (see Appendix A.1) we get
the following expression for the reflected field (geometric-
optical field):

ψ2n,rg(x, y) = − α2nΠ√
πwr

×
n∑

j=0

j∑

k=0

fjhkH2(j−k)(xr/wr), (24)

whereH2(j−k) is the Hermite polynomial of order2(j − k)
and

Π = exp

[
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]

exp(ikyr), (25)
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gk. (27)

For the correction field we subsitute Eq. (16) into Eq.
(22)

ψ2n,ro(x, y) =
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After performing and substituting Eq. (25) into Eq. (28), (see
Appendix B) we will obtain,

ψ2n,ro(x, y) =
C1(θ)

P2n(xr/wr)

n∑

j=0

j∑
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(kwδ)2j−2k−l
[
(−δ)1/2slHl(γ/

√
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]
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where
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4m cos2 θc sin θ

cos1/2 θ(sin θ + sin θc)1/2

× 1
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, (32)
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F1/2+l(γ) = exp
[
γ2/4

]
D1/2+l(γ), (39)

and Hl and D1/2+l are the Hermite polynomial and the
Parabolic cylinder function of orderl and 1/2 + l, re-
spectevily. The termP2n(xr/wr) is just the geometric-
optical field without the constant part. Notice that the real
part of γ is a measure of the distance between the observa-
tion point and the reflected axis, while the imaginary part is
a measure of the deviation of the incidence angle from the
critical angle.

Now, if we consider the odd Hermite polynomials, the
incident field will be

ψ2n+1,inc(x, y) = α2n+1

n∑

j=0

f̂jx
2j+1

× exp[−c2x2 + ik̄x]√
πw

, (40)

where

f̂j =
(2n + 1)!

(2j + 1)!(n− j)!
(−1)j(2

√
2c2)2j+1. (41)

Rev. Mex. Fis.65 (2019) 175–184
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Making the same procedure we did before, we arrive to
the following expression for the correction term

ψ2n+1,ro(x, y) =
A(θ)

P2n(xr/wr)

×
n∑

j=0

j∑

k=0

2j−2k∑

l=0

f̂j ĝk(kwδ)2j−2k−l

×
[
(−δ)1/2slHl(γ/

√
2)− βplF1/2+l(γ)

]
, (42)

where

ĝk =
(2j)!

k!(2j − 2k)!
(−1)k

(
i

2c

)2j 1
c
. (43)

Equations (29) and (42) are expressions for the correc-
tion term; it is not, strictly speaking, the total reflected field.
Nevertheless, the reflected field is expressed in terms of the
classical reflected field (geometric-optical field) and the cor-
rection factor. For our purpouses, the correction term can be
used to arrive to an expression for the lateral displacement, as
it will be discussed in the following section. Notice that the
difference between the correction factor for the even and odd
cases are just the summation termsfj andgk, the rest of the
terms are exactly the same.

3. Lateral Displacement

The objective of the present section is to obtain the lateral
shift. To this end we need to rewrite the reflcected field in
such way that the equation shows explicitly the trajectory of
the beam. In order to obtain this expression (for the even
Hermite-Gaussian beam), we first recognize that if the dis-
tance of propagation is sufficiently small compared to the
beam width, then the beam will remain well collimated, that
meanswr ' w. Then, we rewrite Eq. (20) in the following
form

ψ2n,r(x, y) = − α√
πwP2n(xr/w)

exp[−(xr/w)2

+ ln(1 + ψ2n,ro)] exp[iky], (44)

if we expand the logarithm into a Taylor series around
(xr/w) = 0 (γ = ikwδ/

√
2) we get

ln[1+ψ2n,ro(x, y)] ' a0+a1(xr/w)+a2(xr/w)+..., (45)

where

an =
1
n!

dn

d(xr/w)n
ln(1 + ψ2n,ro)

∣∣∣
(xr/w)=0

. (46)

Making the substitution and after algebraic manipula-
tions, we arrive to the following expression:

exp[−(xr/w)2 + ln[1 + ψro]] ' exp
(
−1− a2

w2

)

× exp [xr − L2n] , (47)

whereL2n has dimensions of length. Notice now the argu-
ment of the exponential, we can interpretL2n as a distance
that is displaced with respect toxr and is, therefore, a quan-
tity that can be interpreted as a lateral displacement for the
even Hermite-Gaussian beam. Notice that the important step
in obtaining such result is present in Eq. (44), where we
rewrite the correction factor as a natural logarithm, this shows
the importance of rewriting the reflected field in terms of the
correction factor. This allow us to make a series expansion
and, finally, re-arrange the terms so that we get the lateral
shift L2n. This lateral shift is, then, given by

