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An accelerated growth model to generate complex networks
with connectivity distribution slope that varies with time
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Many real-life complex networks have in-degree and out-degree distributions that decay as a power-law. However, the few models that have
been able to reproduce both of these properties, can not reproduce the wide range of values found in real systems. Another limitation of
these models is that they add links from nodes which are created into the network, as well as between nodes already present in this network.
However, adding links between existing nodes is not a characteristic available in all systems. This paper introduces a new complex network
growth model that, without adding links between existing nodes, is able to generate complex topologies with in-degree and out-degree
distributions that decay as a power-law. Moreover, in this growth model, the ratio at which links are created is greater than the ratio at
which nodes are born, which produces an accelerated growth phenomenon that can be found in some real systems, like the Internet at the
Autonomous System level. This model also includes a behavior in which the slope of the in-degree distribution changes as the network grows,
in other words, it is a function of time. Similar behaviors have been previously observed in some real systems, like the citation network of
patents approved in the US between 1975 and 1999. However, in this latter network, the slope of the out-degree decreases as the network
grows.
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1. Introduction

Many systems and their interactions can be described us-
ing Directed Complex Networks (DCN) which share similar
properties [1–3]. In order to model a system as a complex
network, a set of components in the system are defined as
nodes, and the relationships between them as links. For ex-
ample, scientific papers’ citation networks represent articles
as nodes, and citations as the links that join them. Citations
in an article are outwardly directed to the articles they cite
to. When directed links are necessary to represent a network
it is called a DCN. However, when all the links are bidirec-
tional or non-directional, the network is considered to be a
non-directed complex network (NDCN). In a DCN, the num-
ber of links that leave a node is called its out-degree, while
the number of links that enter a node is called its in-degree.

Before the turn of the century, the random network model
was considered suitable to study most known networks. In
this model, each node randomly selects to which nodes it con-
nects to. This generates out-degree and in-degree values for
all the nodes in the network that follow a Poisson probabil-
ity distribution. However, research published in 1998 and
1999 [4–6] reported that some real networks have in- and

out-degree distributions that follow a power-law function [7],
P (k) ∼ kγ , which means that the properties observed in this
type of networks may not be the result of simple random pro-
cesses, hence they have been called complex networks (CN).
Newer studies have uncovered that many other systems fol-
low the CN mechanisms and properties [3]. For example:
the power grid, airline networks, social-contact disease net-
works, neuronal networks, protein-protein interactions, sci-
entific papers’ citation networks [4], the WWW and the In-
ternet at the autonomous system scale, to mention a few.

The collective study of real systems that have power-law
connectivity distributions has found that their in-degree dis-
tributions’ exponent,γin, vary in a range between1.05 and
4.69, while their out-degree distributions’ exponent,γout,
have a range between1.05 and5.01 [2,8].

These values have an important effect on the properties
of this type of networks. For example, networks with ex-
ponent values (γin andγout) in the range between two and
three are considered scale-free [2]. In this type of networks,
a large percentage of nodes have a smaller than average de-
gree, while a few nodes possess a high degree value. An-
other particular property of scale-free networks [9], is that
they have a small network diameterd (see Fig. 1). Typically,
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FIGURE 1. The shortest path is the path with fewest number of
links (hops) between two nodes. For example the shortest path be-
tween nodes 0 and 3, is 2. The diameter in a graph or network is
the longest shortest path or the distance between the two furthest
nodes. The diameter of this graph is 3, because the shortest path
between the two furthest nodes is 3.

d ≈ ln(ln(N)), whereN is the number of nodes in the net-
work. Therefore, it is common to refer to such networks as
“ultra-small-world” networks. This property has an effect in
the behavior of such networks. For example, in the imple-
mentation of routing and searching algorithms, or the propa-
gation of computer or biological viruses.

Since the publication of Barabási and Albert’s (BA)
growth model [10] to generate complex networks, this model
has been used as a reference for others to add new processes
which allow to reproduce other properties observed in real
networks [8].

For example, the original BA model included only ND-
CNs and could only generate networks with theγ = 3 ex-
ponent. Dorogovtsevet al. added an initial attractiveness
property [11] which allowed to model DCN and produced an
exponentγin that could vary between 2 and∞.

