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Through a geometric understanding of the creation, cap, annihilation and cup operatbisAographs inSU (3) we propose the first steps

towards an algorithm that would allow one to write an arbitrary elementary path as an ordered combination of creation and cap operators
acting upon an essential path. We propose a sketch of a proof and use our proposal for some examplés fandte; graphs of the

SU(3) family. Attaining this decomposition is an important step in obtaining the path formulation of the quantum Algebra of a modular
invariant RCFT.
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1. Introduction families of graphs to theu(N) WZW Conformal Field The-
ories (CFT) modular invariants [6,8]. Defining an elementary

Over the years Mathematical Physics has proven to be theath onagraph as a sequence of connected vertices it is possi-
driving force of important and exciting new ideas in funda- ble to transform this purely geometric object into a algebraic
mental science, both in physics and mathematics. Lie groupane through the definition of the vector space of paths over
and Lie algebras in particular appear as some of the most sutie graphP. This is a vector space over the complex num-
cessful abstract subjects that while originally studied due tders that is spanned by the elementary paths. A subspace of
the intrinsic interest of its structure, have become a fundalnterest is the one constituted by the so cabedential paths
mental piece of modern physics. Here we address a prok [6] which can be roughly defined as a paths that lack back-
lem in a topic which generalizes the theory of semi-simpletracking segments [6,9,5].

Lie algebras in a way that is still to be fully understood, but  The connection with WZW theories is obtained by con-
that, in contrast to semi-simple Lie algebras, originally arisestructing the bialgebra of endomorphisms of essential gaths
from a purely physical problem: the algebraic foundation ofand its dual3. These pair of bialgebras are both semisimple
the ADE classification of WZW Conformal Field Theories and cosemisimple and they have two separate sets of char-
(CFT) modular invariant partition functions [1]. acters associated to the corresponding simple blocks. The

Today this subject has developed into a topic of indepencharacter algebras, giving the generalized decomposition of
dent study in physics and mathematics: Fusion and Modtensor product representations as direct sum of irreps, are
ule Categories. The efforts of both communities have escalled the Fusion Algebral(G) and the Ocneanu Algebra
tablished connections between a huge list of topics whictpf G Oc(G). In this way characters of the simple blocks
in principle might seem disconnected: statistical mechanof B are elements aB and characters of the simple blocks
ics, string theory, quantum gravity, conformal field theory, Of 3 are elements aB.
re-normalization in quantum field theory, theory of bimod-  Given this structure, the simple blocks df{G), m, n
ules, Von Neumann algebras, sector theory, (weak) Hopf alhave a double action that is compatible over the simple blocks
gebras, modular categories (see [2-4] and references thereim)) Oc(G), z andy, (mxn = Zy(Wry)mny). The structure
These manifold connections suggest that the study of Quartonstants of this bimodule define the set of Toric Matrices
tum Groups and their associated Hopf algebras is at least palt,,,. The matrixI¥y, is modular invariant and gives the par-
of a new, general and fundamental theory underlying all thesétion function of the corresponding RCFT with chiral algebra
fields of mathematics and physics. Additionally this aIge—él(N) in terms of the Virasoro characters, and the remain-
braic classification turns out to be intimately connected withing matricegV,, ,, define twisted partition functions with one
graphical methods such as braids or spider webs, so relevat, 0), (0, y) or two (z, y) topological defect lines, labeled by
today for their power to represent highly complex models. the indicest, y [10].

Here, combining ideas in [4,5] we address some im- In practice, the products ofi and its dual are naturally
portant problems in this topic in a way as geometric anddefined through a pair of basis which are not dual to each
as intuitive as possible. Essential paths over a generabther. We call these basis the "vertical” and "horizontal” ba-
ized SU(N) ADE graphG are used as the fundamental sis [11,12]. As a consequence of this, the coprodud ia
algebraic-geometric objects connecting tH&(N) ADE  naturally defined in a basis that is not the same as the one that
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gives the straightforward definition of the product®nThis  edges in a path that go with or against the direction of the
in turn represents a computational complication that shoulé@rrows.

not be underestimated, even more so as this problem is res

peated for the coproduct in the dual space. The change %?
basis between the vertical and horizontal basis of the bialg

efinition 2 The length of a path i = (a + 3), where
?a,ﬁ) are integers that give the number of edges generated

bra is oi by th tof O I Kind of i 9y o and & respectively, this is, the number of edges in the
rais given by the set of Ocneanu cells (a kind of generalize ath going with or against the orientation of the edges of the

