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In this work, the traveling wave solutions of a mathematical modeling of DNA vibration dynamics proposed by Peyrard-Bishop, that takes
into consideration the inclusion of nonlinear interaction between adjacent displacements along the Hydrogen bonds, is investigated by both
(G′/G)-expansion andF -expansion methods. Using these methods, some new explicit forms of traveling wave solutions of present nonlinear
equation are given. The methods come in to be easier and faster by means of a symbolic computation and yield powerful mathematical tools
for solving nonlinear evolution equations in many branches of sciences, especially Physics, Biology, etc.
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1. Introduction

In recent decades, a new attitude with regard to the explo-
ration of nonlinear evolution equations (NLEEs) has been
actively progressing in various branches of Sciences. Non-
linear evolution equations have been the important subject of
investigation in various branches of mathematical and physi-
cal sciences such as physics, fluid mechanics, chemistry, bi-
ology and etc. Obtaining the analytical solutions of NLEEs is
an important topic in various areas of Science, since many of
mathematical and physical models are explained by NLEEs.
Among the possible solutions to NLEEs, specific form of so-
lutions may contingent only on a single combination of vari-
ables such as solitons. In mathematics and physics, a soli-
ton is a self-reinforcing solitary wave that sustains its form
through it travels with constant speed. Solitons are the spe-
cial solutions of certain nonlinear partial differential equa-
tions, with interesting properties. Because of a balance be-
tween nonlinear and linear effects, the shape of soliton wave
pulses does not change during propagation in a medium. The
soliton phenomenon firstly described by John Scott Russell
(1808-1882). The main idea of this phenomenon occurred to
him when he observed a solitary wave in the Union Canal in
Scotland. Russell reproduced same phenomenon in a wave
tank and named it the “Wave of Translation” (also known as
solitary wave or soliton) [1].

The mathematical modeling of DNA vibration dynamics
is proposed by Peyrard–Bishop, that takes into consideration
the inclusion of nonlinear interaction between adjacent dis-

placements along the Hydrogen bonds [8]. To study the main
important properties of DNA structure, we have investigated
the oscillator-chain of Peyrard–Bishop model (PB) [8] which
has successfully predicated the appearance of solitonic struc-
tures. As it is well known, the balance between weak non-
linearity and dispersion in DNA dynamic model yields the
typical derivation of model equations mathematically. This
dispersion in many cases enters only in the linear level. Un-
fortunately, this approach eliminates other possibilities re-
lated to the presence of nonlinear dispersion [9,10]. Some
mathematical structure of DNA has been described in vari-
ous interesting lines of research, to see more structure and
physical properties of DNA, the authors can Ref. to [2-6] and
their references. The mathematical and physical modelling of
DNA dynamics has reduced to an important nonlinear struc-
tures. The nonlinearity of the DNA dynamic model causes it
to form localized waves. The localized waves have some in-
teresting properties, such as the ability of transporting energy
without dissipation [2-7].

Taking into consideration the inharmonic potential,
Aguero et al. [6] and Najeraet al. [11] have studied the
following modified PB model:

utt −
(
`1 + 3`2u

2
x

)
uxx − 2αDe−αu(e−αu − 1) = 0, (1)

where`1, `2,D andα are constants. Krumhanslet al., [12],
suggested a theory of soliton excitations as an explanation
of the open states of DNA modeling system. In [12], they
firstly developed the possibility that nonlinear effects might
concentrate vibrational energy in DNA into localized soliton
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like objects. Some other similar worksare studied about soli-
tons of DNA dynamics model, such as Yomosa in [13], pro-
posed a soliton theory using a plane base-rotor model. This
model was further refined by Takeno and Homma [14], who
allowed discreteness effects to be taken into account, and by
Zhang [15], who improved the model for base coupling. Za-
yed and Arnous also applied Homogeneous Balance Method
in [35] and generalized Riccati equation mapping method in
[36,37] to find traveling wave solutions of PB model (1.1).