Not all networks possess the same processes. For exam-
ple, adding and deleting links is possible only in networks
like the WWW, where a web programmer may manually add
or delete hyperlinks between pages. Another example could
be a friendship network, where people may make new friends
and lose others. However, this property is not available in a
citation’s network, since once an article has been published,
it is usually not possible to change its references to other arti-
cles. Interestingly, a published article has a fixed out-degree,
but its in-degree may increase over time as new articles may
reference any published article. Therefore, it is possible to
deduce that in-degree distributions that follow a power-law
function in this type of networks is due to preferential attach-
ment [15]: Articles that have many references have a greater
probability to acquire new references. However, the preferen-
tial attachment mechanism does not apply for the out-degree
distribution of this type of networks and thus, it has not been
possible to determine the laws, principles or rules that could
explain why this distribution follows a power-law function
in networks without a rewiring mechanism, like the citation
network.

Models introduced after the one proposed by
Barab́asi [15] define new processes that reproduce the be-
haviors and properties of specific real complex systems.
However, there is no generic model that could reproduce
the diverse number of properties found in the real world.

For example, Bollob́as et al. [12] applied the preferen-

tial attachment model to the out-degree, while Dorogovtsev
et al. [13] added links with preferential destination and links
with random source and destination, both tried to produce
in-degree and out-degree distributions that follow a power-
law. However, the models proposed by Bollobáset al. and
by Dorogotsevet al. are suitable for networks that are able to
create new links between existing nodes, but not for networks
lacking this mechanism, like the citation’s network.

Among the models that may be used to study networks
that do not allow adding and deleting links after nodes have
been created, the Krapivsky-Redner (K-R) model [14] allows
power-law behavior for the in-degree distribution of the net-
works generated, but the out-degree distribution follows a
Poisson function. The model proposed by Jabr-Hamdanet
al. [15] simply assigns a power-law distribution to the outgo-
ing links. While the model proposed by Esquivelet al. [18]
only reproduce power-law distribution for the out-degree, but
not for the in-degree. Other models have not been able to
concurrently produce out-degree and in-degree distributions
that decay as a power-law function.

The motivation behind this work is that, for the case
of complex networks that do not allow to add and delete
links, there are no models able to simultaneously produce
out-degree and in-degree distributions that decay as a power-
law.

This paper introduces a new DCN accelerated growth
model which, without adding new links or rewiring between
existing nodes in the network, is able to generate networks
in which the in-degree and the out-degree node distributions
decay as a power-law. Accelerated growth is a behavior avail-
able in some complex networks, where the ratio at which new
links are created is greater than the ratio at which new nodes
are added [17].

2. Network growth model proposed

The DCN growth model proposed in this paper is based in the
Krapivsky-Redner [14] model. Initially the network hasm0

isolated nodes and at each time-step a new noden is created,
and one of the following two operations happens:

1. With probability1−p, a random numberm is selected,
wherem is the number of outgoing links forn. The
numberm has a range between1 andN , whereN is
the number of nodes in the network beforen was cre-
ated. The new noden randomly selectsm nodes in
the network, and it connects to each of thesem nodes
through a directed link that originates inn and finishes
in eachm node.

2. With probabilityp, n randomly selects an existing node
x and then connectsn to all ancestors ofx, where the
directed links originate inn and terminate at each an-
cestor ofx.

This article considers that nodex1 is an ancestor ofx2,
if there is a link that originates atx2 and finishes atx1.
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FIGURE 2. An example of the proposed model. (A) New node 5
performs operation 1, where it randomly chooses two nodes and
connects to them. (B) New node 6 performs operation 2, where it
randomly selects node 5 and connects to this node’s ancestors.

Figure 2 shows an example for the proposed model. In
this example, the network has a set of nodesNet[0, 1, . . . , 4],
andp = 0.8. Then, at the first time-step, node5 gets cre-
ated and randomly selects a real number between 0 and 1
which determines if it needs to execute the operation that
corresponds to probabilityp or the one that corresponds to
probability1 − p. For example, if the chosen number is0.1,
then the operation correspond to probability1 − p (1 − 0.8)
as shown at Fig. 2a. Then, a random number between1 and
N is selected, which determines the out-degree of the new
node,m. Notice that the range ofm for this example is from
1 to 5. Assume a value ofm = 2 for this example, then two
outgoing links are created from node5 to two different nodes
randomly selected from the network: nodes0 and3. Fig-
ure 2b shows an example of the operation that corresponds to
probabilityp: a new node,6, is created and randomly selects
a number between 0 and 1. Assume that this number is0.35,
which is greater than1 − p and, therefore, this should be an
operation that corresponds top. Then, a random node from
the existing network is chosen, for example 5, and the new
node copies all the outgoing links of this node. This is also
expressed as node 6 connects to node 5’s ancestors.

