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Through a geometric understanding of the creation, cap, annihilation and cup operators forADE graphs inSU(3) we propose the first steps
towards an algorithm that would allow one to write an arbitrary elementary path as an ordered combination of creation and cap operators
acting upon an essential path. We propose a sketch of a proof and use our proposal for some examples for theA2 andE5 graphs of the
SU(3) family. Attaining this decomposition is an important step in obtaining the path formulation of the quantum Algebra of a modular
invariant RCFT.
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1. Introduction

Over the years Mathematical Physics has proven to be the
driving force of important and exciting new ideas in funda-
mental science, both in physics and mathematics. Lie groups
and Lie algebras in particular appear as some of the most suc-
cessful abstract subjects that while originally studied due to
the intrinsic interest of its structure, have become a funda-
mental piece of modern physics. Here we address a prob-
lem in a topic which generalizes the theory of semi-simple
Lie algebras in a way that is still to be fully understood, but
that, in contrast to semi-simple Lie algebras, originally arises
from a purely physical problem: the algebraic foundation of
the ADE classification of WZW Conformal Field Theories
(CFT) modular invariant partition functions [1].

Today this subject has developed into a topic of indepen-
dent study in physics and mathematics: Fusion and Mod-
ule Categories. The efforts of both communities have es-
tablished connections between a huge list of topics which
in principle might seem disconnected: statistical mechan-
ics, string theory, quantum gravity, conformal field theory,
re-normalization in quantum field theory, theory of bimod-
ules, Von Neumann algebras, sector theory, (weak) Hopf al-
gebras, modular categories (see [2-4] and references therein.)
These manifold connections suggest that the study of Quan-
tum Groups and their associated Hopf algebras is at least part
of a new, general and fundamental theory underlying all these
fields of mathematics and physics. Additionally this alge-
braic classification turns out to be intimately connected with
graphical methods such as braids or spider webs, so relevant
today for their power to represent highly complex models.

Here, combining ideas in [4,5] we address some im-
portant problems in this topic in a way as geometric and
as intuitive as possible. Essential paths over a general-
ized SU(N) ADE graph G are used as the fundamental
algebraic-geometric objects connecting theSU(N) ADE

families of graphs to thêsu(N) WZW Conformal Field The-
ories (CFT) modular invariants [6,8]. Defining an elementary
path on a graph as a sequence of connected vertices it is possi-
ble to transform this purely geometric object into a algebraic
one through the definition of the vector space of paths over
the graphP. This is a vector space over the complex num-
bers that is spanned by the elementary paths. A subspace of
interest is the one constituted by the so calledessential paths
E [6] which can be roughly defined as a paths that lack back-
tracking segments [6,9,5].

The connection with WZW theories is obtained by con-
structing the bialgebra of endomorphisms of essential pathsB
and its dualB̂. These pair of bialgebras are both semisimple
and cosemisimple and they have two separate sets of char-
acters associated to the corresponding simple blocks. The
character algebras, giving the generalized decomposition of
tensor product representations as direct sum of irreps, are
called the Fusion AlgebraA(G) and the Ocneanu Algebra
of G Oc(G). In this way characters of the simple blocksm
of B are elements of̂B and characters of the simple blocksx
of B̂ are elements ofB.

Given this structure, the simple blocks ofA(G), m, n
have a double action that is compatible over the simple blocks
of Oc(G), x andy, (m xn =

∑
y(Wxy)m ny). The structure

constants of this bimodule define the set of Toric Matrices
Wxy. The matrixW00 is modular invariant and gives the par-
tition function of the corresponding RCFT with chiral algebra
ŝl(N) in terms of the Virasoro characters, and the remain-
ing matricesWx,y define twisted partition functions with one
(x, 0), (0, y) or two(x, y) topological defect lines, labeled by
the indicesx, y [10].