6j-symbols) [11]. The explicit calculation of these cells Cangraph. As usual, this is equivalent to the total number of ver-

be, computationally speaking, extremely demanding, PIMatices minus 1. This means that paths of the same length can

lly bt(iﬁal;_setdi.mersi(t)nality inocr(Ta?es r?pidly OnCT Onf3gf‘:jave differing values forv and § and thus be obtained by
past the first simplest cases. Only for a few examples [13, ifferent combinations of the generators.

the complete Hopf algebra has been computed.

In Ref. 9 it was shown that for an§U (2) ADE graph, 5 1. path creation and annihilation operators
the quantum grupoid can be obtained directly from the prop-
erties of the essential paths subspace without having to calcie now introduce the creation, annihilation, cup and cap op-
late Ocneanu cells. The key ingredient is the decompositioerators:
of the space of paths as a direct sum of sub-spaces which ai§gfinition 3 Given a pathy
either the subspace of essential paths of lengtbr orthog-
onal subspaces constructed by recurrent applications of the Ti 1iitt
corresponding creation operatGf on subspaces of essential Ci(n) = mvom 0o Vim1Vit1 - - - Un,y 1)
paths of shorter length. This decomposition and the corre-
sponding orthogonal projectors, are sufficient to compute the CT( )= Z Ti 1 ‘ ‘ @)
quantum grupoid. i) = \ 7[1 = 1] [Z} VoU1 .+« - Vi—1VpV;5 . . . Upy.

In this work we propose an algorithm that, using the defi- e
nition of essential paths f&U (3) graphs proposed in Refs. 5 Ui(n) = Ti14+1

= VU1 ...0;—1V;Vi41 ...Up,

and 15, allows one to obtain a similar decomposition for a o [i — 1][i + 1]
given path over an (orienteddDE SU(3) graph. This is 5 3
an important step in order to achieve the full construction of X 0i=1,i4+1 VoUL - - - Vi-1Vi42 - - Un, ©)

the bialgebra without the need to calculate Ocneanu cells in T 1001
SU(3), which is a much more challenging task than in the () = > m

case ofSU(2). vy mm. Vg
X VUL -+« Vi—1UpVi—1V; - . . Uny- (4)
2. The space of paths over aiyU (3) graph Here the prefactords 1.1 /+/fi— 1] +1] ensure

hat these operators satisfy the Temperley-Lieb algebra. The
oefficientsT;_, ; ;+1 are elementary triangular cells and

have been calculated in Refs. 2 and 4.

Definition 1 An elementary path is a sequence of vertices A special subspace @® is that spanned by the essential

N = VU1 ...V;—1VViy1 - . . Uy CONNEcted by arrows which paths. Here one such space of essential paths of length

may belong to either one graph or its conjugate. It is alsoconnecting vertices andb will be noted byé’éz).

possible to define an elementary path as a series of conseCHyefinition 4 A pathy is essential if:

tive edges that can go with or against the orientation of the

edges of the graph. Ci(n) =0, Ui(n)=0,  bothforalli <n. (5)

Paths form an inner product vector sp&ef which the

elementary paths are an orthonormal basis. This space is n&2d its length is given by a vertex of thietype graph that
urally graded by the length of a path. shares the same generalized Coxeter number of the original

For SU(3) ADE graphs, vertices are connected by ori-grath'
ented edges. This implies that, for each ABE (3) graph,
one can find a conjugate graph by changing the orientatio. Decomposition of elementary paths: a con-
of all edges (cf.e.g Fig. 1). This is due to the existence jecture
of the conjugate fundamental representatibr@sd1 which
generate oriented edges through the generatargls. This  In a previous work [5], it was shown that the space of paths of
introduces some ambiguity when measuring the length of g&engthn, connecting verticea andb of a simply connected
path, as it is necessary to explicitly convey the number ofSU(3) ADFE graph can be decomposed thusly:

We first require the definitions of elementary and essenti
paths:
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Pl = @ (i) D e muete . (@)@ -

i<n—2 11 <ia<n—2

@ (CT + ﬂ)i[n/2] (CT + ﬁ)i[n/2]—1 e (CT +0N)i, (5&'0)) : (6)

i1 iz <i[p 21 <N—2

What the above decomposition does not provide, is an ex-
plicit way of writing a given path in terms of a linear combi- ©  We should explain the action of our proposed algorithm
nation of elementary paths of equal length or of shorter lengtldyn a path of length. If the path has no triangular or back-
on which one has acted with a specific ordering of creatiorand-forth sequences then it either is an essential path or is
or cap operators. It is with this in mind that we propose anconstructed through a concatenation of paths in such a way
algorithm that takes a path and explicitly deconstructs it inthat it is longer than the maximum length of an essential path.
elements of the subspaces described above. A similar algghis then means that the path belongs to the first subspace of
rithm has already been fully explored f6i/(2) in Ref. 9 the decomposition (6). For a nonessential path we can ensure
Eq. 5.7. A geometric description of Trinchero’s algorithm that at least one sequence of vertices, v;v;41 that is tri-
may be enlightening: the nonessential patimust be such angular or back-and-forth and thus when acted upon by the
that beyond the-th vertex it behaves like an essential pathagnnihilation or cup operator first and the creation or cap op-
up until the last two vertices'.e. there is no backtracking). erator Second, both times on th¢h vertex, we get not just
The algorithm then takes the path and eliminates the baCK'he 0rigina| path (up to a Constant) but we also get another
tracking “kink” in the i-th vertex and creates kinks further path due to the action of the creation or cap operator (cf.
down the way of the path multiplied by some coefficients,Eq. 2). The second iteration of the algorithm now requires
thus “running” the kinks throughout the remaining length of we act upon the + 1-th vertex of these resulting paths. If
the path. The task then of those coefficients is to ensure the sequence of vertices that result from the first step is not
cancellation of the spurious paths created by the algorithnriangular or back-and-forth then the algorithm stops and the
in such a way that only two paths remain: the original pathpath is decomposed in such a way that ¢hgath, if neces-

n and a path with a backtracking “kink” in thie— 1-th ver-  sary, cancels out the additional path created by the previous
tex that is to be eliminated with an extra patt! (which  step. This means that the path belongs at least to the sec-
is precisely a path with a “kink” in thé — 1-th vertex and  ond subspace oP,,, that is it acts like an essential path of
placed “by hand” to ensure the cancellation.) Our proposalengthn — 1 on which one has acted with one creation or cap
is specifically forSU (3), the difference hinges upon the fact operator in the-th position. If the sequence is triangular or
that graphs inSU(3) are oriented and belong in t##/(3)  back-and-forth however, this results in the nonessential se-
weight lattice. quence moving one step down the length of the path since by

Conjecture: Letn be a path of lengti, not necessarily hypothesis the path’s last triangular sequence did not involve
elementary, such that;(n) # 0 andU;(n) # 0 for somei  thei+2-th vertex. We can see then that this procedure can be
andC;(n) = 0 andU;(n) = 0Vj such thati < j < n —2 repeated and its result is to run the nonessential “kink” from
and ¢ a path Satisfying(c|u)j(€(i)) = 0 Vj such that thei-th position towards the end of the sequence of vertices,

i < j < n — 2. 0ne can decompose these paths using: stopping (at most) before reaching the- 2-th vertex of the
path.
n—2 Once this is completed we could go back in the path to
n= Z ak((CT)N) R (ClU) R (CTINM -1 (ClU) g1 - .. the next nonessential sequence, now in a posjtiens and
k=i act on this new sequence of nonessential vertices. That is to

q say we can have the algorithm run the last nonessential se-
(CTIMi2 (CIVD)i (CTIV(CID) () + SUING quence of a path to its last possible position, then go back
- _ further in the path to the next nonessential sequence and re-
= Z H (CT)m (C1I)m () + £ (8)  peating the procedure, eventually ending with nonessential
k=i m=i sequences separated by at most 2 vertices. This in turn means
that the resulting path would belong to a subspac®,pfn
Where thea,, are constants given by the linear combi- Which one has acted over essential paths of lengt2 with
nation of elementary paths that define the pattThere are  two creation or cap operators in two positions separated by 2
some differences with the algorithm 6i/(2), however we  Vertices. From such an algorithm then the desired decompo-
can see that this procedure actually performs an analogowdtion of the space of paths of a given size thus follows.
task as it “runs” pairs of edges that form the sides of a trian-  In order to prove the above one needs to show that there
gle in SU(3) (i.e. edges that survive the application @©f) always exists a unique set af, coefficients that allows one
which serve as the backtracking kinks ith& (3) path. to write a pathy following the above prescription, meaning
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Itis important to note that the pafithat was added above