3. Experiments and results

The following experiments were designed to find the impact
that the parameters of the proposed model have in the out-
degree and in-degree distribution of the generated networks,
and to determine the range of the exponent in these distribu-
tions.

The proposed model was tested using numerical simula-
tions. The generated networks were grown fromN = 1 to
N = 104. The range for them outgoing links lies between1
andN . The value of probabilityp varied from0 to 1. Logs
from these simulations were employed to generate the graphs
shown in Fig. 3. For clarity, this figure only shows the distri-
butions forp = 0.10, 0.80, 0.90, 0.97 and 0.99.

Figure 3 shows that, whenp = 0.10, the in-degree distri-
bution’s tail decays as an exponential function. In this case,
the probability that a new node connects withm randomly
selected existing nodes is 0.90. For this condition, the net-

FIGURE 3. The in-degree connectivity distribution of networks
generated by the proposed model. This figure shows a family of
curves in which theγin varies from∞ to approximately 4.30.

work’s growth is governed by non-biased random processes.
In other words, each node in the network has the same prob-
ability to obtain new incoming links.

Whenp = 0.99, it is possible to see that the distribution’s
tail has approximately three decades in they-axis that decay
as a power-law with exponentγ ≈ 4.30.

These experiments show that for the proposed model, the
average in-degree increases as the network grows. For ex-
ample, whenp = 0.99 and the network reaches103 nodes,
the average in-degree is4.79. In contrast, when the growth
reaches104 and using the samep, the network has an average
in-degree of48.64. This increment in the average in-degree
indicates that, as the network grows, the speed at which links
are born increases with respect to the speed at which nodes
are born. In other words, the model exhibits accelerated
growth [17].

FIGURE 4.The impact of growth in the value ofγin in a network
generated by the proposed model. When the network has grown
to 103 nodes, the in-degree distribution has a slopeγ ∼ 3.3, but
when the network reaches104 nodes, the value ofγin has increased
to approximately 4.3.
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FIGURE 5. The out-degree connectivity distribution of networks
generated using the proposed model: whenp → 0, γout → 0 and
whenp → 1, γout → 1.

Figure 4 shows that, for a network that has grown to
103 nodes, the exponentγin ≈ 3.30, and when the network
reaches104 nodes,γin ≈ 4.30. In other words,γin in-
creases as the network grows.

A consequence of the variation ofγin with the growth
of the system, is that it becomes complicated to use the
analytical tools that have been traditionally used to study
complex networks: the master equation and the continuum
method [10,18].

When in this modelm = 1 and remains constant during
the growth of the network, the acceleration is equal to zero
and the proposed model is identical to the one published by
Krapivsky et al. [14]. For this case,γin also varies from2
to∞.

Figure 5 shows a family of curves that show the out-
degree distributions produced by the proposed model. This
figure shows that, whenp approximates0, the out-degree dis-
tribution exponentγout also approximates0. In other words,
asp gets closer to0, the out-degree distribution approximates
to a uniform distribution. Whenp tends to1, theγout also
tends to1. Therefore, the numerical experiment shows that
theγout has a range between0 and1.

This result coincides with the analytical model published
by Esquivelet al. [16], where they applied the Krapivsky-
Redner model to a random generation of the out-degree to
generate their own model. Theγout obtained with the model
proposed in here is similar to the one obtained in [16] because
it is one of the components of the proposed model.

4. US Patents and itsγout

The references between the patents approved in the US be-
tween 1975 and 1999 [19] are an example of a CN that
changes itsγ exponents value as it grows, similarly as in
the proposed model. In this network, each node repre-
sents a patent and the directed links, the references between
patents. This system

FIGURE 6. The out-degree connectivity distribution for the US
Patents citation’s network 1975-1999. When this network had106

patents,γout was approximately4.38; when the network reached
2, 089, 345 (all patents in the dataset)γout changed to≈ 3.38.

was selected because there is a record that allows to repro-
duce the network’s growth, which allows to analyze its state
and properties at different time intervals. This is impossible
or considerable more complicated in other systems, like the
WWW or the paper citation’s network, since there is no ac-
curate recordings on how these systems evolve with time.