In the recent decade, many powerful and direct methods
have been proposed to find special solutions of nonlinear evo-
lution equations (NLEEs), such as the Bácklund transforma-
tion [16] and Hirota bilinear method [17]. With the help of
the computer implementations, some other algebraic method
proposed, such as tanh/coth method [18], homogeneous bal-
ance method [19], the Miura transformation [20], sine/cosine
method [21] and Exp–function method [22] and some other,
see [23]. But most of the methods may sometimes fail or can
only lead to a kind of special solution and the solution pro-
cedures become very complex as the degree of nonlinearity
increases.

Since 2008, the(G′/G)–expansion method, firstly intro-
duced by Wanget al. [24], has become widely used to search
for various exact solutions of NLEEs [24-31]. The worth of
the (G′/G)–expansion method is that it reduced the nonlin-
ear PDEs to ODEs by some essentially linear methods,i.e.
the method is based on the explicit linearization of NLEEs
for traveling waves which leads to a second–order differen-
tial equation with constant coefficients. TheF -expansion
method is also an effective and direct algebraic method for
constructing the exact solutions of nonlinear evolution equa-
tions [32]. To do this, it reduces the nonlinear evolution equa-
tions to a simple algebraic equation. Many of NLEEs have
been solved byF -expansion method, (for a deeper discus-
sion we refer the reader to [33,34] and the references given
there).

In this paper, we first describe briefly the mathematical
concept of both(G′/G)–expansion method andF -expansion

method, then we use them to investigate the traveling wave
solutions of a mathematical modeling of PB model (1.1).

2. Description of the (G′/G)–expansion
method

In this section, we introduce briefly the(G′/G)–expansion
method for solving certain nonlinear partial differential equa-
tions (PDEs). For a deeper discussion of(G′/G)–expansion
method we refer the reader to [24-27]. Suppose we have a
nonlinear PDE foru(x, t), in the form

P (u, ut, ux, uxt, uxx, utt, . . .) = 0, (2)

whereP is a polynomial in its arguments, which includes
nonlinear terms and the highest order derivatives. Using the
transformationu(x, t) = U(ξ), ξ = x − ωt, Eq. (2) reduces
to the ordinary differential equation (ODE)

P (U,−ωU ′, U ′,−ωU ′′, U ′′, ω2U ′′, . . .) = 0, (3)

whereU = U(ξ), and prime denotes derivative with respect
to ξ. We assume that the solution of Eq. (3) can be expressed
by a polynomial in(G′/G) as follows:

U(ξ) =
m∑

n=1

αn

(
G′

G

)n

+ α0, αm 6= 0. (4)

whereαn, n = 0, 1, 2, ..., m, are constants to be determined
later andG(ξ) satisfies a second order linear ordinary differ-
ential equation (LODE):

d2G(ξ)
dξ2

+ λ
dG(ξ)

dξ
+ µG(ξ) = 0. (5)

whereλ andµ are arbitrary constants. Using the general so-
lutions of Eq. (5), we have

G′(ξ)
G(ξ)

=





√
λ2−4µ

2




C1 sinh
(√

λ2−4µ

2 ξ

)
+ C2 cosh

(√
λ2 − 4µ

2
ξ

)

C1 cosh

(√
λ2 − 4µ

2
ξ

)
+ C2 sinh

(√
λ2−4µ

2 ξ

)



− λ

2 , λ2 − 4µ > 0,

√
4µ−λ2

2




−C1 sin

(√
4µ− λ2

2
ξ

)
+ C2 cos

(√
4µ− λ2

2
ξ

)

C1 cos

(√
4µ− λ2

2
ξ

)
+ C2 sin

(√
4µ− λ2

2
ξ

)



− λ

2 , λ2 − 4µ < 0,

(6)

and it follows, from (4) and (5), that

U ′ = −
m∑

n=1

n αn

((
G′

G

)n+1

+ λ

(
G′

G

)n

+ µ

(
G′

G

)n−1
)

