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Supersymmetric features of the Error and Dawson'’s functions
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Following a letter by Bassett, we show first that it is possible to find an analytical approximation to the error function in terms of a finite
series of hyperbolic tangents from the supersymmetric (SUSY) solution oftéikehPTeller eigenvalue problem in quantum mechanics
(QM). Afterwards, we show that the second order differential equation for the derivatives of Dawson’s function can be found in another
SUSY related eigenvalue problem, where the factorization of the simple harmonic oscillator Hamiltonian renders the wrong-sign Hermite
differential equation, and that Dawson'’s second order differential equation possess a singular SUSY type relation to this equation.
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The error function, [1] which is defined by the integral

xr
2 2
el’f(x) = ﬁ /€7t dt7 (1)
0 has the same kink form than the error function. However,

is one of the most recurrent functions found in mathematisince Eq. (3) is a non-linear equation, it does not give any

cal and physical sciences. Nonetheless, it lacks an analyticiirther guide on how to improve the accuracy of the approx-

expression in terms of elementary functions. imation. Therefore, Bassett proposed to extend his approxi-
In 1996, Bassett proposed an analytical approximation ténation using two hyperbolic tangents, as

the error function in terms of the hyperbolic tangent, [2]

(btt - ¢zz = 2b2 <¢ - 1i2¢3) ) (3)
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2 erf(zr) ~ tanh | — — (a tanh” , (4
erf(x) ~ tanh | —==x | , 2 () = tan (ﬁ x) + dx (o tanh? (z)) @)
NZ3
which converges asymptotically to the error function aswhere« andp are parameters to be estimated.
T — 0. In order to find a succession of functions, where each one

Although other relations may render a closer approximabecomes an improved approximation to the error function,
tion to the error function, [3-5] it is possible that Bassett'swe propose to look at another physical problem, that of a
be the simplest analytical approximation found in the litera-quantum particle subject to a one dimensionagdhl-Teller
ture allowing an analytical random number generator for thegotential.

Gaussian function. The time independent Saidinger equation for a particle

In this letter we present an approximation to the errorin the presence of a modified&chl-Teller potential [6] is
function in terms of a finite series of hyperbolic tangents,
where the accuracy is determined by the series length, which (_ﬁQdQ _ a?AA + 1)> b =E (5)
is inspired in a SUSYQM problem. We then consider Daw- 2m dz? cosh? oz N ’
son’s function, which is intimately related to the error func- )
tion, and show that we can find a singular SUSY relation beWherea > 0 and the integed > 0. Infeld and Hull [7]
tween the derivatives of Dawson’s function and the eigensolved the factorization of the Hamiltonian of this problem:
functions of the wrong-sign Hermite differential equation. Using dimensionless variables, witfi/2m = 1, the factor-
We finish the letter by proposing another approximation toization is realized in terms of the raising and lowering opera-

Dawson’s function in terms of a sum of Gaussians. tors
. . . *H) = ———— | a\tanh(az) £ < (6)
1. The kink solution and the Foschl-Teller so- CT VDZ 2 dr )’
lutions

where the plus/minus sign is for the lowering/raising operator
In his article, Basset’s approach was based on the fact thaf the A parameter.
the hyperbolic tangent, which is found as the topological so-  For this problem, the energy eigenvalues are

lution to the 1+1 dimensional partial differential equation for
the soliton E, = —a*(\ —n)?, n=0,1,2..<X, (7)
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FIGURE 1. Left panel: erfg) together with er{(x) for increasing values of the parameter Right panel: the difference erf{—erf,(z)
for increasing values of the parameter As explained in the text, the parametehas been chosen to make the two peaks of the largest
differences of similar height.

wheren = X\ — ¢, and the wave functions,,(z) = ¥ _, (z)
= z/)}(x) are found by successive application of the raisingTasLe |. The values of o that minimize the difference

operator- H, on the normalized functions erf(x)—erfy (), for different values of\.
A «@
al'(£ 4 1
Vh(z) = ofl+5) cosh oz . (8) 1 1.203315
Var(0)
2 0.778004
For g.iven)\' and«, the ground function)y is given by this 3 0.615589
function, with/ = \. 4 0.524697
1.1. Finite series approximation ° 0.464819
7 0.388543
Ir_1 Eq. (8),_ sech(ax) already has the bell shap_e of the Gaus- 10 0.3224
sian function for\ = 1, and the resemblance improves)as
. . . S 15 0.261549
increases. Since any even power of geal) is easily in-
tegrated into a series of hyperbolic tangents, we propose to 20 0.225779
define the function eff(x) as 30 0.183755

