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In a previous paper (G.Ǵomez Blanchet al, 2018) we defined, in the frame of a geometro-dynamic approach, a metric corresponding
to a Lorentzian spacetime where the electron stationary trajectories in a hydrogenoid atom, derived from the de Broglie-Bohm model,
are geodesics. In this paper we want to complete this purpose: we will determine the remaining relevant geometrical elements of such an
approach, and we will calculate the energetic density component of the energy-momentum tensor. We will discuss the meaning of the obtained
results and their relationship with other geometrodynamic approaches. Furthermore, we will derive a more general relationship between the
Lorentzian metric tensor and the wave function for general monoelectronic stationary states. In our approach, the electron description by
the wave functionΨ in the Euclidean space and time is shown equivalent to the description by a metric tensor in a Lorentzian manifold.
The particle acquires a determining role over the wave function, in a similar manner as the wave function determines the movement of the
particle. This dialectic approach overcomes the de Broglie-Bohm approach. And furthermore, a non local element (the quantum potential) is
introduced in the model, and incorporated in the geometrodynamic description by the metric tensor.
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numerical methods; geometrodynamics

1. Introduction

One can describe the geometrodynamics with the known af-
firmation: ’mass-energy ’tells’ spacetime how to curve and
spacetime ’tells’ mass-energy how to move’ [1].

In a previous paper (G. Gomez Blanchet al, 2018), we
started from the de Broglie - Bohm description of an elec-
tron trajectory [2] in the hydrogen atom. The trajectories
described in the de Broglie-Bohm description belong to an
Euclidian space and time. Then, we made the ansatz that
this kind of trajectories, corresponding to stationary states,
are geodesics of a Lorentzian manifold, so their spacetime is
curved at less in the electron entourage. Moreover, an elec-
tron in a geodesic does not exert any force and does not lose
energy. This fact would explain the stability of the atom,
without further quantum considerations. In some way, we
also established a relatioship between Quantum Theory and
General Relativity.

A Lorentzial manifold has locally the structure of an Eu-
clidian space and time, and therefore we can assimilate the
de Broglie-Bohm trajectory equations with the Lorentzian
geodesic equations at a differential level. In this way, we
can obtain equations that interrelate the metric tensor com-
ponents.

Then, we searched in the general catalogue of exact solu-
tions of the Einstein field equations, a general metric for dust
with cylindrical symmetry [3]. The selected metric model
derivates from the van Stockung metric class with some con-
tributions of other authors (King(1974); Winicour (1975);
Wishweshwara -Winicour (1977)). We used this mentioned
metric, but the results presented some incoherences regard-
ing the de Broglie-Bohm approach. Then we modified this
model by transforming a constant parameter into a function
of the radius. We came finally over a covariant metric that

was consistent with the physics, mainly regarding the veloc-
ity and the kinetic moment of the electron.

In the present paper we continue this line of work, by
characterizing the relevant elements of the geometrical struc-
ture, ’that ’tells’ mass-energy the way to go’ : contravariant
metric, Levi-Civita connectors, Ricci tensor and scalar curva-
ture. We compare this scalar curvature with other geometro-
dynamical approaches of the literature.

Next we consider how ’the mass-energy tells the space-
time how it wraps’. In order to do this we evaluate an element
of the energy-momentum tensor: the one that represents the
energy density. From it, we make experimental considera-
tions regarding the affected volume of spacetime.

Finally, we derive a general relationship between the two
components of the wave equation in space-time coordinates
and the metric tensor for stationary states, and we make an
interpretation of the results.

The structure of the paper goes through the phases de-
scribed above: in Sec. 2 we characterize the geometric ele-
ments, discuss about the scalar curvature and compare with
another geometro-dynamic interpretation; in Sec. 3 we make
the derivation of the energy density component of the energy-
momentum tensor and the corresponding considerations; in
Sec. 4 we study the relationship between the components of
the wave function of the non-relativistic quantum mechanics
and the components of the metric tensor. Finally, in Sec. 5
we establish the corresponding conclusions.

2. Geometrical elements

We will describe here the general way of the geometrical cal-
culations. We start from the covariant metrics, previously
calculated (G.Gomez Blanchet al, 2018), and from there we
perform the calculations of the required geometrical objects.
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As it is known, the curvature of a Riemann manifold is
given by the curvature tensorRijkl, which appears to us by
considering the circulation of a generic vector in a closed
contour. The contraction of this tensor leads to the Ricci ten-
sorRij , that is essential for our calculations. This tensor is
given by the following expression, based on the connectors
of Levi-Civita (Christoffel symbols of second order) [4]

Rij = ∂hΓh
ij − ∂jΓh

ih + Γh
ijΓ

m
hm − Γm

ihΓh
jm (1)

where the connectors are given in function of the metric by:

Γj
ik =

1
2
gjh(∂kgih + ∂ighk − ∂hgki) (2)

and∂i is partial derivative respect to thei coordinate. The
contravariant tensor metric reads:

gij =
αij

g
(3)

beingαij the adjoint ofgij . The equation that relates the
Ricci tensor with the Ricci curvature is simply its contrac-
tion:

R = gijRij (4)

2.1. The initial covariant metric

According to our previous paper (G.Gomez Blanch et alii,
2018), we start from the following metric, withx4 = t:

gij =




e− b2

c4 ( lnkρ
ρ )

2
0 0 0

0 ρ2 − b2

c4 (lnkρ)2 0 − b
c lnkρ

0 0 e− b2

c4 ( lnkρ
ρ )

2
0

0 − b
c lnkρ 0 −c2


 (5)

It must be highlighted that this metric for stationary states
is not static, as shows the presence of not nul termg24 and the
termg24dφdt changes of sign with the time sense inversion.