,
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U ′′ =
m∑

n=1

n αn

(
(n + 1)

(
G′

G

)n+2

+ (2n + 1)λ
(

G′

G

)n+1

+ n(λ2 + 2µ)
(

G′

G

)n

+ (2n− 1)λµ

(
G′

G

)n−1

+ (n− 1)µ2

(
G′

G

)n−2
)

, (7)

and so on, here the prime denotes the derivative with respec-
tive to ξ. To determineu explicitly, we take the following
four steps:

Step 1. Determine the integerm by substituting Eq. (4)
along with Eq. (5) into Eq. (3), and balancing the highest or-
der nonlinear term(s) and the highest order partial derivative.

Step 2. Substitute Eq. (4) give the value ofm determined
in Step 1, along with Eq. (5) into Eq. (3) and collect all terms
with the same order of(G′/G) together, the left-hand side of
Eq. (3) is converted into a polynomial in(G′/G). Then set
each coefficient of this polynomial to zero to derive a set of
algebraic equations forω, λ, µ, αn for n = 0, 1, 2, ...,m.

Step 3. Solve the system of algebraic equations obtained
in Step 2, for ω, λ, µ, α0, ..., αm by use of computer programs
such Matlab, Maple and Mathematica.

Step 4. Use the results obtained in above steps to derive a
series of fundamental solutionsu(ξ) of Eq. (3) depending on
(G′/G), since the solutions of Eq. (5) have been well known
for us, then we can obtain exact solutions of Eq. (2).

2.1. Application

Let us consider the Peyrard–Bishop DNA dynamic model
equation

utt − (`1 + 3`2u
2
x)uxx − 2αDe−αu(e−αu − 1) = 0, (8)

where`1, `2, α andD are constants.
We would like to use our method to obtain new and more

general, travelling wave solutions of Eq. (8) by assuming the
solution in the following frame:

u = U(ξ), ξ = x− ωt, (9)

whereω is arbitrary constants generally termed thewave ve-
locity, and prime denotes derivative with respect toξ. Using
the wave variableξ in (8) we find

ω2U ′′ − (
`1 + 3`2(U ′)2

)
U ′′

− 2αDe−αU (e−αU − 1) = 0, (10)

Multiplying Eq. (10) byU ′ and integrating once with respect
to ξ, we obtain

1
2
(ω2 − `1)(U ′)2 − 3

4
`2(U ′)4

+De−αU (e−αU − 2) +R = 0, (11)

whereR is an integration constant. Introducing the new vari-
able

φ(ξ) = e−αU(ξ), (12)

reduces Eq. (11) into the following form:

1
2α2

(ω2 − `1)φ2(φ′)2 − 3
4α4

`2(φ′)4

+Dφ5(φ− 2) +Rφ4 = 0. (13)

According toStep 1, considering the homogeneous balance
between(φ′)4 andφ6 we get4m + 4 = 6m, hencem = 2.
We then suppose that Eq. (13) has the following formal solu-
tions:

φ = α2(G′/G)2 + α1(G′/G) + α0, (14)

whereα2 6= 0, α1, andα0, are constants which are unknown,
to be determined later.

Substituting Eq. (14) along with Eq. (5) into Eq. (13) and
collecting all terms with the same order of(G′/G), together,
the left–hand sides of Eq. (13) are converted into a polyno-
mial in (G′/G). Equating each coefficient of this polyno-
mial to zero yields a set of simultaneous algebraic equations
for λ, µ, ω, α0, α1 andα2. Solving the system of algebraic
equations with the aid of Maple 12, we obtain the following
general results

µ = ±
√

3α2

6`2

√
`2
D

(
±D +

√
D2 −DR

)
,

λ = 0,

ω = ±
√
∓2
√

3

√
`2
D

√
D2 −DR+ `1,

α0 = ±D +
√D2 −DR
D ,

α1 = 0,

α2 = ±2
√

3
α2

√
`2
D .