In practice, the products onB and its dual are naturally
defined through a pair of basis which are not dual to each
other. We call these basis the ”vertical” and ”horizontal” ba-
sis [11,12]. As a consequence of this, the coproduct inB is
naturally defined in a basis that is not the same as the one that
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gives the straightforward definition of the product onB. This
in turn represents a computational complication that should
not be underestimated, even more so as this problem is re-
peated for the coproduct in the dual space. The change of
basis between the vertical and horizontal basis of the bialge-
bra is given by the set of Ocneanu cells (a kind of generalized
6j-symbols) [11]. The explicit calculation of these cells can
be, computationally speaking, extremely demanding, primar-
ily because dimensionality increases rapidly once one gets
past the first simplest cases. Only for a few examples [13,14]
the complete Hopf algebra has been computed.

In Ref. 9 it was shown that for anySU(2) ADE graph,
the quantum grupoid can be obtained directly from the prop-
erties of the essential paths subspace without having to calcu-
late Ocneanu cells. The key ingredient is the decomposition
of the space of paths as a direct sum of sub-spaces which are:
either the subspace of essential paths of lengthn, or orthog-
onal subspaces constructed by recurrent applications of the
corresponding creation operatorC† on subspaces of essential
paths of shorter length. This decomposition and the corre-
sponding orthogonal projectors, are sufficient to compute the
quantum grupoid.

In this work we propose an algorithm that, using the defi-
nition of essential paths forSU(3) graphs proposed in Refs. 5
and 15, allows one to obtain a similar decomposition for a
given path over an (oriented)ADE SU(3) graph. This is
an important step in order to achieve the full construction of
the bialgebra without the need to calculate Ocneanu cells in
SU(3), which is a much more challenging task than in the
case ofSU(2).

2. The space of paths over anSU(3) graph

We first require the definitions of elementary and essential
paths:

Definition 1 An elementary path is a sequence of vertices
η = v0v1 . . . vi−1vivi+1 . . . vn connected by arrows which
may belong to either one graph or its conjugate. It is also
possible to define an elementary path as a series of consecu-
tive edges that can go with or against the orientation of the
edges of the graph.

Paths form an inner product vector spaceP of which the
elementary paths are an orthonormal basis. This space is nat-
urally graded by the length of a path.

For SU(3) ADE graphs, vertices are connected by ori-
ented edges. This implies that, for each ADESU(3) graph,
one can find a conjugate graph by changing the orientation
of all edges (cf.e.g. Fig. 1). This is due to the existence
of the conjugate fundamental representations1 and1 which
generate oriented edges through the generatorsσ andσ. This
introduces some ambiguity when measuring the length of a
path, as it is necessary to explicitly convey the number of

edges in a path that go with or against the direction of the
arrows.

Definition 2 The length of a path isn = (α + β), where
(α, β) are integers that give the number of edges generated
by σ and σ respectively, this is, the number of edges in the
path going with or against the orientation of the edges of the
graph. As usual, this is equivalent to the total number of ver-
tices minus 1. This means that paths of the same length can
have differing values forα and β and thus be obtained by
different combinations of the generators.

2.1. Path creation and annihilation operators

We now introduce the creation, annihilation, cup and cap op-
erators:

Definition 3 Given a pathη = v0v1 . . . vi−1vivi+1 . . . vn

Ci(η) =
Ti−1,i,i+1√
[i− 1][i + 1]

v0v1 . . . vi−1vi+1 . . . vn, (1)

C†i (η) =
∑

b n.n. vi

Ti−1,b,i√
[i− 1][i]

v0v1 . . . vi−1vbvi . . . vn. (2)

∪i(η) =
Ti−1,i,i+1√
[i− 1][i + 1]

× δi−1,i+1 v0v1 . . . vi−1vi+2 . . . vn, (3)

∩i(η) =
∑

vb n.n. vi

Ti−1,b,i−1√
[i− 1][i− 1]

× v0v1 . . . vi−1vbvi−1vi . . . vn. (4)

Here the prefactorsTi−1,i,i+1/
√

[i− 1][i + 1] ensure
that these operators satisfy the Temperley-Lieb algebra. The
coefficientsTi−1,i,i+1 are elementary triangular cells and
have been calculated in Refs. 2 and 4.