We remember briefly the deduction of this metric. We
start with the geodesic equation with the proper time as pa-
rameter:

d2xj

dt2
+ Γj

ik
dxi

dt

dxk

dt
= 0 (6)

where we introduce the corresponding velocities of the de
Broglie- Bohm approach in polar coordinates:ω angular ve-
locity andc light velocity

ω2Γj
22 − 2ωcΓj

24 + c2Γj
44 = 0 (7)

We take into acount the quantisation of the angular momen-
tum as (u azimuthal quantum number):

Lz = mvρ = u~ (8)

If we introduce the constantb:

b =
u~
m

(9)

and take into account (2), the equation in the tensor metric
components reads:

b2∂1g22 − 2bcρ2∂1g24 + c2ρ4∂1g44 = 0 (10)

Here we introduce the metric form corresponding to dust
particles with cylindrical symmetry that is an exact solution
of the Einstein’s field equation (10):

(ds)2 = e−a2ρ2
((dρ)2 + (dz)2) + ρ2(dφ)2

− (cdt + aρ2dφ)2 (11)

The parametera is substituted for a function of the radius
y(ρ) to fit our problem and avoid physical inconsistencies.
Then we get:

y′ +
2y

ρ
= − b

c2ρ3 − bρ3y
(12)

that can be simplified, with good approximation to:

y′ +
2y

ρ
= − b

c2ρ3
(13)

and that has the solution:

y = − b

c2
ρ−2ln(kρ), (14)

wherek is a constant that shall be estimated from the con-
sideration of evolution to Minkowskian situation. Replacing
that solution in the components of the metric tensor drives us
to the proposed metric (5).

2.2. Contravariant metric

We need to start from the connectors calculated according to
(2) (See G.Gomez Blanch et alii, 2018). To do that, we need
to calculate, in a first step, the determinant g and, from it, the
contravariant metric tensor. For a metric tensor like (4), with
the form:

gij =




g11 0 0 0
0 g22 0 g24

0 0 g33 0
0 g24 0 g44


 (15)
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the contravariant metric is obtained from its inverse matrix.
The determinant of the covariant matrix is:

g = det(gij) = g11g33(g22g44 − g2
24) (16)

So, taking into account (4), the matrixgij as a function
of the components ofgij reads:

gij =




1
g11

0 0 0
0 g44

g22g44−g2
24

0 − g24
g22g44−g2

24

0 0 1
g33

0
0 − g24

g22g44−g2
24

0 g22
g22g44−g2

24


 (17)

We substitute now the values of (5) in the previous equa-
tion, and obtain the contravariant metric tensor:

gij =




e
b2

c4
( lnkρ

ρ )
2

0 0 0
0 1

ρ2 0 blnkρ
c3ρ2

0 0 e
b2

c4
( lnkρ

ρ )
2

0
0 blnkρ

c3ρ2 0 b2(lnkρ)2−c4ρ2

c6ρ2




(18)

2.3. Calculation of Levi-Civita connectors

We will use the connectors of Levi -Civita, with null torsion.
The reason for that election is the following. As it is known,
there are two kinds of geodesics: an affin geodesic is the
curve generated by a vector (i.e. the velocity) with parallel
transport, and a metric geodesic that connects points by min-
imising their distance [5]. The Levi-Civita connection unifies
the requirements for affin and metric geodesics, and therefore
we use it. We need to assure that the velocity vector has paral-
lel transport along a geodesic and therefore we need the affin
connection. We also need the trajectory of the particle to be
metrically coherent with the variational principle and so we
need the geodesic metric.

The relationship of Levi-Civita connector with the metric
is given by (2). In the calculation of the mentioned connec-
tors we take into account the symmetry of the metric tensor
and the fact that the only variable in the elements of the metric
tensor isρ, that isx1, in cylindrical coordinates. Therefore:

∂hgij = 0,∀i, j ∈ (1, 4), h ∈ (2, 4) (19)

For this calculation we want the partial derivatives of the
covariant metric tensor in relation withρ. We obtain the fol-
lowing values:

∂1gij =




2b2lnkρ(lnkρ−1)
c4ρ3 e− b2

c4 ( lnkρ
ρ )

2
0 0 0

0 2ρ− 2b2ln(kρ)
c4ρ 0 − b

cρ

0 0 2b2lnkρ(lnkρ−1)
c4ρ3 e− b2

c4 ( lnkρ
ρ )

2
0

0 − b
cρ 0 0




(20)

Next we calculate the connectors from (2). They are symmetric in their subscripts (null torsion). We obtain the following
10 generic expressions of the connectors:

Γj
11 =

1
2
gjh(∂1g1h + ∂1gh1 − ∂hg11) =

1
2
gj1∂1g11 (21)

Γj
12 = Γj

21 =
1
2
gjh(∂2g1h + ∂1gh2 − ∂hg21) =

1
2
gj2∂1g22 +

1
2
gj4∂1g42 (22)

Γj
13 = Γj

31 =
1
2
gjh(∂3g1h + ∂1gh3 − ∂hg31) =

1
2
gj3∂1g33 (23)

Γj
14 = Γj

41 =
1
2
gjh(∂4g1h + ∂1gh4 − ∂hg41) =

1
2
gj2∂1g24 (24)

Γj
22 =

1
2
gjh(∂2g2h + ∂2gh2 − ∂hg22) = −1

2
gj1∂1g22 (25)

Γj
23 = Γj

32 =
1
2
gjh(∂3g2h + ∂2gh3 − ∂hg32) = 0 (26)
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Γj
24 = Γj

42 =
1
2
gjh(∂2g4h + ∂4gh2 − ∂hg24)

= −1
2
g11∂1g24 (27)

Γj
33 =

1
2
gjh(∂3g3h + ∂3gh3 − ∂hg33)

= −1
2
gj1∂1g33 (28)

Γj
34 = Γj

43 =
1
2
gjh(∂3g4h + ∂4gh2 − ∂hg34)

= −1
2
g11∂1g34 = 0 (29)

Γj
44 =

1
2
gjh(∂4g4h + ∂4gh4 − ∂hg44)

= −1
2
g11∂1g44 = 0 (30)

Now we make the detailed calculation of these connec-
tors, equations from (21) to (30). Those non-null ones, or-
dered by their upper index are:Γ1

11,Γ
1
22,Γ

1
24,Γ

1
33 Γ2

12,Γ
2
14

Γ3
13 Γ4

12,Γ
4
14 as well as their symmetrical terms in the lower

subscripts. Their values read:

Γ1
11 =

b2lnkρ(lnkρ− 1)
c4ρ3

(31)

Γ1
22 =

(b2lnkρ− c4ρ2)e
b2

c4
( lnkρ

ρ )2

c4ρ
(32)

Γ1
24 = Γ1

42 = − b

2cρ
e

b2

c4
( lnkρ

ρ )2 (33)

Γ1
33 = −b2lnkρ(lnkρ− 1)

c4ρ3
(34)

Γ2
12 = Γ2

21 = −b2lnkρ− 2c4ρ2

2c4ρ3
(35)

Γ2
14 = Γ2

41 =
b

2cρ3
(36)

Γ3
13 = Γ3

31 = −2b2lnkρ(lnkρ− 1)
c4ρ3

(37)

Γ4
12 = Γ4

21 = −b3ln2kρ− 2bc4ρ2lnkρ + bc4ρ2

2c7ρ3
(38)

Γ4
14 = Γ4

41 =
b2lnkρ

2c4ρ3
(39)

Now we can make an additional evaluation of the pro-
posed model. The geodesic equation (6), taking into account
our previous results, reads:

d2xj

dt2
+ ω2Γj

22 − 2ωcΓj
24 = 0 (40)

If we replace the non-null values ofΓj from our previous
calculation, we get the results:

FIGURE 1. Residual term in radial acceleration in terms of the ra-
dius.

d2x2

dt2
= 0 (41)

d2x3

dt2
= 0 (42)

And regardingx1 = ρ we get, taking into account that
b = ωρ2 :

d2x1

dt2
+

e
b2

c4
( lnkρ

ρ )2b4ln(kρ)
c4ρ5

+ e
b2

c4
( lnkρ

ρ )2(ω2ρ− ω2ρ) = 0 (43)

In the parenthesis of the third term we easily recognize the
classical ’centripetal acceleration’ and its counterpart, that
cancels it. So it stands:

d2x1

dt2
+ e

b2

c4
( lnkρ

ρ )2 b4ln(kρ)
c4ρ5

= 0 (44)

The second term has a very low value (some10−29 lower
thanωρ2 ) in the range ofρ that affects the orbital 2p, and for
k = 109 (as we will establish later on). This term is atributed
to the performed approximation in the solution of the differ-
ential equation (12) to (13). We can represent it in Fig. 1.

2.4. Ricci tensor

Once the connectors are obtained, we can calculate the Ricci
tensor, which allows the determination of the scalar curva-
ture. The equation of definition reads:

Rij = ∂hΓh
ij − ∂jΓh

ih + Γh
ijΓ

m
hm − Γm

ihΓh
jm (45)

R11 = −∂1(Γ1
11 + Γ2

12 + Γ4
14) + Γ2

12(Γ
1
11 − Γ2

12)

+ Γ4
14(Γ

1
11 − Γ2

14)− 2Γ4
12Γ

2
14 (46)

and so, giving only the most significant terms,

R11 = −b2

c2
(lnkρ− 1)ρ−4 − b4ln2kρ

4c4
ρ−6 (47)
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we follow on with the calculation of the other components of
the tensor, and we get:

R22 = e
b2

c4
( ln kρ

ρ )2
[
1− 2b2lnkρ

c4
(lnkρ− 1)ρ−2

]
(48)