(15)

Therefore, substitute the obtained results (15) in (14), we get

φ(ξ) = ±2
√

3
α2

√
`2
D

(
G′

G

)2

±
± D +

√D2 −DR
D . (16)

Substituting the general solutions (6) into Eq. (14), we obtain
following two types of traveling wave solutions of Eq. (8):
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2.1.1. Hyperbolic type function solutions

Whenµ < 0, using the relationshipu = (−1/α) ln φ, we obtain hyperbolic type function solutionuH, of Peyrard-Bishop
DNA dynamic model (8) as follows:

u±H(x, t) =
−1
α

ln

(
± 2

√
3

α2

√
`2
D

(
G′

G

)2

±
± D +

√D2 −DR
D

)
, (17)

where
(

G′

G

)

±
=
√−4µ

2

(
C1 sinh

(√−4µ
2 ξ

)
+C2 cosh

(√−4µ
2 ξ

)

C1 cosh
(√−4µ

2 ξ
)
+C2 sinh

(√−4µ
2 ξ

)
)

,

and

ξ = x∓ (

√
∓2
√

3

√
`2
D

√
D2 −DR+ `1) t, µ = ±

√
3α2

6`2

√
`2
D

(
±D +

√
D2 −DR

)
, C1, C2

are arbitrary constants andR is integration constant. It is easy to see that the hyperbolic type solution (15) can be rewritten at
C2

1 > C2
2 , as follows

u±H1(x, t) =
−1
α

ln




D +
√D2 −DR

D cosh2

(
−
√

6
6

√
−
√

3α2

`2

√
`2
D (D +

√D2 −DR)ξ + ηH

)




, (18a)

while atC2
1 < C2

2 , one can obtain

u±H2(x, t) =
−1
α

ln




−D −√D2 −DR

D cosh2

(
−
√

6
6

√
−
√

3α2

`2

√
`2
D (D +

√D2 −DR)ξ + ηH

)
− 1




. (18b)

where

ξ = x∓
√
∓2
√

3

√
`2
D

√
D2 −DR+ `1) t, µ = ±

√
3α2

6`2

√
`2
D

(
±D +

√
D2 −DR

)
, ηH = tanh−1

(C1

C2

)
,

are arbitrary constants andR is integration constant. By setting appropriate parameters, the solution (18a) can be reduce to
solution (31) in [35].

2.1.2. Trigonometric type function solutions

Now whenµ > 0, using the relationship(−1/α) ln φ, the trigonometric type function solutionuT , of Peyrard–Bishop DNA
dynamic model (8) can be obtain as follows:

u±T (x, t) =
−1
α

ln

(
±2
√

3
α2

√
`2
D

(
G′

G

)2

±
± D +

√D2 −DR
D

)
, (19)

where
(

G′

G

)

±
=
√−4µ

2

(−C1 sin(
√−4µ

2 ξ) + C2 cos(
√−4µ

2 ξ)

C1 cos(
√−4µ

2 ξ) + C2 sin(
√−4µ

2 ξ)

)
,

and

ξ = x∓ (

√
∓2
√

3

√
`2
D

√
D2 −DR+ `1) t, µ = ±

√
3α2

6`2

√
`2
D

(
±D +

√
D2 −DR

)
, C1, C2
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are arbitrary constants andR is integration constant. It is easy to see that the trigonometric type solution (17) can be rewritten
atC2

1 > C2
2 , as follows

u±T 1(x, t) =
−1
α

ln


D +

√D2 −DR
D


tan2



√

6
6

√√
3α2

`2

√
`2
D (D +

√
D2 −DR)ξ + ηT


 + 1





 , (20a)

and forC2
1 < C2

2 , one can obtain

u±T 2(x, t) =
−1
α

ln


D +

√D2 −DR
D


cot2



√

6
6

√√
3α2

`2

√
`2
D (D +

√
D2 −DR)ξ + ηT


 + 1





 . (20b)

where

ξ = x∓ (

√
∓2
√

3

√
`2
D

√
D2 −DR+ `1) t, µ = ±

√
3α2

6`2

√
`2
D

(
±D +

√
D2 −DR

)
, ηT = tan−1

(C1

C2

)
,

are arbitrary constants andR is integration constant.