L2n ' w

2 cos θ

∣∣∣∣Re

[
a1

1− a2

]∣∣∣∣ , (48)

where

a1 =
A(θ)
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f2(δ)
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, (49)

a2 =
A(θ)
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{
1
2
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− 1
2

[
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]2
}

, (50)

and

f1(δ) = 1 +
A(θ)
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×
n∑

j=0

j∑

k=0

2j−2k∑
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fjgk(kwδ)2j−2k−l

×
[
(−δ)1/2slHl(γ0/

√
2)− βplF1/2+l(γ0)

]
, (51)

f2(δ) =
n∑

j=0

j∑

k=0

2j−2k∑

l=0

fjgk(kwδ)2j−2k−l

×
[
(−δ)1/2sl(2l)Hl−1(γ0/

√
2)

− βpl(1/2 + l)F−1/2+l(γ0)
]
, (52)

f3(δ) =
n∑

j=0

j∑

k=0

2j−2k∑

l=0

fjgk(kwδ)2j−2k−l

×
[
(−δ)1/2sl(4l)(l − 1)Hl−2(γ0/

√
2)

− βpl(−1/4 + l2)F−3/2+l(γ0)
]
. (53)

For the lateral displacement for the odd case, we use

ln[1 + ψ2n+1,ro(x, y)] ' b0

+ b1(xr/w) + b2(xr/w) + . . . , (54)

where

bn =
1
n!

dn

d(xr/w)n
ln(1 + ψ2n+1,ro)

∣∣∣
(xr/w)=0

. (55)
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For this case,L2n+1 will be

L2n+1 ' w

2 cos θ

∣∣∣∣Re

[
b1

1− b2

]∣∣∣∣ , (56)

where

b1 =
A(θ)

P2n(0)
g2(δ)
g1(δ)

, (57)

b2 =
A(θ)

P2n(0)

{
1
2

g3(δ)
g1(δ)

− 1
2

[
g2(δ)
g1(δ)

]2
}

, (58)

and

g1(δ) = 1 +
A(θ)

P2n(0)

n∑

j=0

j∑

k=0

2j−2k∑

l=0

f̂j ĝk(kwδ)2j−2k−l

×
[
(−δ)1/2slHl(γ0/

√
2)− βplF1/2+l(γ0)

]
, (59)

g2(δ) =
n∑

j=0

j∑

k=0

2j−2k∑

l=0

f̂j ĝk(kwδ)2j−2k−l

×
[
(−δ)1/2sl(2l)Hl−1(γ0/

√
2)

− βpl(1/2 + l)F−1/2+l(γ0)
]
, (60)

g3(δ) =
n∑

j=0

j∑

k=0

2j−2k∑

l=0

f̂j ĝk(kwδ)2j−2k−l

×
[
(−δ)1/2sl(4l)(l − 1)Hl−2(γ0/

√
2)

− βpl(−1/4 + l2)F−3/2+l(γ0)
]
. (61)

Equations (48) and (56) are our final result. It should
be noted that we are taking the positive value, since the dis-
placement is always a positive magnitude. Notice, also, that
we take terms of second order in Eqs. (48) and (56) since
in our case, the termsa2 andb2 cannot be neglected. In the
next section, we use Eqs. (48) and (56) with Eqs. (46-50)
and (54-58), respectevily, to obtain the lateral displacement
for beams of different order.

4. Numerical Results

We did calculations (programming was done using Wolfram
Mathematica 7.0) for the lateral displacement for a Hermite-
Gaussian beam, of even order and of widthkw = 10000,
reflected from a dielectric interface of index of refraction
n = 1.52, for the following values:N = 0, 2, 4, 6, 8, and 10.

FIGURE 3. Lateral Displacement for an even Hermite-Gaussian Beam, forn = 1.52 (glass crown) and a beam width ofkw = 10000. Only
normal polarization is shown. Parallel polarization only has the effect of resclaing the curve. Graphics are shown in semilog scale.

FIGURE 4. Lateral Displacement for an odd Hermite-Gaussian Beam, for n=1.52 (glass crown) and a beam width ofkw = 10000. Only
normal polarization is shown. Parallel polarization only has the effect of resclaing the curve. Graphics are shown in semilog scale.