_2aT(A+3) Y It is interesting to note here that this series is used to find the
erh(e) = VAT / secft* (ay) dy , (9 range of validity of the parameter that determines the SUSY
0 partner potentials for thedchl-Teller problem in QM [8].
Since the series (11) is defined for al]lwe have defined an
analytical finite series to represent the error function.

erfy(+o0) = £1. (20) Now, the parameten. only appears in the argument of
. . i i hyperbolic tangent in Eg. (11), and does not interfere with
A plot of this function for increasing values of the parameter,o asymptotic values in Eq. (10); then, it is possible to use
A is shown on the left panel of Fig. 1, together with the errorj; heore a5 a fine tuning parameter to minimize the maximum
function. On the right panel we plot the difference betweenjiterence between the error function andyér) for all z,
the error function and the different forms of gff), showing 55 can be seen in the right panel of Fig. 1. With this ap-
that as) increases, the difference with respect to the eror,gach, the maximum difference between the error function

wherel =1, 2, 3,..., which has the asymptotic values

function decreases. . , . and erf,(z) is less than 0.0022 fok = 10 and less than
For integer), the integral in Eq. (9) is easily evaluated, o 00072 for\ = 30.
leading to the series In the left panel of Fig. 2 we show how modules
2T(\ + %) the difference_ erf()-erfy (x) for the casex = 1, using only
erfy(z) = W one hyperbolic tangent. The dashed curve corresponds to
a = 1.075, and the long-dashed and dash-dotted lines are
A—1 _ . . .
A—1) (—=1)F for « = 1.15 and 1.3, respectively. Our choice, using the
Xy ( k > 1 tanh®**!(az) . (11)  approach explained above, has= 1.203315 and is plotted
k=0 with a solid line, while Bassett’s case @f= 2/./7 is plotted
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FIGURE 2. Left panel: The difference gif)—erf; (z) for « =1.075, 1.15, and 1.3 (dashed curves.) Our choice ef 1.203315 is plotted
with a solid line, while Basset’s case @f= 2/./7 is plotted using a dotted line. Right panel: the values ahda from Table I, in markers;
the curve is the functiom.1117°-539,

using a dotted line. In this case, our choice renders a max2. Dawson’s function

mum error which is about half of the maximum error in Bas- S
sett's approximation. As it is well known, Dawson’s function is directly related to

In Table | we give the values af which minimize the the error function of imaginary argument [9]

difference between the error function and,é«f) for differ- LT NI
ent values of\. As it is shown in the right panel of Fig. (2), F(x)=¢" /ey dy = —— e 7 erf(ix) (12)
the o dependence on almost follows the function 1/, 0

but the exact dependence is difficult to find since it involves . : . . . .
X and its properties are better determined in terms of its deriva-
transcendental functions.

tives,
F'(x) = —2z2F(x)+ 1, (13a)

1.2. Gaussian distribution generator
FED () 4+ 22 F®) () + 26 F* () =0.  (13b)

One immediate application when having an analytical ap-

proximation to the error function is that one can define agen-  atlempts have been made to find a simple representation
erator for the Gaussian function. ffz) represents a prob- ot this function in terms of elementary functions, for exam-
ability density function (p.d.f.)_ normalized to un_lty, defined ple, that of Codyet al, [10] who proposed a representation
for —oco < z < o0, and F(a) is theacorrespondmg CUMU- of () in terms of rational approximations,

lative distribution functionfF'(a) = [*_ f(x)dx, where the

inverse of F(z) exists, then ifu is uniformly generated in Fim () = e Ry (%), |2 <25 (14a)
(0,1), we can find a unique chosen from the p.d.f. by as- 1 1
signingz = F~1(u). Fim () = —=Rim, (2> , 2.5 <|z] <3.5;

Here we compare the p.d.f.s obtained when we generated v v
fifty million events using Bassett's form for the error function 3.5 < |z[ <5.0 (14b)
given by Eq. (2), and our definition Eq. (11) for the cases 1 1 1
A = 1, with a = 1.203315, and\ = 2, with & = 0.7865. Fin(z) = % [1 + —5 Rum (:ﬁ)} , 5.0<|z| (14c)