3. F-expansion method

In order to get more solutions of (1), we use the F-expansion
method [38] to deal with (13). Supposing that Eq. (13) has
the following formal solutions:

φ = α2(ϕ)2 + α1(ϕ) + α0, (21)

whereα2 6= 0, α1, andα0, are constants to be determined
further. Andϕ satisfy

ϕ′ = C(ϕ)2 + B(ϕ) + A. (22)

Substituting (21) and (22) into (13) and collecting all terms
with the same order ofϕ together equating each coefficient
of this polynomial to zero, one can get

Case 1:

R = −4 AC

(
−α2 (D)

√
l2
D

√
3 + 3 ACl2

)
α−4,

α = α, ω = ω, α0 = 2

√
l2
D

AC
√

3α−2,

l1 =

(
12 ACl2 − 2 α2 (D)

√
l2
D

√
3 + α2ω

)
α−2,

l2 = l2, A = A, C = C, D = D, B = 0,

α1 = 0, α2 =
2
√

3C2

α2

√
`2
D . (23)

Case 2:

R = −4 AC

(
α2 (D)

√
l2
D

√
3 + 3 ACl2

)
α−4,

α = α, ω = ω, α0 = −2

√
l2
D

AC
√

3α−2,

l1 =

(
12 ACl2 + 2 α2 (D)

√
l2
D

√
3 + α2ω

)
α−2,

l2 = l2, A = A, C = C, D = D, B = 0,

α1 = 0, α2 = −2
√

3C2

α2

√
`2
D . (24)

Thus, substitute the obtained results (23) and (24) in (22),
we get

φ(ξ) = ±2
√

3C2

α2

√
`2
D (ϕ)2 ± 2

√
l2
D

AC
√

3α−2. (25)

Substituting the general solutions (22) into Eq. (21), we ob-
tain the following two types of traveling wave solutions of
Eq. (8):

In view of (22) has a lot of fundamental solutions (twenty
seven solutions) [33], one can find a number of exact trav-
elling wave solutions for (1), which are listed some special
solutions as follows.

Family 1: When−4AC > 0 andAC 6= 0,

u = − 1
α

ln

(
2
√

3C2

α2

√
`2
D

((
− 1

2C

[√
−4AC tanh

(√−4AC

2
ξ

)]))2

+ 2

√
l2
D

AC
√

3α−2

)
. (26)

u = − 1
α

ln

(
2
√

3C2

α2

√
`2
D

((
− 1

2C

[√
−4AC coth

(√−4AC

2
ξ

)]))2

+ 2

√
l2
D

AC
√

3α−2

)
. (27)
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u=− 1
α

ln


2

√
3C2

α2

√
`2
D

(
− 1

2C

[
√
−4AC

(
tanh

(√
−4ACξ

)
± isech

(√
−4ACξ

) )])2

+2

√
l2
D

AC
√

3α−2


 . (28)

u=− 1
α

ln


2

√
3C2

α2

√
`2
D

(
− 1

2C

√
−4AC

(
coth

(√
−4ACξ

)
±icsch

(√
−4ACξ

) ))2

+2

√
l2
D

AC
√

3α−2


 . (29)

u=− 1
α

ln


2

√
3C2

α2

√
`2
D

(
− 1

4C

√
−4AC

(
tanh

(√−4AC

4
ξ

)
+ coth

(√−4AC

4
ξ

) ))2

+2

√
l2
D

AC
√

3α−2


 . (30)

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

(
1

2C

[√
(E2 + F 2)(−4AC)− E

√−4AC cosh(
√−4ACξ)

Esinh(
√−4ACξ) + F

])2

+ 2

√
l2
D

AC
√

3α−2


 . (31)

u=− 1
α

ln


2

√
3C2

α2

√
`2
D

(
1

2C

[
−

√
(F 2−E2)(−4AC)+E

√−4AC sinh(
√−4ACξ)

Ecosh(
√−4ACξ)+F

])2

+2

√
l2
D

AC
√

3α−2


 . (32)

whereE andF are two non-zero real constants and satisfiesF 2 − E2 > 0.