R24 = R42 = e
b2

c4
( lnkρ

ρ )2
[
b4

c4
lnkρ.ρ−1 + bρ−2

+
b4lnkρ

c4
ρ−3−b3lnkρ

c4

(
2(lnkρ− 1)− b

2

)
ρ−4

]
(49)

R33 =
b2

c4
(1− 4lnkρ + 2ln2kρ)ρ−4 (50)

R44 = e
b2

c4
( lnkρ

ρ )2 b2

2c2
ρ−4 (51)

2.5. Scalar curvature

The scalar curvature is named by the symbol R, as usual. It
is calculated by the following equation:

R = g11R11 +g22R22 +2g24R24 +g33R33 +g44R44 (52)

The calculation with all elements of the Ricci tensor without
approximations reads:

R =
b2e

b2

c4
( lnkρ

ρ )2

2c4ρ4
(12ln2kρ− 20lnkρ + 5) (53)

In our previous paper we made, for heuristic purposes,
an estimation ofk in the order of106; now, taking into ac-
count (53), we can establishk = 109, that corresponds to a
radius limit for the Minkowskian conditions at approximately
ρ = 1, 39× 10−9 m.

From this equation of the scalar curvature, we can repre-
sentRas a function ofρ between2×10−10 and8×10−10 m,
corresponding to the interval where the radial probability of
the 2p Hydrogen orbital is significant. It is shown in Fig. 2.

There, we can observe that:

• The scalar curvature tends to 0 whenρ → ∞
(Minkowski).

• The scalar curvature takes infinite value (diverges)
when the radius tends to zero. The radiusρ = 0,
combined withz = 0, takes the physical meaning
of the mass center of the atomic system; this is, very
approximately, the nucleus position. The divergence
in the rest of the OZ axis has no physical meaning.
Indeed, it suffices to change to spherical coordinates
to eliminate this singularity out of the origin. More-
over, we know that, according to the de Broglie-Bohm
model, [6], even if the quantum azimuthal numberu is
0 and the electron is at rest respect to the nucleus, we
can avoid this divergence by excluding the nucleus en-
tourage from our model. Further insights on it will be
worked out in future by means of another scalar curva-
ture invariant, as we will explain later on.

FIGURE 2. Curvature as a function of radius in the maximal prob-
ability interval.

FIGURE 3. Curvature as a function of radius in the upper limit
range4× 10−9.

We consider now, in (53), the variation of the scalar cur-
vature with the radial coordinate for a border limit deter-
mined by the previously mentioned selection of the constant
k = 109.

We can observe in this border limit, that the curvature
decreases whenρ increases until it arrives to 0 (at1, 358 ×
10−9 m), enters in a zone of negative curvature and returns
to the null curvature (at3, 898× 10−9 m). Indeed, the scalar
curvature becomes null for the values that are solution of the
bracket in Eq (53); which are obtained for the following val-
ues ofρ:

ρ(R=0) =
e

5
6±

√
10
6

k
(54)

Beyond the upper value (3, 898× 10−9 m), the curvature
is almost null; it tends to zero asymptotically, as it is shown
in Fig. 3.

The physical meaning of that is the following one: an
electron that exceeds this critical radius would get in a null
curvature region and therefore would escape from the atom.
If it gets in the zone where the curvature remains negative, the
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trajectory would also mean the exit from the atomic system,
as it is represented in Fig. 3.

Therefore: if the electron gets out of the zone of positive
curvature, a big alteration of its trajectory will happen. This
can be the effect of an exterior physical action, that transfers
energy to the atomic system. An example is the Frank-Hertz
experiment, that is described by D. Bohm in the frame of his
interpretation [7].

2.5.1. Comment on other evaluation of the curvature of
space time in microphysical systems

Now we consider other interesting approach to our subject
made by Novello, Salim and Falciano [8].

To see an approximated relationship between the quan-
tum energy and the curvature in our model, [9] we can take
the dependence of the curvature,R and the radius according
to:

R =
λ

ρ4
(55)

whereλ is a scalar coefficient. The quantum potential en-
ergy, as a difference between the total potential energy of the
electron and the kinetic energy reads:

EQ =
me4

2~2n2
− n2~2

2mρ2
+

e2

4πε0
√

ρ2 + z2
(56)

If we replace the previously mentioned approximation of
R, we get:

EQ =
me4

2~2n2
− n2~2

2m
λ−

1
2 R

1
2 +

e2

4πε0
√

λ
1
2 R−

1
2 + z2

(57)

In this point we remember the assertion of Novello, Salim
and Falciano [10] that the quantum potential energy coin-
cides with the curvature of spacetime. We must remark that
this affirmation is done within the frame of an approach on
Weyl’s geometry (3-D Weyl integrable space), very different
of the usual Lorentzian, (pseudo-Riemannian) geometry that
we use. The geometry that these authors consider has differ-
ent Γ-affine connections from those of Levi-Civita used by
us; therefore, the results obtained by these authors are not
comparable to our results, because the scalar curvature is a
function of the connections.