The histograms of randomly generated numbers were fitted
using a Gaussian function. If the generator had been exaethereR,,, (x) are rational functions of degréén the numer-

the width of the Gaussian would lig+/2. On the left panel ator andm in the denominator.

of Fig. (3) we show the fit to events generated using Bas- Obviously, it is not possible to extend our finite series ap-
sett’s approximation. On the central and right panel we showproximation of the error function to Dawson’s function, and
the histograms and fits to events generated using Eq. (11ye shall need to use a different approach to find an analytical
with A = 1,2. The widths obtained in the three cases wereapproximation. But before doing so, we shall show here that
0.7618, 0.7143 and 0.7071, respectively. In the case2, there exists a singular SUSY type relation between Dawson'’s
« was chosen to approximate the correct width. function and its derivatives, and the eigenfunctions of the
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FIGURE 3. Histograms (solid lines) and fits (dashed lines) to events generated using Bassett’s approximation, Eq. (2) (left pane(}; and erf

with o = 1.203315 (central panel), and exfz) with o = 0.7865. The means and widths obtained were= 0.1477 x 1073, ¢ = 0.7618,
pu=—0.2008 x 1073, ¢ = 0.7143, andu = —0.0227 x 1073, o = 0.7071, respectively.
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FIGURE 4. The SUSY type ladder relation between Dawson’s eigenfunctiong:) and the wrong-sign Hermite elgenfunctloﬂsL( ).
The functionDy (x) is missing, but can be found using the second order differential equation (13b) and the lowering operator (13a).

wrong-sign Hermite differential equation, which is found in Qs (1) = /1 + 3™,
a SUSY type factorization of the Hamiltonian of the simple T
harmonic oscillator (SHO)[11]. Brs (@) = —F——-. (16)

2.1. Generalized factorization of the SHO Hamiltonian The inverse operator produdt~ B* now defines a new

In a previous article [11] we have developed two factoriza-8igenvalue equation
tions of the SHO Hamiltonian in terms of two non-selfadjoint

operators Lo HY 4 Anway, ()HP =0, (17)
1
B™=— (al(x)d + g@)) : (15a) Where
vz e Bz d
1 d Ly, = (1 + v3e” ) e +2733?6 .
BT = — (a(x) Jrﬂ(x)) . (15b) x
V2 dz x? 2,227 2
. L . v3et +yzert —x
In the first factorization, we required thBt BT = H +1/2. + (18)

. R 1+ ’)/36'%2
Upon inverting the productB+B~, the two parameter so-

lutions for «(x) and 3(z) defined a Sturm-Liouville equa- is a one-parameter self-adjoint operator with the weight func-
tion which included the quantum mechanics SHO equationtjon wys(z) = 2(1+ %eﬁ , and it is isospectral to the
its SUSY partners,[12] and Hermite's equation, as particulagyantum SHO Hamiltonian, which is obtained in the limit
cases for defined regions of the two-parameter space [11]. ., —, 0. The eigenfunctions in this case are

In a second factorization, we proposed that the Hamilto-

nian be factorized aB* B~ = H —1/2, which is possible if H*(z) = B Yni1(x), (19)
now the functionsx(x) and3(z) depend on a single param-
eter,y3, and are given by wherey,, (z) are the SHO eigenfunctions.
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FIGURES5. Left panel: The three Gaussians approximation to Dawson’s function, whgte = 0.152¢ =" /2(1:800)% ,  go5e—=*/2(0-825)*

+0.025¢~"°/2(5:536)°  Right panel: Fit to Dawson’s function using the derivate of the three Gaussian approximation. The dotted curves,
with values on the righy-axis, denote the differenc&; (x) andAz(z), between Dawson'’s function and the approximations.

For this work, it is very interesting to note that in the large however, they share the same second order differential equa-
limit v3 > 1, one can obtain the wrong-sign Hermite’s dif- tion. The reason for this is that Dawson’s function is the sec-
ferential equation ond solution of Eq. (20) when = 0, since starting with

, Hy(z), that solution is

d ~
@+2x%+2(n+1) Hn(l')*07 (20) " e—fyZZdZ

x) = Ho(z /7d =F(z). 23
which differs from the Hermite equation only in the sign in e o S ()

