
RESEARCH Revista Mexicana de Fı́sica61 (2015) 450–457 NOVEMBER-DECEMBER 2015

MHD effects on natural convection laminar flow from a horizontal
circular cylinder in presence of radiation
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In this study, the effect of magnetohydrodynamic (MHD) on natural convection flow from a horizontal circular cylinder in the presence of
radiation has been investigated. The governing boundary layer equations are converted into non-dimensional partial differential equations
by using the suitable transformation and then solved numerically by employing an accurate implicit finite difference scheme known as
Keller-box method. We presented the influence of emerging non-dimensional parameters namely the MHD parameterM with combination
of surface heating parameterθw and radiation-conduction parameterRd on velocity and temperature profiles, skin friction coefficient and
Nusselt number through graphs and tables. It is observed that the Lorentz force reduces the velocity, skin friction coefficient and Nusselt
number. Moreover temperature increases in the presence of MHD effect. The streamlines and isotherms reflect some attractive flow patterns
which show that magnetic parameterM and radiation parameterRd have deep influence on these fluid and heat flow patterns.

Keywords: MHD; radiation; horizontal circular cylinder; numerical solution.

PACS: 47.10.ad; 02.60.Cb; 44.20.+b

1. Introduction

Natural convection flow around a heated circular cylinder for
different fluids has great importance owing to their wide ap-
plications in industries. The heat convection around cylindri-
cal bodies has fascinated many researchers due to the fact that
cylinders have been used in nuclear waste disposal, energy
extortion in underground and catalytic beds. Natural convec-
tion driven by temperature difference has been examined in
detail. Through literature survey it divulges that Merkin [1,2]
was the first to initiate the free convection boundary layer
flow on horizontal circular cylinders and cylinders with el-
liptic cross-section. Sparrow and Lee [3] considered the ef-
fects of mixed convection around a circular cylinder. In 1983,
Luciano and Socio [4] investigated free convection around
horizontal circular cylinders. They performed experiments
to calculate average and local Nusselt numbers. Different
characteristics of the flow regions were shown through vi-
sual observations. Merkin [5] studied free convection bound-
ary layer flow on an isothermal horizontal circular cylin-
der. Ingham [6] examined free convection boundary layer
flow on an isothermal horizontal cylinder. By considering
the micro-polar fluid, Nazaret al. [7, 8] have discussed the
natural convection flow along a uniformly heated horizontal
circular cylinder and described the effects of micro-rotation
of the fluid from lower to upper stagnation point after the
work of Merkin [5] on isothermal circular cylinder. Molla
et al. [9-11] studied the analysis of natural convection flow
from an isothermal horizontal circular cylinder by consider-
ing temperature dependent viscosity, heat generation and uni-
form heat flux. Bhowmicketet al. [12] investigated natural
convection flow of non-Newtonian fluid along a horizontal
circular cylinder with uniform surface heat flux by using a

modified power law viscosity model. The governing equa-
tions were solved numerically by using implicit finite differ-
ence scheme of marching order with double sweep technique.
Later, Javedet al. [13] considered natural convection flow in
an isosceles triangular cavity filled with porous medium due
to uniform/non-uniform heated side walls in the presence of
MHD effect.

The study of thermal radiation on free convection flow
has achieved immense importance among the researchers due
to various engineering applications. Such applications are
power generation plants, re-entry of space vehicle and high
speed flights. It is well known that radiation effects altered
the temperature distribution in the laminar boundary layer.
Resultantly, it has an effect on heat transfer at the wall. The
consecutive treatment of convective radiative heat transfer
is essential in such circumstances. The interaction between
convection and thermal radiation over different surfaces can
be found in refs [14-29]. The situations where MHD and ther-
mal radiation effects on flow and rate of heat transfer are im-
portant in many fields like geophysical, geothermal and engi-
neering processes and appliances. The examples are nuclear
reactors, nuclear waste disposal, grain storage, migration of
moisture contained in fibrous insulations through air, disper-
sion of chemical pollutants through water-saturated soil, etc.
The present paper is the extension of the work of Mollaet
al. [24] including MHD effects. To the best of our knowl-
edge, this work has not been addressed in the literature ear-
lier. The emerging transformed nonlinear partial differential
equations are solved by using a stable and efficient implicit
finite difference scheme (Keller-box method [30]). The ob-
tained solution is discussed through graphs and tables for dif-
ferent values of emerging parameters.
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FIGURE 1. Geometry of the flow situation.