Indeed, according to the paper of Novelloet al. [11], the
relationship between the scalar curvature and the quantum
potential energy would read:

EQ = − ~
16m

R (58)

very different to Equation (57). It explains that a numerical
calculation in our approach yields curvature values different
in some orders of magnitude respect to the corresponding to
the calculations of Novelloet al. [12].

Although the expression of the quantum potential energy
is particularly simple in the Novelloet al. approach, our ap-
proach allows us to frame our results in standard General

Relativity with the use of Levi-Civita connectors, in partic-
ular respect to the Einstein field equation and the energy-
momentum tensor.

2.5.2. Other scalar curvature invariants

The method used until now can be improved by using the
Riemann curvature tensor to characterize the curvature in a
more detailed way. Indeed, the Ricci tensor can be null and
the Riemann tensor, not at all.

In connection with this, one can take into account the
Kretschmann curvature, defined as:

K = RijklR
ijkl (59)

The use of the Kretschmann scalar curvature can be con-
sidered, mainly to detect non physical singularities, as the
z=0 axis, out of the nucleus entourage, and tidal effects.

So we made a first approximation to the subject. We made
the calculation of the Riemann tensorRi

jkl, that in our case
has only 10 non null components. From it, we calculated the
completely covariant and the completely contravariant Rie-
mann tensors,Rijkl, R

ijkl and from there the Kretschmann
scalar curvature. The result had the same divergence features
as the R scalar (ρ− > 0) by a ρ−6 dependence. This fact
reinforces our results.

3. Considerations on the energy - momentum
tensor. Volume occupied in the spacetime

The deformation of the spacetime previously considered
here, derived from the de Broglie-Bohm interpretation, must
have a counterpart in the energy momentum tensor. Here we
are particularly interested in the correspondence with the en-
ergy term of this tensor, which isT 44. This term can be ex-
plained as an energy density. Let us make the hypothesis that
the extension of spacetime affected by the energy momentum
tensor is limited to a certain volume; this should be consistent
with the deformation stated in the Einstein field equation:

Rij − 1
2
Rgij =

8πG

c4
Tij (60)

and from there we obtain [13];

Tij =
c4

8πG

(
Rij − 1

2
Rgij

)
. (61)

To discuss its physical meaning, we are interested in the
contravariant tensorT ij . This can be expressed this way:

T ij = gikgjlTkl (62)

Replacing it in the previous equation, we have:

T ij = gikgjm c4

8πG

(
Rkm − 1

2
Rgkm

)
(63)

Or as a function of the covariant Einstein tensorEkm:

T ij =
c4

8πG
gikgjmEkm (64)
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Next we express the component that interest us, compa-
rable to the energy density:

T 44 =
c4

8πG
g4kg4mEkm (65)

And developing it we get:

T 44 =
c4

8πG
{(g24)2E22 + 2g24g44E24 + (g44)2E44} (66)

The calculation provides the following values for the
components of the Einstein tensor (approximating the expo-
nentiale−(b2/c4)(lnkρ/ρ)2 to the unit):

E22 = −bln(kρ)(b3ln2(kρ)− b3ln(kρ) + bc4ρ2)
c8ρ4

(67)

E24 =
bln(kρ)(12b2ln2(kρ)− 24b2ln(kρ) + 7b2)

4c5ρ4

−
b(ρ2 − b2

c4ln2(kρ) )

cρ4
(68)

E44 =
12b2ln2(kρ)− 24b2ln(kρ) + 7b2

4c2ρ4

+
b2ln(kρ)

c2ρ4
(69)

Making the calculation ofT 44 we have:

T 44 =
c4ρ2b2(12ln2(kρ)− 28ln(kρ) + 7)

32πc6ρ6G
+

b4(24ln4(kρ)− 68ln3(kρ) + 62ln2(kρ)− 14ln(kρ))
32πc6ρ6G

− b6(28ln5(kρ) + 56ln4(kρ) + 34ln3(kρ)− 7ln2(kρ))
32πc10ρ8G

(70)

FIGURE 4. T 44 as a function of radius.

TheT 44 component is interpretable as an energy density.
It is plotted in Fig. 4. This component will be related to a cer-
tain volume, which will include at least the electron. The en-
ergy density, multiplied by this volume –we can suppose the
energy density as constant in this volume, given the small-
ness of this one– will be explainable as the total energy of
the nucleus-electron system. This can be made equivalent to
the energy derived from the nucleus and electron mass. In
this context, the electromagnetic potential energy, the quan-
tum potential energy and the kinetic energy of the electron
can be neglected, as a first approximation, and we can write:

V T 44 ' (M + m)c2 (71)

The value of the energy of the mass is1.5× 10−10 J. The
value ofT 44 for ρ = 10−10 m is2, 237×1025 J /m3. We can,
for heuristic purposes, suppose that the volume occupied by
the electron and described byT 44 is shaped like a cylindri-
cal ring around the path, width and height ofh above it. Its
section will be4h2. This volume will be:

V = 2πρ4h2 = 8πρh2 (72)

We can match the values and we have:

8πρh2T 44 = (M + m)c2 (73)

and therefore,

h = c

√
M + m

8πρT 44
(74)

From there we obtain, always forρ = 10−10 m, the width
and the height of the ring2h = 1, 0374 × 10−13 m. As a
reference, let’s say that the classic radius of the electron is
2, 818× 10−15 m.