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

([
2A cosh(

√−4ACξ)√−4AC sinh(
√−4ACξ)± i

√−4ACξ

])2

+ 2

√
l2
D

AC
√

3α−2


 . (33)

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

([
2A sinh(

√−4ACξ)√−4AC cosh(
√−4ACξ)±√−4ACξ

])2

+ 2

√
l2
D

AC
√

3α−2


 . (34)

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

([
4A sinh(

√−4AC
4 ξ) cosh(

√−4AC
4 ξ)

2
√−4AC cosh2(

√−4AC
4 ξ)−√−4AC

])2

+ 2

√
l2
D

AC
√

3α−2


 . (35)

Family 2 : When−4AC < 0 andAC 6= 0,

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

(
1

2C

[√
4AC tan

(√
4AC

2
ξ

)])2

+ 2

√
l2
D

AC
√

3α−2


 . (36)

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

(
1

2C

[√
4AC cot

(√
4AC

2
ξ

)])2

+ 2

√
l2
D

AC
√

3α−2


 . (37)

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

(
1

2C

[√
4AC

(
tan

(√
4ACξ

)
± sec

(√
4ACξ

) )])2

+ 2

√
l2
D

AC
√

3α−2


 . (38)

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

(
− 1

2C

[√
4AC

(
cot

(√
4ACξ

)
± csc

(√
4ACξ

) )])2

+ 2

√
l2
D

AC
√

3α−2


 . (39)

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

(
1

4C

[√
4AC

(
tan

(√
4AC

4
ξ

)
− cot

(√
4AC

4
ξ

))])2

+ 2

√
l2
D

AC
√

3α−2


 . (40)

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

(
1

2C

[
±

√
(F 2 − E2)(4AC)− E

√
4AC cos(

√
4ACξ)

Esin(
√

4ACξ) + F

])2

+ 2

√
l2
D

AC
√

3α−2


 . (41)
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u = − 1
α

ln


2

√
3C2

α2

√
`2
D

(
1

2C

[
±

√
(F 2 − E2)(4AC) + E

√
4AC sin(

√
4ACξ)

Ecos(
√

4ACξ) + F

])2

+ 2

√
l2
D

AC
√

3α−2


 . (42)

whereE andF are two non-zero real constants and satisfiesF 2 − E2 > 0.

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

([
−2A cos(

√
4ACξ)√

4AC sin(
√

4ACξ)± i
√

4ACξ

])2

+ 2

√
l2
D

AC
√

3α−2


 . (43)

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

([
2A sin(

√
4ACξ)√

4AC cos(
√

4ACξ)±√4ACξ

])2

+ 2

√
l2
D

AC
√

3α−2


 . (44)

u = − 1
α

ln


2

√
3C2

α2

√
`2
D

([
4A sin(

√
4AC
4 ξ) cos(

√
4AC
4 ξ)

2
√

4AC cos2(
√

4AC
4 ξ)−√4AC

])2

+ 2

√
l2
D

AC
√

3α−2


 . (45)

Remark 1. Using Case. 2, one can get other exact solu-
tions of Eq. (1). The details are omitted here.

4. Conclusions

This study shows that both(G′/G)–expansion method and
F–expansion method are quite efficient and practically well
suited for use in finding exact solutions for a mathematical
modeling of DNA vibration dynamics. The reliability of the
methods and the reduction in the size of computational do-

main give these methods a wider applicability. With the aid
of Maple 12, we have assured the correctness of the obtained
solutions by putting them back into the original equation. We
hope that they will be useful for further studies in applied
sciences and engineering.
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