A special subspace ofP is that spanned by the essential
paths. Here one such space of essential paths of lengthn

connecting verticesa andb will be noted byE(n)
ab .

Definition 4 A pathη is essential if:

Ci(η) = 0, ∪i(η) = 0, both for all i < n. (5)

and its length is given by a vertex of theA-type graph that
shares the same generalized Coxeter number of the original
graphG.

3. Decomposition of elementary paths: a con-
jecture

In a previous work [5], it was shown that the space of paths of
lengthn, connecting verticesa andb of a simply connected
SU(3) ADE graph can be decomposed thusly:
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P(n)
ab = E(n)

ab

⊕

i≤n−2

(C† + ∩)i

(
E(n−1)

ab

) ⊕

i1<i2≤n−2

(C† + ∩)i2(C
† + ∩)i1

(
E(n−2)

ab

) ⊕
. . .

· · ·
⊕

i1<i2···<i[n/2]≤n−2

(C† + ∩)i[n/2](C
† + ∩)i[n/2]−1 . . . (C† + ∩)i1

(
E(1|0)

ab

)
. (6)

What the above decomposition does not provide, is an ex-
plicit way of writing a given path in terms of a linear combi-
nation of elementary paths of equal length or of shorter length
on which one has acted with a specific ordering of creation
or cap operators. It is with this in mind that we propose an
algorithm that takes a path and explicitly deconstructs it in
elements of the subspaces described above. A similar algo-
rithm has already been fully explored forSU(2) in Ref. 9
Eq. 5.7. A geometric description of Trinchero’s algorithm
may be enlightening: the nonessential pathη must be such
that beyond thei-th vertex it behaves like an essential path
up until the last two vertices (i.e. there is no backtracking).
The algorithm then takes the path and eliminates the back-
tracking “kink” in the i-th vertex and creates kinks further
down the way of the path multiplied by some coefficients,
thus “running” the kinks throughout the remaining length of
the path. The task then of those coefficients is to ensure the
cancellation of the spurious paths created by the algorithm
in such a way that only two paths remain: the original path
η and a path with a backtracking “kink” in thei − 1-th ver-
tex that is to be eliminated with an extra pathξ(i) (which
is precisely a path with a “kink” in thei − 1-th vertex and
placed “by hand” to ensure the cancellation.) Our proposal
is specifically forSU(3), the difference hinges upon the fact
that graphs inSU(3) are oriented and belong in theSU(3)
weight lattice.

Conjecture: Let η be a path of lengthn, not necessarily
elementary, such thatCi(η) 6= 0 and∪i(η) 6= 0 for somei
andCj(η) = 0 and∪j(η) = 0 ∀j such thati < j < n − 2
and ξ(i) a path satisfying(C|∪)j(ξ(i)) = 0 ∀j such that
i ≤ j < n− 2. One can decompose these paths using:

η =
n−2∑

k=i

αk((C†|∩)k(C|∪)k(C†|∩)k−1(C|∪)k−1 . . .

(C†|∩)i+1(C|∪)i+1(C†|∩)i(C|∪)i)(η) + ξ(i), (7)

η =
n−2∑

k=i

αk

k∏

m=i

((C†|∩)m(C|∪)m(η)) + ξ(i). (8)

Where theαk are constants given by the linear combi-
nation of elementary paths that define the pathη. There are
some differences with the algorithm forSU(2), however we
can see that this procedure actually performs an analogous
task as it “runs” pairs of edges that form the sides of a trian-
gle in SU(3) (i.e. edges that survive the application ofCi)
which serve as the backtracking kinks in aSU(3) path.