This calculation confirms the smallness of the affected
width, of the order of10−13 m. Therefore the curvature can
be considered constant in the inner of the ring.

A more reasonable approximation by symmetry is that
the section of this channel would be circular of radiusr (that
is to say, that the space considered has a torus form). In this
case, a single calculation gives us the value of the diameter
of the torus tube:1, 171× 10−13.

In Fig. 5 we represent the radius of the torus based on the
radius of the trajectory of the electron.

An alternative view to the kind of spacetime deformation
described above could be to consider that it has deformed all
the spacetime ring between the radiusρ1 = 5 × 10−11 and
ρ2 = 5 × 10−10 (interval in which the probability of find-
ing an electron according to quantum mechanics is outstand-
ing) and at a cylinder height of the order ofhd = 10−14. If
we perform such approach, integratingT 44 along the radius
ρ1 = 5× 10−11 andρ2 = 5× 10−10 and at a cylinder height
of the order ofhd = 10−14, as follows:
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FIGURE 5. Torus radius as a function of the radius of the electron
trajectory.

r2∫

r1

2πρhdT
44 dρ ' (M + m)c2 (75)

and we takek = 109, as we have indicated before; we thus
would arrive at a value of3.2× 10−8 J, higher than the value
of 1.5 × 10−10 J, corresponding to the mass energy of the
atomic system. This fact reinforces the assumption of the pre-
vious approach, that the shape of the space affected is toroidal
around the electron trajectory.

4. Relationship between the wave function and
the metric tensor in the hydrogenoid atomic
stationary states

We try to go deeper into the relationship between the metric
tensor of an atomic hydrogenoid stationary system and the
corresponding wave function, expressed withthe same spa-
cial and temporal coordinates.

We must emphasize again the different mathematical
structure regarding the space and time of the de Broglie-
Bohm approximation and the General Relativity. While in
the de Broglie-Bohm approach we deal with the euclidean
E3 space and time of non local nature, which is evident be-
cause of the presence of the quantum potential, in the rela-
tivistic approach we deal with a Lorentzial manifold, that is
to say, with a curved spacetime of local Minkowskian nature.
Sharply said, the wave function “lives” in a pre-relativistic
space and time and the metric tensor “lives” in a curved
spacetime. Moreover, the wave function concerns the phase
space, not the physical spacetime. Although that, as pilot
wave, it guides the particle in the physical space and time.

But both models describe the same movement of the par-
ticle, at less at differential level, and we can use this to con-
nect both mentioned approaches. So, what we intend to do is
to make a coincidence between the tangent space to the man-
ifold in the particle entourage and the space and time of the
non relativistic quantum mechanics. That is mathematical co-
herent due to the very nature of the Lorentzial manifold [14].

To find out this relation, let us start with the de Broglie-
Bohm approximation. The pilot wave that governs the move-
ment of the electron, corresponding to the entire system,
which we identify as a wave function, is given in polar form
like:

Ψ(~r, t) = Ae
iS
~ (76)

whereA symbolizes the width of the polar form andS is the
phase.

In the de Broglie-Bohm approach, the force acting over
the electron can be expressed as the gradient of the total po-
tential, that is to say the electrical potentialV and the quan-
tum potential [15].

m~̈x = −∇V +∇
(
~2

2m

(∇2A

A

))
(77)

where the second term of the second member is the quantum
potential gradient.

The previous equation is expressed in cartesian coordi-
nates, but must be referred to a general orthogonal reference
system in order to express it in components and thus compare
it with the geodesic equation.

To express the acceleration in a general orthogonal refer-
ence system we will use their corresponding Christoffel sym-
bolsGα

βγ . The first member of Eq. (77) transforms to:

m

(
d2xα

dt2
+ Gα

βγ∂xβ∂xγ

)
= m

(
d2xα

dt2
+ wα

)
, (78)

where we definedwα = Gα
βγ∂xβ∂xγ to make the expres-

sions shorter.
Furthermore, concerning the second member: to build the

gradient of a functionf in general curvilinear, not necessar-
ily orthogonal, coordinatesxα, in a space with metric tensor
gβγ we get the following relationship:

(∇f)α = gαβ 1√
|gii|∂βf (79)

But we will use, as it is usual in such cases, an orthogonal
curvilinear reference system, like the cylindrical, the spheri-
cal or the cartesian system. Then, Eq. (79) can be simplified
by using the so-called scalar functionshα . These functions
can be also derived from the consideration of a scalar vector
in E3 [16];

hα = ∂α|~r| (80)

And then the gradient off reads:

(∇f)α = h−1
α ∂αf (81)

In cylindrical coordinates we get:h1=1, h2=ρ, h3 = 1.
We expand Eq. (77) in terms of the three-dimensional

components (α = 1, 2, 3), substituteQ by its value and di-
viding bym; then it reads:

d2xα

dt2
+ wα + h−1

α

1
m

dV

dxα

− h−1
α

~2

2m2

d

dxα

(∇2A

A

)
= 0 (82)
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Now, we will consider the relativistic side. We return to
the hypothesis that an electron in an atomic quantum system
and in a stationary state, describes a geodesic in the space-
time. The geodesic equation is:

d2xj

ds2
+ Γj

ik
dxi

ds

dxk

ds
= 0 (83)