The patents network analyzed here has2, 089, 345
patents that have references of others that may have been
approved before or after 1975. This network has a total
of 16, 518, 948 links. For the current analysis, the network
growth has been divided in two stages: ST1 is used to repre-
sent when the system has grown to106 nodes and ST2 when
the network has reached its maximum number of nodes. Fig-
ure 6 shows the out-degree distribution of this system when
the network is at both of these stages. It is possible to observe
thatγout ≈ 4.38 at ST1 and it changes to approximately3.38
at ST2. This is a clear example of a real system that has a
growth behavior similar to the one observed in the proposed
model. In other words,γout or γin may vary over time as the
network grows. Unfortunately, this analysis cannot be done
for γin because the data range stops at 1999, which hides all
citations received from patents created after this date.

5. Discussion

The model introduced in this article has an accelerated
growth behavior which was expected, since each new node
added to the network createsm links, wherem may be
greater than one. However, the fact that theγ exponent
changes as the network grows, was not an expected behavior.
Therefore, it becomes important to study the mechanisms that
produce such behavior, which for the case of the patents cita-
tion’s network, produces that theγout exponent takes smaller
values as the network grows, while this same exponent does
not change for the proposed model.
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It may also be interesting to study what could happen as
the patent citation’s network system grows: will theγout

exponent continue to decrease? At which point will it stop
changing? Maybe theγout will stop when the network be-
comes scale-free (γout between 2.0 and 3.0), where it may
become an ultra-small-word network. This study may have
implications when trying to model other systems. For ex-
ample, if a network can be used to model the propagation
of a biological virus, it may be possible to anticipate how
the network will grow, its expected diameter and other struc-
tural properties, which may then help to predict or contain
the propagation of such virus.

The answer to the previous questions may be available
once there is enough information about the evolution of this
type of networks and a deeper understanding about the dif-
ferent processes that allow to produce and model this type of
networks.

6. Conclusions

This article has introduced a new DCN growth model based
in previous models by Krapivsky-Redner [14] and by Es-
quivel et al. [18]. The new model has resulted in a growth
mechanism that is able to generate DCN with an out-degree
and in-degree node distribution that decays as a power-law
and which also includes an accelerated growth phenomenon,
where the rate at which links are created is greater than the
speed at which nodes are created. This causes the mean num-
ber of links per node to increase as the network grows, and it
also exhibits an increase in theγin exponent, but not forγout.

1. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang,
Physics Reports424(2006) 175- 308.

2. A. L. Barab́asi,Network Science, Cambridge University Press,
(2016).

3. M. Small, L. Hou, L. Zhang,National Science Review1 (2014)
357-367.

4. S. Redner,The European Physical Journal B4 (1998) 131-134.

5. R. Albert, J. Hawoong, A. L. Barabási,Nature401(1999) 130.

6. M. Faloutsos, P. Faloutsos, and C. Faloutsos,ACM SIGCOMM,
Cambridge, MA,29 (1999) 251-262.

7. Virkar, Yogesh; Clauset, Aaron,Ann. Appl. Stat. 8 (2014) 89-
119.

8. R. Albert and A. L. Barab́asi,Rev of Mod Phy74 (2002).

9. K. Judd, M. Small and T. Stemler,EPL 103(2013) 58004.

10. S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin,Phys.
Rev. Lett. 85 (2000) 4633.

11. S. N. Dorogovtsev, S., Mendes,J. & Samukhin, A. ArXiv:cond-
mat/0009090, (2000).

12. B. Bollobás, B., Christian, B., Chayes, & J. Riordan, O.Di-
rected scale-free graphs, SODA’03. Philadelphia, PA, USA:
Society for Industrial and Applied Mathematics, (2003) 132-
139.

13. A. Jabr-Hamdan,J. Sun and D. ben-Avraham,Physical Review
E 90 (2014) 052812.

14. P. L. Krapivsky and S. Redner,Physical Review E71 (2005)
036118.

15. A. L. Barab́asi, R. Albert,Science286(1999) 509-512.

16. A. L. Barab́asi, R. Albert,H. Jeong Physica A272(1999) 173-
187.

17. S.N. Dorogovtsev and J.F.F. Mendes,Phys. Rev. E63 (2001)
1-4.

18. J. Esquivel-Gomez, E. Stevens-Navarro, U. Pineda-Rico, J.
Acosta-Elias,Sci. Rep. Nature5 (2015) Article number: 7670,
doi:10.1038/srep07670, .

19. V. Batagelj, arXiv:cs/0309023v1 [cs.DL], (2003).

Rev. Mex. F́ıs. 65 (2019) 128–132