2. Mathematical formulation

Consider the free convection flow of two-dimensional steady
incompressible viscous fluid over a circular cylinder of fixed
radiusa. A uniform magnetic field of strengthB0 along ra-
dial direction is applied perpendicular to the regular surface
of cylinder. Thex̄ andȳ are coordinate measured along and
perpendicular to the surface of the cylinder with origin atO
as lower stagnation point (x̄ ≈ 0). It is assumed thatTw

andT∞ are the surface temperature of the cylinder and ambi-
ent temperature of the fluid respectively. We have considered
only the caseTw > T∞ corresponds to heated cylinder. The
geometry of the flow situation is shown in Fig. 1. Following
Merkin [5], the continuity and conservation equations will
take the form as
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whereū andv̄ be the velocity components alonḡx andȳ di-
rections respectively,T be the temperature of the fluid within
the boundary layer,ρ andµ be the density and viscosity of the
fluid respectively,g be the acceleration due to gravity,β be
the coefficient of thermal expansion,B0 be applied magnetic
field acting normal at the cylinder surface,σ0 be the electric
conductivity of the fluid,cp be the specific heat at constant
pressure andσ be the Stephen-Boltzman constant,αr andαs

are the Rosseland mean absorption coefficient and the scaling
coefficient respectively. The radiation effect in Eq. (3) is con-
sidered by using the Rosseland diffusion approximation for
radiation (Siegel and Howell [31]). Under this approxima-
tion the solution is not valid for situations where scattering
is expected to be non-isotropic as well as in the immediate
vicinity of the surface of the cylinder.

The related boundary conditions for the governing prob-
lem are

ū = v̄ = 0, T = Tw at ȳ = 0
ū → 0, T → T∞ as ȳ →∞

}
. (4)

The non-dimensional scaling variables are introduced as
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whereν = µ/ρ be the kinematic viscosity,Gr be the Grashof
number andθ be the dimensionless temperature. Substituting
non-dimensional scaling variables into Eqs. (1-3), we get the
subsequent dimensionless partial differential equations.
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with allied boundary conditions will become

u = 0, v = 0, θ = 1 at y = 0

u → 0, θ → 0, as y →∞

}
, (9)

where
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where Pr be the Prandtl number,Rd be radiation-conduction
parameter or Plank number,θw be the surface heating param-
eter andM be magnetic parameter. Equations (7, 8) with
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boundary conditions (9) can be written in terms of stream
functionψ defined in velocity component form as

u =
∂ψ

∂y
, v = −∂ψ

∂x
(11)

Where

ψ = xf(x, y), θ = θ(x, y) (12)

Which identically satisfy the continuity Eq. (6). Upon using
Eq. (11) into Eqs. (7,8), the transformed equations take the
form
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with the boundary conditions

f = ∂f
∂y = 0, θ = 1 at y = 0

∂f
∂y → 0, θ → 0 as y →∞

}
(15)

For x ≈ 0, the partial differential Eqs. (13, 14) take the fol-
lowing form

f ′′′ + ff ′′ − f ′2 + θ −Mf ′ = 0, (16)
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and the boundary conditions (15) become

f(0) = 0, f ′(0) = 0, θ(0) = 1
f ′(y) = 0, θ(y) = 0, as y →∞

}
(18)

For engineering point of view, the skin friction coefficient
Cf and the local Nusselt numberNu, which are basically the
quantities of interest are defined as
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ρU2∞
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in which the shear stress and the heat flux at wall are
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Using the transformation (5), the skin friction coefficient
(CfGr1/4) and the local Nusselt number (NuGr−1/4) can
be written as

CfGr1/4 = x
∂2f(x, 0)

∂y2
, (21)
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4
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3
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For the solution of nonlinear system of partial differential
Eqs. (13, 14) subject to the boundary conditions (15), we
employed an accurate and efficient implicit finite difference
method commonly known as Keller box which is explained
briefly in the next section while the details can be seen in the
book of Cebeci and Bradshaw [30].

3. Numerical approach

A numerical solution of non-linear partial differential
Eqs. (13) and (14) subject to the boundary conditions (15)
is obtained by using implicit finite difference scheme known
as Keller-box method. The following steps are followed to
obtain the solution:

1. Reduce Eqs. (13) and (14) to a first order systems.

2. Convert them to difference equations by using central
difference formula.

3. Linearize the resulting algebraic equations by using
Newton’s method and write them in matrix form.

4. Solve the obtained matrix form by using block-
tridiagonal elimination technique.

The step sizes of∆x and∆y are inx andy respectively
and edge of the boundary layer are adjusted for different
range of parameters. The details of solution technique are
not given due to limited space.