If we take the proper time as a parameter, (latin indexes
varying between 1 and 4,x4 = t), the previous equation
reads:

d2xj

dt2
+ Γj

ik
dxi

dt

dxk

dt
= 0 (84)

From there we separate the equations related to the spatial
coordinates (α, β, γ = 1, 2, 3):

d2xα

dt2
+ Γα

βγ

dxβ

dt

dxγ

dt
− 2cΓα

β4

dxβ

dt
+ c2Γα

44 = 0 (85)

The equation corresponding toi = 4 has been excluded
from this group, but one must take it into account because it
means a relationship that introduces a restriction among the
connectors and therefore among the elements of the metric
tensor.

As (d2x4/dt2) = 0, we get:

Γ4
ij

dxi

dt

dxj

dt
= 0 (86)

Here we use the local equivalence of the Euclidean space-
time of the de Broglie-Bohm approach and the spacetime of
the Lorentzial manifold, and we make the approximation to
identify (d2xα/dt2) in both equations. We proceed to relate
Eqs. (82) and (85) and we write:

Γα
βγ

dxβ

dt

dxγ

dt
− 2cΓα

β4

dxβ

dt
+ c2Γα

44 = h−1
α

1
m

dV

dxα

− h−1
α

~2

2m2

d

dxα

(∇2A

A

)
+ fα (87)

Now we must take into account that, in the de Broglie-
Bohm approach, the linear momentum of the particle can be
expressed as a function of the gradient of the phaseS as fol-
lows:

~p = ∇S (88)

that in curvilinear orthogonal coordinates can be written, ac-
cording to Equation (81), as:

m
dxα

dt
= h−1

α ∂αS (89)

from there we get:

dxα

dt
=

1
mhα

∂αS (90)

where we are using the velocity value of the de Broglie-Bohm
approach to substitute it in the first member, the ’relativistic
side’ of the equation. It is a good approximation taking into
account the reduced value of the velocity compared withc.

The previous equation allows us to substitute its first term
in Eq. (87) and get:

1
m2hβhγ

Γα
βγ∂βS∂γS − 2c

mhβ
Γα

β4∂βS + c2Γα
44 =

1
mhα

dV

dxα

− ~2

2m2hα

d

dxα

(∇2A

A

)
+ wα (91)

and in a more convenient and simplified form:

1
mhβhγ

Γα
βγ∂βS∂γS − 2c

hβ
Γα

β4∂βS + mc2Γα
44 =

1
hα

dV

dxα

− ~2

2mhα

d

dxα

(∇2A

A

)
+ mwα. (92)

This expression is relevant to us in order to relate the con-
nectors with the wave function components. But furthermore
we directly want to relate the wave function and the metric
tensor. For this reason, taking into account Eq. (2), we can
write the explicit dependence from the metric tensor by re-
placing the connectors in Eq. (92)

gαh

2mhβhγ
(∂γgβh + ∂βghγ − ∂hgγβ)∂βS∂γS

− cgαh

hβ
(∂4gβh + ∂βgh4 − ∂hg4β)∂βS

+
mc2

2
gαh(2∂4g4h − ∂hg44)

=
1
hα

(
dV

dxα
− ~2

2m

d

dxα

(∇2A

A

))
+mwα

(93)

This is the relationship between the components of the
metric tensor around a stationary electron integrated into
a hydrogenoid system, characterized by a potential V, and
whose pilot wave or wave function is given by the compo-
nentsA and S, in polar form, in agreement with the ap-
proach of de Broglie-Bohm. This equation represents a kind
of bridge between the quantum and the geometro-dynamics
descriptions.

A very important feature of that equation is to relate the
metric tensor, that is of local character, with a non local en-
tity: the quantum potential, represented by(∇2A/A). The
quantum potential is an element of the Euclidian quantum
theory that in our Relativistic approach is incorporated in the
geometrodynamics by the metric tensor.

We also note that that equation involves three systems of
differential equations (α = 1,2,3) and the condition (86). The
wave function has two components and the metric tensor has
10 independent ones. In this way, given a metric tensor in the
environment of the electron and with potentialV , we could,
in principle, reconstruct the wave function that corresponds
to it (taking into account integration constants). Neverthe-
less, from the wave function (and the potentialV , although
it is already used to define the wave function) there is a lack
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of definition of the corresponding metric tensor, that must be
filled with additional relativistic considerations or hypothe-
ses, consistent with the particular system under study,i.e. a
metric derived from the Einstein’s field equation.

5. Main conclusions

In this article, we have developed the geometrodynamic
model applied to a stationary state of the hydrogenoid atomic
electron, taking into consideration General Relativity over
the particle trajectory defined by the de Broglie-Bohm model,
that was initiated in a previous article. We have determined
the related Levi-Civita connectors, the contravariant metric
tensor, the Ricci tensor and the scalar curvature. We have
studied their features and structure and have determined the
constant, in such a way that, beyond the experimental value
of maximum extension of the corresponding orbital 2p, there
will be null curvature (Minkowskian spacetime). A zone be-
yond the mentioned limit has been evidenced, where the cur-
vature becomes negative and asymptotically null and there-
fore a zone where the electron is not allowed to be.