Rev. Mex. Fis.65 (2019) 175–184
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FIGURE 5. Lateral Displacement for an even Hermite-Gaussian Beam, for n=1.52 (glass crown) and a beam width ofkw = 10. Only normal
polarization is shown. Parallel polarization only has the effect of resclaing the curve. Graphics are shown in semilog scale.

FIGURE 6. Lateral Displacement for an odd Hermite-Gaussian Beam, for n=1.52 (glass crown) and a beam width ofkw = 10. Only normal
polarization is shown. Parallel polarization only has the effect of resclaing the curve. Graphics are shown in semilog scale.

The results are shown in the Fig. 3 in a semilog scale. We
see that the lateral displacement increases forN = 2 until
N = 4, and then starts to decrease. This peculiar behavior
may be due to the fact that we are cosidering just one dimen-
sional transverse beam and the fact that we are not consider-
ing the Guoy phase shift. We also did the calculations for the
odd case; that is, forN = 1, 3, 5, 7, 9 and 11 (see Fig. 4).
We see the same behavior as the even case; that is, an in-
crease in the magnitude of the lateral displacement, and then
a decrease in the value of the lateral displacement.

Finally, we did the same calculation, but for a very low
beam widthkw = 10. In Fig. 5 and 6 it is shown the results
for N = 0, 2, 6, 8, 10 andN = 1, 3, 5, 7, 9, 11 in a semilog
scale. In this case, we see that the behavior is, except for the
caseN = 2 where the displacement is larger thanN = 0, a
steadily decrease of the lateral displacement as the order of
the mode of the beam increases. We see, also, that the max-
imum displacement occurrs at different angles for the even
and odd case. For the even case, the displacement attains its
maximum for angles aboveδ = 0.001◦, and for the odd case,
for angles belowδ = 0.001◦.

One point of consideration, as was mentioned before, is
that all the present calculations were made assuming a wave
which is normal to the plane of incidence,i.e., for the case
of normal polarization. This dependence is given by the con-
stantm in the reflectance (see Eq. (13)). For the case of

a wave of parallel polarization to the plane of incidence we
must include the index of refractionn, this only will re-scale
all the curves and wil not affect the shape of these curves.

Take into account that the present simulations are new
and, to our knowledge, haven’t been made before, so what we
do here is only compare the results with the case for a Gaus-
sian beam, result that is known since the results presented
by Horowitz and Tamir. In future papers we will make an
equivalent procedure to obtain the lateral shift and compare
the results with the ones presented here.

5. Conclusions

Previously, Horowitz and Tamir [4] arrived to an analitic
equation for the lateral displacement for a Gaussian beam of
zero order. Some years after, Lai, Cheng and Chang [6], us-
ing an alternative method, arrived to a similar formula. How-
ever, until now, no analitic formula has been derived for a
more general Hermite-Gaussian beam. By the same meth-
ods described above, we could arrive to an expression for the
Goos-Ḧanchen shift for the more general case of a Hermite-
Gaussian beam. Using such formula, we gave numerical re-
sults of the lateral displacement in fuction of the order of
the Hermite-Gaussian beam and the beam width. We found
the peculiar behavior that the lateral displacement first in-
creases and then decreases steadily as the order of the beam
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increases. Assumptions, such as not taking in account the
Gouy phase shift as the beam propagates, has been made. If
such phase is taking into account, the mathematical problem
becomes, analitically, inmanageable and numerical methods
should be used. We will consider, for a future paper, the be-
havior of the lateral displacement when the beam incides on
a finite dielectric interface. Another investigation that will be
considered in another paper is the behavior of the lateral dis-
placement when we use the reflectancer(kx) and not the cor-
rection factorrc(kx); then, using these results we will make
a comparision with the results presented in the present work.
Also, we will consider the efect of the Guoy phase shift in the
problem; such consideration will requiere the use of numeri-
cal methods to solve the integrals.