. S . . 0 (ﬁo(y)>
front of the first derivative. The corresponding eigenfunc-
tions are of the quantum os_cillatorlype, but va,r,12ishing fastef; is even more interesting to see that, using Egs. (13),
due to a squared exponential facté, (z) = e~ Hn(z). (20) and (21), we can find a SUSY like ladder relation be-
Also, from the Hermite polynomials’ recursion relations it is yyeen the wrong-sign Hermite eigenfunctiof[st(m), and
easy to find the raising and lowering operators for these funce gerivatives of Dawson’s functions, which we shall here-
tions: after call the Dawson’s eigenfunctions,, (z) = F("~ 1 (x),

d - ~ forn = 1,2,3,..., and henceD; (z) = F(x). This ladder
<da: + QSE) H,(z) = 2nH,_1(2), (21a)  relation is shown in Fig. 4.
The fact thatF'(z) has one zero at = 0, while the Gaus-
—iﬁn(m) _ ﬁn+1(x). (21b) sian does not have any zero for gll finite implies that in
dx order that both sets of eigenfunctions cover the whole space

Note that the reversed sign in the first derivative term ofof non-singular functiong (), there must exist an additional
Eq. (20) produces these “reversed” Hermite polynomials’ refunction Dy (z), however enlarging the eigenvalue equations

cursion relations, where-th eigenfunction is just the deriva- for Dawson’s eigenfunctions. This feature is the equivalent
tive of the previous one. to the SUSY-QM procedure, where the zero-th order SUSY

partner eigenfunction is missing. To find the missibg(x),

we can see that Eq. (13), in the cdse= 0, has two solu-
tions, the constant solution, and the error function. However,
if we assume that the recursion relation (21a) gives rise to
As one can see, Egs. (20) is the same as (13b) whent  EQ. (13a), then, the (non-trivial) zero-th eigenfunction ought
andn = 0, i.e., the ground state equation of the wrong-signt0 beDo(z) = const.

Hermite eigenvalue problem, whose eigenfunction is just the ~We say here that Dawson’s eigenfunctions and the wrong-
Gaussian functiorH(z) = e—*> and it is not Dawson’s Sign Hermite eigenfunctions possess a singular SUSY re-
function! Now, Hy(z) and Rz) are completely different, and lation becausei) there is no QM problem associated,) (

2.2. Dawson’s eigenfunctions, and a singular SUSY re-
lation

their first derivatives are also different, their relation did not arise from an operator procedure; more-
over, they share the recurrence relations and the second order
H)(z) = —2xHy(z) (22a) differential equation,ij) there does not exist an associated

SUSY parameter in this relation, an)(in order to cover

F(z) = —22F(z) + 1, (22b)  the space of nonsingular functions of there must exist a
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zero-less eigenfunctioP(x), which in this case is the con- diverges wherjz| — 0. Then, we can define a segmented

stant function. analytical approximation fof'(x), the first one defined for
|z| < 2.397, and the second one for| > 2.397, since they
2.3. Dawson'’s function series approximation match at that point.

In order to find an analytical approximation for Dawson’s )
function, let us first notice that the rati(z) /= looks very 3. Conclusion
much like a Gaussian but with very long tails. This is theI thi h derived tical imat
reason why Cody’s rational approximations (14) in terms of n this paper we have derived an analytical approximation
series ofi2 work pretty well. for the error funct!on, in te_rms o_f a finite series of elemen-
Given this similarity, a good approximation to Dawson’s f[ary_ functions. Th'? SEresis derlve_d from t_he SU§Y factor-
gation of the Hamiltonian of a particle subject to asehl-

function can be realized in terms of a sum of Gaussians, all_ I tential. Consideri ther k SUSY fact
centered at the origin, and with different widths, eller potential. - .onsidering another known actor-

ization, we have defined the Dawson eigenfunctions as Daw-

n 0.522/0? son functions’ derivatives, since they posses a singular SUSY
Fz)=q Z di € ¢ =aGa(2). (24) " type relation with the wrong-sign Hermite eigenfunctions. It
=1 would be interesting to make a further analysis of this kind

The fit of F'(x) with n = 3 is shown in the left panel of Fig. 5.  of SUSY like relations in other spectral problems, as this cer-
The lefty-axis shows the function values, while the right  tainly broadens our knowledge of SUSY factorizations and
axis denotes the differena®; (z) = F(x) — 2G3(x). Itis  the range of validity of the factorization parameters involved.
interesting to note that fdr:| > 2.5, a better approximation Finally, we proposed a series expansion of Dawson’s function
is given by the relation in terms of Gaussian functions.

1 d[2G
F(r) = o (1 - W) (25 Aknowledgements
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