We should explain the action of our proposed algorithm
on a path of lengthn. If the path has no triangular or back-
and-forth sequences then it either is an essential path or is
constructed through a concatenation of paths in such a way
that it is longer than the maximum length of an essential path.
This then means that the path belongs to the first subspace of
the decomposition (6). For a nonessential path we can ensure
that at least one sequence of verticesvi−1vivi+1 that is tri-
angular or back-and-forth and thus when acted upon by the
annihilation or cup operator first and the creation or cap op-
erator second, both times on thei-th vertex, we get not just
the original path (up to a constant) but we also get another
path due to the action of the creation or cap operator (cf.
Eq. 2). The second iteration of the algorithm now requires
we act upon thei + 1-th vertex of these resulting paths. If
the sequence of vertices that result from the first step is not
triangular or back-and-forth then the algorithm stops and the
path is decomposed in such a way that theξ path, if neces-
sary, cancels out the additional path created by the previous
step. This means that the path belongs at least to the sec-
ond subspace ofPn, that is it acts like an essential path of
lengthn− 1 on which one has acted with one creation or cap
operator in thei-th position. If the sequence is triangular or
back-and-forth however, this results in the nonessential se-
quence moving one step down the length of the path since by
hypothesis the path’s last triangular sequence did not involve
thei+2-th vertex. We can see then that this procedure can be
repeated and its result is to run the nonessential “kink” from
thei-th position towards the end of the sequence of vertices,
stopping (at most) before reaching then− 2-th vertex of the
path.

Once this is completed we could go back in the path to
the next nonessential sequence, now in a positionj < i and
act on this new sequence of nonessential vertices. That is to
say we can have the algorithm run the last nonessential se-
quence of a path to its last possible position, then go back
further in the path to the next nonessential sequence and re-
peating the procedure, eventually ending with nonessential
sequences separated by at most 2 vertices. This in turn means
that the resulting path would belong to a subspace ofPn in
which one has acted over essential paths of lengthn− 2 with
two creation or cap operators in two positions separated by 2
vertices. From such an algorithm then the desired decompo-
sition of the space of paths of a given size thus follows.

In order to prove the above one needs to show that there
always exists a unique set ofαk coefficients that allows one
to write a pathη following the above prescription, meaning

Rev. Mex. Fis.61 (2015) 444–449



A CONJECTURE FOR THE ALGORITHMIC DECOMPOSITION OF PATHS OVER ANSU(3) ADE GRAPH 447

FIGURE 1. TheSU(3) A-type graph of level 2. One can find the
conjugate graph by reversing the orientations of the arrows.

that our proposed decomposition provides a finite algorithm
for the decomposition of paths into essential paths acted upon
by an unique sequence of creation operators. Although a for-
mal proof is left for a future work, the arguments above and
the examples below make us confident that our algorithm is a
step in the right direction.

We will now present a list of examples for the decompo-
sition of elementary, nonessential paths in theA2 graph of
SU(3) starting from length zero up to length four. The list is
fully developed for lengths zero through three and we provide
an example for a path of length four.

For paths of lengthn = 0 + 0, 0 + 1 and1 + 0 all paths
are essential and the decomposition is trivial.

For paths of lengthn = 2 + 0 we find the following
nonessential, elementary paths:
(133), (331), (338), (368), (313), (386), (383), (683),
(863), (836), (833), (638).

One can see that some of these paths appear in the list
of essential paths in linear combinations but they are not, by
themselves, essential. The decomposition of some of these
paths as a direct sum is:

(133) =

√
[1][3]

T133

C†1(13), (331) =

√
[3][1]

T133

C†1(31),

(313) = αC†1(33) + ξ = αC†1(33) + A((383)−
√

β(313))

= α

(
T313√
[3][3]

(313) +
T383√
[3][3]

(383)

)

+ A((383)−
√

β(313)). (9)

Here α is the constant in Eq. 7,A is a normalization
factor that ensures that theξ path is capable of performing
the appropriate cancellations andβ is the Perron-Frobenius
eigenvalue calculated from the graph’s adjacency matrix. The
previous calculation then implies:

(
A + α

T383√
[3][3]

)
= 0,

(
α

T313√
[3][3]

+
√

β
T383√
[3][3]

)
= 1.