Appendix

A. Reflected Field - Geometric Optical field

The first integral we need to solve is

I1 =

∞∫

−∞

(
kx − k

c

)2j−2k

exp

[
−1

4

(
kx − k

c

)2
]

× exp[i(kxx− kyy−)] dkx. (A.1)

To accomplish this, we first need to expressky as a function
of kx. Sinceky = (k2

0 − k2
x)1/2 is not managable the way it

is, we expandky in a Taylor series, to second order, around
the critical valuek0 = k sin θc. The result is

ky = k cos θ + kµ sin θ − k(µ2/2) sec2 θ, (A.2)

where
µ = (sin θ − kx/k)/ cos θ. (A.3)

Substituting Eq. (A.2) into Eq. (A.1), we get

I1 = Π(kw)2j−2k

∞∫

−∞
µ2j−2k

× exp

[
−

(
kwr

2

)2 (
µ + i

2x

w2
rk

)2
]

dµ, (A.4)

whereΠ andwr are given by Eqs. 25 and 27. The integral
can be solved easily if we makeu = (kwr/2)[σ+i(2x/kw2

r)]
and using Newton’s binomial,

I1 = Π(2/kwr)(2w/wr)2j−2k

2j−2k∑

l=0

(2j − 2k)!
l!(2j − 2k − l)!

×
[
−i

xr

wr

]2j−2k−l
∞∫

−∞
ul exp(−u2) du. (A.5)

Using now the fact that

∞∫

−∞
ul exp(−u2) du =

{ (2l)!
22ll!

√
π for l even,

0 for l odd,
(A.6)

we get as a result

I1 = Π(2/kwr)(2w/wr)2j−2k

×
j−k∑

l=0

(2j − 2k)!
l!(2j − 2k − 2l)!

[
i
xr

wr

]2j−2k−2l √
π

22l
. (A.7)

We can simplify the previous result by observing that

j−k∑

l=0

(2j − 2k)!
l!(2j − 2k − 2l)!

[
i
xr

wr

]2j−2k−2l

×
√

π

22l
=
√

π

(
−1

2

)2j−2k

×
[2(j−k)/2]∑

l=0

(2j − 2k)!
l!(2j − 2k − 2l)!

(−1)l

×
(

2
xr

wr

)2j−2k−2l

. (A.8)

We recognize that the term in the summatory are the Hermite
polynomials of order2(j−k). For this reason, our final result
is

I1 = Π(2/kwr)(2w/wr)2j−2k
√

π

(
−1

2

)2j−2k

×H2(j−k)(xr/wr). (A.9)

B. Reflected Field - Correction Factor

The other integral we need to solve is

I2=

∞∫

−∞
rc(kx)

(
kx − k

c

)2j−2k

exp

[
−1

4

(
kx − k

c

)2
]

× exp[i(kxx− kyy−)] dkx. (B.1)

For this case, it is convenient to use the following variable

ν = µ− δ = (sinc θ − kx/k)/ cos θ. (B.2)

Since we are interested in a small region ofδ, the main con-
tribution to the integral arise for a small values ofν. Also, the
principal contribution arise from values ofky in a neighbor-
hood centered around the valuekx = k sin θ. In terms of this
variable,ky can be expanded in Taylor series aroundν = −δ
(the axis of the geometric-optics reflected beam) giving

ky=k cos θ+k(ν+δ) tan θ−k[(ν+δ)2/2] sec θ2. (B.3)
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We now focus our attention on the functionsr(kx) and
rc(kx). First, the second term of the numerator and the de-
nomitaror in the reflectance is(k2

0 − k2
x)1/2. Second, we ob-

serve that this function varies rapidly aroundkx ' k0 due
to the singularity atkx = k0. For this reason it is possible
to make the change of variable toν1/2. We then rewrite the
functionr(kx) (see Eq. (20)) as

rc(ν1/2) =
1

r(k̄)
p(ν1/2)
q(ν1/2)

− 1 (B.4)

where

r(k̄) = r(k sin θ)

=
cos θ −m(sin2 θc − sin2 θ)1/2

cos θ + m(sin2 θc − sin2 θ)1/2
(B.5)

p(ν1/2) = cos θ + (ν + δ) sin θ − (ν + δ)2

2
sec θ −m cos θ

×
[
ξ + 2(ν + δ)2 tan θ + (ν + δ)2

]1/2

, (B.6)

q(ν1/2) = cos θ + (ν + δ) sin θ − (ν + δ)2

2
sec θ + m cos θ

×
[
ξ + 2(ν + δ) tan θ + (ν + δ)2

]1/2

, (B.7)

and
ξ = (sin θ2

c − sin θ2) sec θ2. (B.8)