We also consider the relationship between the curvature
and the quantum potential. Our approach allow us to con-
sider the quantum potential, element of the Euclidean quan-
tum mechanics, incorporated to our Relativistic approach in
the geometrodynamics of the system, by the metric tensor.

We have analyzed the relationship of our approach of the
quantum potential with another approach of the literature,
which has a different geometrical basis (3-D Weyl integrable
space).

We have also calculated the energy component of the en-
ergy momentum tensor, and we have interpreted its value
with regard to the energy content, advancing a hypothesis
about its relation with the path of the electron. Given the ap-
proximate numerical results, we have advanced the hypothe-
sis that the deformation of spacetime produced by the proton-
electron system implies that the volume affected by the en-
ergy density consists on a torus that would have the path of
the electron in its axis.

It should be noted that the curvature of spacetime is con-
ditioned by the action of electromagnetic interaction between
the nucleus and the electron, and by the inertial and kinetic
elements of the electron movement. These elements are in-
cluded in the dynamic equations of the de Broglie-Bohm
model that allow the path of the electron to be established
(equivalent to the Hamiltonian approach to Standard Quan-
tum Mechanics). The geometrical characterization carried
out by us naturally starts from the results of that approach.

We have derived a relationship between the elemen-
tal wave function that describes the system in the classical
space and time and the metric tensor, that describes it in a
Lorentzial manifold. The affirmation thatΨ is a kind of vi-
bration of the empty space takes in our approach a quantita-
tive perspective.

The relationship found is such that, given a metric tensor
induced by a trajectory, the wave function that generates it

can be calculated. However, the reciprocal relationship is not
possible: we can not derive the metric of the spacetime from
the wave function if we do not make additional hypotheses.
In our case, we have to do hypotheses regarding a cylindrical
type metric of dust. In any case, a relation between the guid-
ing character that the wave function has on the particle and
the deformation of the spacetime described by the metric is
obvious.

There are other approaches that have some common
grounds with ours and that are commented in the Appendix.

Our study exceeds the de Broglie-Bohm’s theory as our
approach establishes a dialectic relationship between particle
and wave function, in contrast to the entirely preponderant
role that de Broglie-Bohm’s theory gives to the wave over the
particle, described in the expression ’pilot wave’: where the
wave determines the movement of the particle, but the parti-
cle has no effect on the wave. On the contrary, our approach
transfers to our model the interactive nature of Einstein field
equations, in which the mass-energy configures the space-
time, as well as spacetime configures the movement of the
mass- energy. This interaction should be, in our opinion, the
cornerstone of the quantum geometrodynamics.

The global conclusion of it all is that our geometrodi-
namic approach to the microphysics, coming from the Gen-
eral Relativity and the de Broglie-Bohm interpretation, is
physical and mathematicaly coherent and merits further the-
oretical and even experimental efforts to develop it.

Appendix

A. Some additional considerations

At this point, it is interesting to make some considerations
related to other geometrodynamical approaches.

B. Beyond the standard General Relativity

An interesting approach to geometrodinamics in micro-
physics are based on Weyl geometry. As it is known, the
Weyl geometry is a generalization of the Riemann spacetime
that focuses in the unification of gravity and electromagnetic
field. Two particularly interesting works are the works of
A. Shojai and F. Shojai, [15,16] that use the Weyl geometry
and Novello, Salim and Falciano, that use the Weyl integrable
space. In both cases they go over to conformal transforma-
tions in the metrics.

These approaches seem useful mainly for the study of the
quantum potential in the frame of geometrodynamics.

Howewer, we use the Levi-Civita connectors that make
possible to unify the affin geodesic (parallel transport of the
velocity vector) and the metric geodesic (extremal action).

Another possibility is to use approaches like the telepar-
allelism, in a spacetime without curvature but with torsion.
In this approach the gravity is not due to the curvature, but to
the torsion of spacetime. This model was used by Einstein at
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first, in an attempt to unify gravity and electromagnetism and
can be useful for this purpose.

C. The geometrothermodynamical approaches

The use of the Riemann manifolds to describe physical sys-
tems has been extended to other fields, like thermodynamics.
Ruppeiner and Quevedo make interesting approaches to the
use of Riemann manifolds for the study of thermodynamics.
We would like to comment briefly the adequacy of such ap-
proaches.

The difficulties found seemed to be related with the defi-
nition of the elements of the Riemann manifold by thermody-
namic magnitudes. In particular, it seemed difficult to estab-
lish a metric. In General Relativity this function is mainly ac-
complished by the exact solutions of the Einstein field equa-

tion. Also, other issues as the connections should be worked
out to build a completely useful structure.

Anyway, if we have a function of some mathematical en-
tities that locally perform in an Euclidean way, we can safely
use the Riemannian manifold structure to study such issues.

Needless to say, these approaches seem that would play
an important role in the characterization of the thermody-
namic systems.
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