It is important to note that the pathξ that was added above
is the path that has the triangular “kinks” in the correct loca-
tion and also is the essential path connecting both vertices3
and3. As we can see the path(313) has been decomposed in
an essential path of the length of the original path and a path
of shorter length on which one has acted upon with the cre-
ation operator. Please note that for paths obtained using con-
jugation and theZ3 symmetry of the graph from this example
one will find similar results with an analogous procedure.

For lengthn = 3 + 0 the possible cases for nonessen-
tial paths can be obtained by rotations of the following set of
paths:

(1368), (1338), (1331), (3683), (3686), (3313), (3383),
(3386)

We can decompose some of these paths with our proposal
in the following way:

(1368) =
1
β

C†1(138) +
√

βC†2(138),

(1338) =
1√
β

C†1(138),

(3686) =
1√
β

(
C†1(386)− 1

β
C†2(336)

)
,

(1331) =
1√

βT131

C†2(C†0(1)).

For the elementary and nonessential pathη = (13686)
we find (this path is clearly nonessential since the sequence
(368) is a triangular sequence in the orderv1 = 3, v2 = 6,
v3 = 8 and therefore gives a nonzero result when acted upon
with the annihilation operator):

C2(η) =
T368√
[3][8]

1386,

C†2C2(η) =
T368√
[3][8]

(
T338√
[3][8]

13386 +
T368√
[3][8]

13686

)
.

Here our algorithm removes the triangular sequence
(368) and then adds a vertex that produces a linear combina-
tion of two elementary paths: one is the original path(13686)
and the other, the path(13386). This last path has now a tri-
angular sequence in thev2 = 3, v3 = 8, v4 = 6, which has
been displaced by one position in the order of the sequence
of vertices of the elementary path.

In order to continue the algorithm we must now apply
C†3C3 to our previous result, and we get:
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C3(η′) =
T368T338T386√
[3][8][3][8][3][6]

1336,

C†3C3(η′) =
T368T338T386√
[3][8][3][8][3][6]

(
T386√
[3][6]

13386

)
.

We can get the values for theαk constants by cancelling
the appropriate terms, getting then

α1 =
[3][8]
|T368|2 , α2 = − [3][3][8][6]

|T368|2|T386|2
.

We can see that the iterated use of creation and annihi-
lation operators allows us to obtain an arbitrary path in this
example.

E5 graph: We will now present a list of examples for the
decomposition of elementary, nonessential paths in theE5

graph ofSU(3) starting from length zero up to length three.
The list is exhaustively calculated for lengths zero through
two and we provide two examples of paths of length three.

Once again, for paths of lengthn = (0, 0), (0, 1) and
(1, 0) all paths are essential and the decomposition is trivial.

For paths of lengthn = (2, 0) we find the following
nonessential, elementary paths:

(1i2i+12i+2) (2i1i+42i+5) (2i2i+42i+5)

(2i2i+42i+2) (2i2i+11i+5) (2i2i+12i+2)

For paths of lengthn = (1, 1) we find either essential
paths or elementary back and forth paths that require the use
of the deformed triangular cells discussed above. Since at
this point, their values have yet to be calculated, we will not
deal with them here.

For paths of lengthn = (0, 3) the list of nonessential,
elementary paths follows:

(1i2i+21i+12i+3) (1i2i+22i+12i) (1i2i+22i+12i+3) (1i2i+22i+42i)

(1i2i+22i+42i+3) (2i1i+52i+11i) (2i2i+52i+41i+3) (2i2i+52i+12i+3)

(2i1i+52i+12i+3) (2i+52i+52i+42i+3) (2i2i+22i+41i+3) (2i2i+22i+42i+3)

(2i2i+52i+11i) (2i2i+21i+12i+3) (2i2i+22i+12i+3) (2i2i+22i+11i)

Let us show a few selected examples of the workings of
our proposal for a selection of families of paths. First for a
family of paths of lengthn = (2, 0):

(1i2i+12i+2) =

√
[1i][2i+2]

T1i2i+12i+2

C†1(1i2i+2). (10)

For a family of paths of lengthn = (0, 3) we find:

(1i2i+22i+42i) = α C†2(1i2i+22i) + ξ

=

(
α

T2i+22i+42i√
[2i+2][2i]

+ A

)
(1i2i+22i+42i)

+

(
α

T2i+22i+12i√
[2i+2][2i]

− (−1)i ν0

µ
A

)
(1i2i+22i+12i). (11)

Which leads us to values for both constants:
(

α
T2i+22i+42i√

[2i+2][2i]
+ A

)
= 1,

(
α

T2i+22i+12i√
[2i+2][2i]

− (−1)i ν0

µ
A

)
= 0.