4. Result and Discussion

The governing non-dimensional partial differential
Eqs. (13,14) subject to the boundary conditions (15) are
solved by Keller Box scheme for some fixed values of Mag-
netic parameterM , Prandtl number Pr, Radiation parameter
Rd and surface heating parameterθw. To verify our results, a
comparison of numerical values of local Nusselt number and
skin friction coefficient forM = 0.0, Rd = 0.0 as our limit-
ing case with the results of Merkin [1], Nazaret al. [7] and
Molla et al. [24] has been shown in Table I. The comparison
of numerical results of skin friction coefficientCfGr1/4 and
that of Nusselt numberNuGr−1/4 have been shown against
different numeric values of surface heating parameterθw in
Table II & Table III beingRd = 0.5, Pr = 0.73 andM = 0.0
with Molla et al. [24]. It is observed that a good agreement
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TABLE I. Comparison ofCfGr1/4 andNuGr−1/4 with those of Merkin [1], Nazaret al. [7] and Mollaet al. [24], while Pr =1.0 and
Rd = 0.

x CfGr1/4 NuGr−1/4

[1] [7] [24] Present [1] [7] [24] Present

0 0.0000 0.0000 0.0000 0.0000 0.4214 0.4214 0.4216 0.4215

π/6 0.4151 0.4148 0.4139 0.4150 0.4161 0.4161 0.4163 0.4163

π/3 0.7558 0.7542 0.7527 0.7557 0.4007 0.4005 0.4006 0.4009

π/2 0.9579 0.9545 0.9526 0.9578 0.3745 0.3741 0.3741 0.3747

2π/3 0.9756 0.9698 0.9677 0.9555 0.3364 0.3355 0.3355 0.3364

5π/6 0.7822 0.7740 0.7717 0.7822 0.2825 0.2811 0.2810 0.2824

π 0.3391 0.3265 0.3238 0.3388 0.1945 0.1916 0.1911 0.1943

TABLE II. The comparison ofCfGr1/4 for different values ofθw

while Rd = 0.5, M = 0.0 and Pr = 0.73.

x CfGr1/4

θw = 1.1 θw = 1.9

0 [24] Present [24] Present

0 0.0000 0.0000 0.0000 0.0000

π/6 0.4700 0.4700 0.5202 0.5202

π/3 0.8476 0.8577 0.9511 0.9511

π/2 1.0920 1.0923 1.2158 1.2159

2π/3 1.1227 1.1232 1.2599 1.2602

5π/6 0.9218 0.9227 1.0543 1.0550

π 0.4572 0.4600 0.5729 0.5755

TABLE III. The comparison ofNuGr−1/4 for different values of
θw while Rd = 0.5, M = 0.0 and Pr = 0.73.

x NuGr−1/4

θw = 1.1 θw = 1.9

0 [24] Present [24] Present

0 0.5436 0.5737 0.8572 0.8575

π/6 0.5376 0.5374 0.8478 0.8478

π/3 0.5187 0.5183 0.8186 0.8185

π/2 0.4864 0.4860 0.7693 0.7691

2π/3 0.4397 0.4394 0.6985 0.6984

5π/6 0.3750 0.3749 0.6022 0.6023

π 0.2762 0.2737 0.4634 0.4645

exists among these numerical values. Figures 2(a) and 2(b)
present the variation in the velocity and temperature profiles
againsty for various values of radiation parameterRd for
both cases whenM = 0 (absence of magnetic field) and
M = 0.5 (in presence of magnetic field). It is found from
Fig. 2(a) that increase in the radiation parameter provides the
enhancement in fluid flow. Consequently, velocity profile is

FIGURE 2. (a,b) Velocity and temperature profiles for different val-
ues of Rd whileθw = 1.1, Pr = 0.73 andx = π/3.

increased corresponding to increase values ofRd. On the
other hand opposite behavior is observed in the presence of
magnetic fieldM = 0.5. Physically, we can say that MHD
provides the resistance in the fluid motion. Consequently, we
can see thatM = 0.5 shows low velocity profile as com-
pare toM = 0 (absence of magnetic field). As concerned
to the present study, we know that magnetic field produces
electric current in fluid which produces heat in the fluid, so
the magnetic field with radiation assists the heat production
phenomena. The contribution of these effects can be visual-
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FIGURE 3. (a, b): Variation ofCfGr1/4 andNuGr−1/4 for various values ofRd while θw = 1.1 and Pr = 0.73.

FIGURE 4. (a, b): Variation ofCfGr1/4. andNuGr−1/4 for various values of magnetic parameterM while Rd = 1.5, Pr = 0.73 and
θw = 1.1.

FIGURE 5. (a-c): Streamlines forRd = 0, 0.5, 1.0 respectively whileθw = 1.1, Pr = 0.73 andM = 0.
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FIGURE 6. (a-c): Isotherms forRd = 0.0, 0.5 and 1.0 respectively whileθw = 1.1, Pr = 0.73 andM = 0.