We now expandrc(ν1/2) in Tylor series in powers ofν1/2

aroundν = −δ, obtaining (keeping only terms of first order)

rc(ν) = C0 − C1

[
ν1/2 − (−δ)1/2

]
, (B.9)

where

C0 = rc(ν)

∣∣∣∣∣
nu=−δ

,

C1 = −drc(ν)
dν

∣∣∣∣∣
ν=−δ

. (B.10)

The evaluation ofC0 gives zero. The evaluation ofC1 is easy
but cumbersome. First, we obserbe that

C1 =
1

r(k̄)
p(ν)q′(ν)− p′(ν)q(ν)

q(ν)2

∣∣∣∣∣
ν=−δ

, (B.11)

where

p(ν)

∣∣∣∣∣
ν=−δ

= cos θ

[
1−mξ1/2

]
, (B.12)

q(ν)

∣∣∣∣∣
ν=−δ

= cos θ

[
1 + mξ1/2

]
, (B.13)

p′(ν)

∣∣∣∣∣
ν=−δ

= 2(−δ)1/2

[
1−mξ−1/2

]
, (B.14)

and

q′(ν)

∣∣∣∣∣
ν=−δ

= 2(−δ)1/2

[
1 + mξ−1/2

]
. (B.15)

Substituting Eqs. (B.12)-(B.15) into Eq. (B.11) gives (after
algebraic simplification)

C1(θ) ≡ C1 =
4m cos2 θc sin θ

cos1/2 θ(sin θc + sin θ)1/2

× 1
[cos θ2 + m2(sin2 θ − sin2 θc)]

(B.16)

So, the functionrc(ν1/2) is, finally:

rc(ν1/2) = −C1(θ)[ν1/2 − (−δ)1/2]. (B.17)

The integralI2 is then

I2 = (k cos θ)(kw)2j−2kΠexp[γ2/2]C1(θ)

×
∞∫

−∞
[ν1/2 − (−δ)1/2](ν + δ)2j−2k

× exp

[
−

(
kwr

2

)2

ν2 + i

(
kγwr√

2

)
ν

]
dν. (B.18)

If now we use Newton’s binomial we get

I2 = (k cos θ)(kw)2j−2kΠexp[γ2/2]C1(θ)

×
2j−2k∑

l=0

(2j − 2k)!
l!(2j − 2k − l)!

δ2j−2k−l

× [J1 − (−δ)1/2J2], (B.19)

where

J1 =

∞∫

−∞
ν1/2+l

× exp

[
−

(
kwr

2

)2

ν2 + i

(
kγwr√

2

)
ν

]
dν, (B.20)

and

J2 =

∞∫

−∞
νl

× exp

[
−

(
kwr

2

)2

ν2 + i

(
kγwr√

2

)
ν

]
dν. (B.21)
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The integralJ1 can be split into two parts:

J1 =

0∫

−∞
ν1/2+l

× exp

[
−

(
kwr

2

)2

ν2 + i

(
kγwr√

2

)
ν

]
dν +

∞∫

0

ν1/2+l

× exp

[
−

(
kwr

2

)2

ν2 + i

(
kγwr√

2

)
ν

]
dν, (B.22)

after changing variable in the first integral

J1 = (−1)li

∞∫

0

ν1/2+l exp

[
−

(
kwr

2

)2

ν2

− i

(
kγwr√

2

)
ν

]
dν +

∞∫

0

ν1/2+l

× exp

[
−

(
kwr

2

)2

ν2 + i

(
kγwr√

2

)
ν

]
dν. (B.23)

Each integral can be found in tables (see 3.462-1 in [21]).

We obtain

J1 =
(

kwr√
2

)−(3/2+l)

Γ
(

3
2

+ l

)
exp

(
−γ2

4

)

× [
(−1)liD−(3/2+l)(iγ) + D−(3/2+l)(−iγ)

]
, (B.24)

after using the identity 9.248-1 in [21] we get

J1 =
(

kwr√
2

)−(3/2+l)√
2π exp

[
− iπ

4
(1− 2l)

]

× exp
(
−γ2

4

)
D1/2+l(γ). (B.25)

The integralJ2 can be solved directly after completing
the square an changing the variable of integration. We obtain

J2 =
(

2
kwr

)√
π exp

(
−γ2

2

)

×
(
− i

kwr

)l

Hl(γ/
√

2). (B.26)

Substitution of Eq. (B.25) and (B.26) into Eq. (B.19)
gives the final expression for the integralI2.
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