is the path that has the triangular “kinks” in the correct loca-

tion and also is the essential path connecting both verfices

1 3 6 and3. As we can see the patB13) has been decomposed in
an essential path of the length of the original path and a path

of shorter length on which one has acted upon with the cre-

ation operator. Please note that for paths obtained using con-

jugation and theZ3 symmetry of the graph from this example

that dd i i finite algorith one will find similar results with an analogous procedure.
al our proposea decomposition provides a finite aigorthm -, lengthn = 3 + 0 the possible cases for nonessen-

for the dgcomposmon of paths mto essential paths acted UPOL) paths can be obtained by rotations of the following set of
by an unique sequence of creation operators. Although a for-aths_

mal proof is left for a future work, the arguments above an = - - -
the examples below make us confident that our algorithm is ?3§§%§68)' (1338), (1331), (3683), (3686), (3313), (3383),

step in the right direction. .
P ) g _ We can decompose some of these paths with our proposal
We will now present a list of examples for the decompo-jn, the following way:

sition of elementary, nonessential paths in thegraph of

FIGURE 1. The SU(3) A-type graph of level 2. One can find the
conjugate graph by reversing the orientations of the arrows.

SU (3) starting from length zero up to length four. The listis N +
fully developed for lengths zero through three and we provide (1368) = BCl (138) + \/ECQ (138),
an example for a path of length four. 3 1o
For paths of lengtlhh = 0 + 0, 0 + 1 and1 + 0 all paths (1338) = ﬁcl(l?’g)’
are essential and the decomposition is trivial. ) 1
For paths of length = 2 + 0 we find the following (3686) = 73 (@(386) - 505(336)> ,
nonessential, elementary paths: L
(133), (331), (338), (368), (313), (386), (383), (683), (1331) = 1 C%(Cg(l)).
(863), (836), (833), (638). VB3

One can see that some of these paths appear in the list For the elementary and nonessential patk (13686)
of essential paths in linear combinations but they are not, byve find (this path is clearly nonessential since the sequence
themselves, essential. The decomposition of some of theg868) is a triangular sequence in the ordgr= 3, vy = 6,
paths as a direct sum is: vz = 8 and therefore gives a nonzero result when acted upon
with the annihilation operator):

a3 = 1m0 = LM ogan) Can) = D55 155
133 133 3](8]
313) = aC{ (33) 4+ ¢ = aC1(33) + A((383) — /B(313 , A T
313 B8) ¢ (33) + 4(383) — /AG1S) clcy(n) = Tses < Tsss  153a5 4 1208 13686).
:a< Ty iy 4 T (383)> BERNEE BB
v 3]13] V3] Here our algorithm removes the triangular sequence
+ A((383) — /B(313)). (9)  (368) and then adds a vertex that produces a linear combina-

tion of two elementary paths: one is the original patB686)
and the other, the pait13386). This last path has now a tri-
Here « is the constant in Eq. 74 is a normalization angular sequence in thg = 3, v3 = 8, v4 = 6, which has
factor that ensures that tigepath is capable of performing been displaced by one position in the order of the sequence
the appropriate cancellations afds the Perron-Frobenius of vertices of the elementary path.
eigenvalue calculated from the graph’s adjacency matrix. The In order to continue the algorithm we must now apply

previous calculation then implies: CgCg to our previous result, and we get:
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graph ofSU(3) starting from length zero up to length three.

T8 Toma T . The list is exhaustively calculated for lengths zero through
Cs(n') = \/ﬁ 1336, two and we provide two examples of paths of length three.
BlIIBIE13116] Once again, for paths of length = (0,0), (0,1) and
ot J(rf) = T365T 535 T35 ( Tses _ 6) (1,0) all paths are essential and the degomposition is.trivial.
3 \/[3] [8] [3] [8} [g] [6] \/[g] [6] For paths of Iengthz = (2,0) we find the fO”OWIng