FIGURE 7. (a-c): Streamlines forRd = 0.0, 0.5 and 1.0 respectively whileθw = 1.1, Pr = 0.73 andM = 0.5.
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FIGURE 8. (a-c): Isotherms forRd = 0.0, 0.5 and 1.0 respectivelyθw = 1.1, Pr = 0.73 andM = 0.5.

ized through Fig. 2(b). Simultaneous effects of magnetic
parameterM and Rd on skin-friction coefficientCfGr1/4

and the Nusselt numberNuGr−1/4 are plotted in Figs. 3(a,
b) respectively. One can see prominent difference between
the absence of magnetic parameter (M = 0.0) and in the
presence of magnetic parameter (M = 0.5). As we dis-
cussed above magnetic parameter produces resistance in fluid
motion and these effects exceeds near the surface of cylin-
der. So skin friction will decrease in presence of magnetic
parameter (M = 0.5). It is concluded that skin friction
at the surface forM = 0.0 remains higher as compare to
M = 0.5 (Fig. 3(a)). By including the effects of mag-
netic parameter the thermal energy within boundary layer re-
duces the temperature difference between surface of cylinder
and thermal boundary layer. Hence rate of heat transfer will
decrease in presence of magnetic parameterM (Fig. 3(b)).
Figs. 4(a, b) show the graphs ofCfGr1/4 (skin friction co-
efficient) andNuGr−1/4 (Nusselt number) for several nu-
meric values of the magnetic parameterM while Rd = 1.5,
θw = 1.1 and Pr = 0.73. These figures depict that by in-
creasing the magnetic parameterM , decrease in the values of
CfGr1/4 andNuGr−1/4 is observed. This happens due to
the physical fact that the increment in the value ofM implies
more resistance to momentum and thermal boundary layers.
Figures 5(a-c) and 6(a-c) exhibit the growth of streamlines
and isotherms in absence of magnetic field (M = 0) with
fixed values of radiation parameterRd, which are plotted for
Pr = 0.73 andθw = 1.1 respectively (related to Mollaet
al. [24]). In presence of magnetic field, it can be seen that
without the effect of radiation (Rd = 0.0), the value ofψmax

in limited domain is approximately 2.08 analogues to upper
stagnation point (x ≈ π) of the cylinder corresponds to the
lowest boundary layer thickness andψmax slightly increases
from 2.08 to 2.97 in Figs. 7(a-c). This rise is not as rapid as
seen in Figs. 5(a-c), because magnetic field effect reduces the
velocity profile. The isothermal lines for fixed values ofRd

with magnetic parameterM = 0.5 are shown in Figs. 8(a-c).
These isotherms demonstrate that the boundary layer over the
surface of the cylinder is grown more prominent as compared
to Figs. 6(a-c). The hot fluid attains the maximum height
due to gravity with the added effects of magnetic field asx
increases from the lower stagnation point (x ≈ 0), conse-
quently the thickness of the thermal boundary layer increases.

5. Conclusions

We have considered the effect of magnetic field on natural
convection boundary layer flow from a circular cylinder in
this paper. An implicit finite difference scheme is used to
solve the obtained non-dimensional partial differential equa-
tions numerically. From the above study, it is observed that
by increasing the values of the magnetic parameterM lead
to decelerate in velocity and accelerate in temperature distri-
bution. The skin-friction coefficient and Nusselt number are
falling down with an increase in magnetic parameterM . The
values of the skin friction coefficients and the Nusselt number
are rising up with increase values ofθw. The momentum and
thermal boundary layers are decreasing function of magnetic
parameterM .
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Nomenclature

a Radius of the circular cylinder [L]

B0 applied magnetic field [kgT−2A−1]

Cf skin friction coefficient [-]

cp specific heat constant [L2T−2K−1]

f dimensionless stream function [-]

Gr Grashof number [-]

g acceleration due to gravity [LT−2]

k thermal conductivity [kgLT−3K−1]

M magnetic parameter [-]

Nu Nusselt number [-]

qw radiative heat flux [kgT−3]

Rd Radiation conduction parameter

T fluid temperature in the boundary layer [K]

T∞ ambient fluid temperature [K]

Tw surface temperature [K]

u, v dimensionless velocity components

in x andy directions

Greek symbols

β thermal expansion coefficient [K−1]

ρ fluid density [kgL−3]

µ dynamic viscosity [kgL−1T−1]

σ0 electric conductivity [T3A2kg−1K−4]

σ Stephen- Boltzman constant [T−3kgK−4]

θw surface heating parameter [-]

ψ stream function [L2T−1]

Subscript

∞ ambient condition [-]

w condition at the surface [-]
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