If we consider the elementary and nonessential path
η = (1324122322) we find, for the first steps of the decom-
position:

FIGURE 2. TheSU(3) E5 graph.
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C†2C2(η) =
T241223√
[24][23]

(
T241223√
[24][23]

1324122322

+
T242223√
[24][23]

1324222322

)
, (12)

C3C
†
2C2(η) =

T241223√
[24][23]

×
(

T241223√
[24][23]

T122322√
[12][22]

13241222

+
T242223√
[24][23]

T222322√
[22][22]

13242222

)
= 0. (13)

We find in this path that the terms for the path1324222322

do not cancel out. This is due to the particular geometry of
theE5 but we can recover the decomposition of the path keep-
ing in mind that there is aξ path that allows for the desired
cancellation, thus:

α1 =
[24][23]
|T241223 |2

,

ξ = −α1
T241223√
[24][23]

T242223√
[24][23]

1324222322.

A note of caution is in order on the use of theξ path.
In Ref. 9, the geometric necessity for theξ path is clear:
in some paths the application of the creation operator in the
first step of the algorithm results in the creation of two paths,
one that presents a backtracking in thei − 1th vertex and
the original path. The remaining iterations of the algorithm

produce paths that “move” the backtracks towards the end of
the path and ensure the cancellation of all paths thus created.
Since for these paths the algorithm creates a path in which the
backtrack has been moved back one step, one requires a can-
celling path with the properties indicated in Trinchero’s work,
i.e. ξ(i) satisfyingcj(ξ(i)) = 0 ∀j such thati−1 < j < n−2.
Since ourSU(3) graphs are now embedded in a two dimen-
sional lattice there is no natural ordering of vertices, that is,
there is no way to claim that a vertex comes before or after
another one unambiguously which leads to the problem of
the definition of backtracking paths. There is however a way
out: to relax the definition of theξ path in such a way that it
is capable of ensuring the required cancellation, that is, that it
presents a triangular path in the same position of the original
path.

4. Discussion

We have proposed here an algorithm that allows one to cal-
culate how a given path can be obtained as an iterated and
ordered application of creation and cap operators on a path
belonging to the kernel of the annihilation and cup operators.
This means that our algorithm provides a way to obtain a
given path by acting on an essential path with a specific com-
bination of creation and cap operators. We not only propose
said algorithm but we have shown how it works by perform-
ing calculations successfully for a number of selected paths
for A type andE type graphs. In future works we shall elu-
cidate the decomposition of the space of paths overSU(3)
graphs [5] and we will provide proof for this algorithm and
the properties of theξ path. In spite of lacking a formal proof,
our calculations give us confidence that our proposal is a step
in the right direction.
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(2010) 147-170.

10. V.B. Petkova and J.B. Zuber,Phys. Lett. B504(2001) 157-164.

11. R. Coquereaux,J. Geom. Phys. 57 (2007) 387-434.

12. P. Di Francesco, P. Mathieu, and D. Senechal,Conformal field
theory(Springer, 1999).

13. Robert Coquereaux,The A(2) Ocneanu quantum groupoid
(2003).

14. D. Hammaoui, The smallest Ocneanu quantumgrupoid of
SU(3) type. AJSE, 33 (2008) 99.

15. J.A. Pineda, E. Isasi, and M. I. Caicedo,Alternative formula-
tion for the operator algebra over the space of paths in a ADE
SU(3) graph. ArXiv e-prints, (February 2015).

Rev. Mex. Fis.61 (2015) 444–449