. nonessential, elementary paths:
We can get the values for thg, constants by cancelling

the appropriate terms, getting then

_BE o BB
|T368] |Ts68]?|T5s51*
We can see that the iterated use of creation and annihi- For paths of lengtm = (1,1) we find either essential
lation operators allows us to obtain an arbitrary path in thispaths or elementary back and forth paths that require the use
example. of the deformed triangular cells discussed above. Since at

this point, their values have yet to be calculated, we will not
Es graph:  We will now present a list of examples for the deal with them here.

decomposition of elementary, nonessential paths infthe For paths of lengtlm = (0, 3) the list of nonessential,
| elementary paths follows:

(1i2i412i42) (261i142i15) (2i24442i45)
(2i2i442i1+2) (2i2411i45) (2i24412i492)

(1i2i421i112i43)  (1i2i122i412:)  (Li2i422i412i43)  (1i2i422i442;)
(Li2i422i442i43)  (2li452i41L)  (2020452i441i13)  (202i452i412i43)
(2i1i452i412i43)  (2i352i152i142i13)  (22i422i441i43)  (2:2i422i442i43)
(2i2i452i4115)  (22i021i412i43)  (2i26422i412i43)  (2i24422i40114)

Let us show a few selected examples of the workings of
our proposal for a selection of families of paths. First for a

family of paths of lengtln = (2,0): If we consider the elementary and nonessential path
1 = (1324122325) we find, for the first steps of the decom-
1,112, . position:
(1:2i412i12) _ VLil2ise) Cl(1:2i12).  (10)
T1i2i+12'i+2
For a family of paths of length = (0, 3) we find: 1o
(1:2i422i442:) = @ CF(1:21422;) + €
23 24
T2.+22.+42. > ]_1 < > < 13
= | a————= + A (1i2i+22i+42i)
( (2i+2](2i]
15,452,112, 1 29 Y \ 25
+ aM — (—1>1A> (1i2i+22i+12i)~ (11)
< [2i+2][2i] K
Which leads us to values for both constants: 1o > < > 14
2 29
T, 02,42,
[2i42](24]
15

Ts, 52,12 .
a2 304 — o,
[2i+2][24] z
FIGURE 2. The SU(3) Es graph.
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clen - e (f[gif oy il
+ \;[2245]2% 1324222322>, (12)
0y Caln) = fm
" (fmm Tt e
+ \/T[Q;zﬁ] \/T[ngf;ﬂ 13242222> =0. (13)

We find in this path that the terms for the pat2,25232-

449

produce paths that “move” the backtracks towards the end of
the path and ensure the cancellation of all paths thus created.
Since for these paths the algorithm creates a path in which the
backtrack has been moved back one step, one requires a can-
celling path with the properties indicated in Trinchero’s work,
i.e. £ satisfyinge; (€() = 0Vj suchthai—1 < j < n—2.
Since ourSU (3) graphs are now embedded in a two dimen-
sional lattice there is no natural ordering of vertices, that is,
there is no way to claim that a vertex comes before or after
another one unambiguously which leads to the problem of
the definition of backtracking paths. There is however a way
out: to relax the definition of the path in such a way that it

is capable of ensuring the required cancellation, that is, that it
presents a triangular path in the same position of the original
path.

4. Discussion

do not cancel out. This is due to the particular geometry of
the&s; but we can recover the decomposition of the path keepWe have proposed here an algorithm that allows one to cal-
ing in mind that there is & path that allows for the desired culate how a given path can be obtained as an iterated and

cancellation, thus:

24|(2
o, = 12l 3]2’
|T241223‘
15,152, T .
§=-— 2alats 2423 15394222325

N Ral2s] /2l 2e]

A note of caution is in order on the use of thepath.
In Ref. 9, the geometric necessity for thepath is clear:

ordered application of creation and cap operators on a path
belonging to the kernel of the annihilation and cup operators.
This means that our algorithm provides a way to obtain a
given path by acting on an essential path with a specific com-
bination of creation and cap operators. We not only propose
said algorithm but we have shown how it works by perform-
ing calculations successfully for a number of selected paths
for A type andE type graphs. In future works we shall elu-
cidate the decomposition of the space of paths &#&(3)

in some paths the application of the creation operator in thgraphs [5] and we will provide proof for this algorithm and
first step of the algorithm results in the creation of two pathsthe properties of thg path. In spite of lacking a formal proof,

one that presents a backtracking in the 1th vertex and

our calculations give us confidence that our proposal is a step

the original path. The remaining iterations of the algorithmin the right direction.
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