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Supersymmetric features of the Error and Dawson’s functions
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Following a letter by Bassett, we show first that it is possible to find an analytical approximation to the error function in terms of a finite
series of hyperbolic tangents from the supersymmetric (SUSY) solution of the Pöschl-Teller eigenvalue problem in quantum mechanics
(QM). Afterwards, we show that the second order differential equation for the derivatives of Dawson’s function can be found in another
SUSY related eigenvalue problem, where the factorization of the simple harmonic oscillator Hamiltonian renders the wrong-sign Hermite
differential equation, and that Dawson’s second order differential equation possess a singular SUSY type relation to this equation.
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The error function, [1] which is defined by the integral

erf(x) =
2√
π

x∫

0

e−t2dt , (1)

is one of the most recurrent functions found in mathemati-
cal and physical sciences. Nonetheless, it lacks an analytical
expression in terms of elementary functions.

In 1996, Bassett proposed an analytical approximation to
the error function in terms of the hyperbolic tangent, [2]

erf(x) ' tanh
(

2√
π

x

)
, (2)

which converges asymptotically to the error function as
x →∞.

Although other relations may render a closer approxima-
tion to the error function, [3-5] it is possible that Bassett’s
be the simplest analytical approximation found in the litera-
ture allowing an analytical random number generator for the
Gaussian function.

In this letter we present an approximation to the error
function in terms of a finite series of hyperbolic tangents,
where the accuracy is determined by the series length, which
is inspired in a SUSYQM problem. We then consider Daw-
son’s function, which is intimately related to the error func-
tion, and show that we can find a singular SUSY relation be-
tween the derivatives of Dawson’s function and the eigen-
functions of the wrong-sign Hermite differential equation.
We finish the letter by proposing another approximation to
Dawson’s function in terms of a sum of Gaussians.

1. The kink solution and the P̈oschl-Teller so-
lutions

In his article, Basset’s approach was based on the fact that
the hyperbolic tangent, which is found as the topological so-
lution to the 1+1 dimensional partial differential equation for
the soliton

φtt − φxx = 2b2

(
φ− 1

A2
φ3

)
, (3)

has the same kink form than the error function. However,
since Eq. (3) is a non-linear equation, it does not give any
further guide on how to improve the accuracy of the approx-
imation. Therefore, Bassett proposed to extend his approxi-
mation using two hyperbolic tangents, as

erf(x) ' tanh
(

2√
π

x

)
+

d

dx
(α tanhp (x)) , (4)

whereα andp are parameters to be estimated.
In order to find a succession of functions, where each one

becomes an improved approximation to the error function,
we propose to look at another physical problem, that of a
quantum particle subject to a one dimensional Pöschl-Teller
potential.

The time independent Schrödinger equation for a particle
in the presence of a modified Pöschl-Teller potential [6] is

(
− ~

2

2m

d2

dx2
− α2λ(λ + 1)

cosh2 αx

)
ψ = E ψ , (5)

whereα > 0 and the integerλ > 0. Infeld and Hull [7]
solved the factorization of the Hamiltonian of this problem:
using dimensionless variables, with~2/2m = 1, the factor-
ization is realized in terms of the raising and lowering opera-
tors

±Hλ
` =

1
α
√

λ2 − `2

(
αλ tanh(αx)± d

dx

)
, (6)

where the plus/minus sign is for the lowering/raising operator
of theλ parameter.

For this problem, the energy eigenvalues are

En = −α2(λ− n)2, n = 0, 1, 2... < λ , (7)
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FIGURE 1. Left panel: erf(x) together with erfλ(x) for increasing values of the parameterλ. Right panel: the difference erf(x)−erfλ(x)
for increasing values of the parameterλ. As explained in the text, the parameterα has been chosen to make the two peaks of the largest
differences of similar height.

wheren = λ− `, and the wave functionsψn(x) ≡ ψλ
λ−n(x)

= ψλ
` (x) are found by successive application of the raising

operator−Hλ
` on the normalized functions

ψ`
`(x) =

√
αΓ(` + 1

2 )√
πΓ(`)

cosh−` αx . (8)

For givenλ andα, the ground functionψ0 is given by this
function, with` = λ.

1.1. Finite series approximation

In Eq. (8), sechλ(αx) already has the bell shape of the Gaus-
sian function forλ = 1, and the resemblance improves asλ
increases. Since any even power of sech(αx) is easily in-
tegrated into a series of hyperbolic tangents, we propose to
define the function erfλ(x) as

erfλ(x) ≡ 2αΓ(λ + 1
2 )√

π Γ(λ)

x∫

0

sech2λ(αy) dy , (9)

whereλ = 1, 2, 3,..., which has the asymptotic values

erfλ(±∞) = ±1 . (10)

A plot of this function for increasing values of the parameter
λ is shown on the left panel of Fig. 1, together with the error
function. On the right panel we plot the difference between
the error function and the different forms of erfλ(x), showing
that asλ increases, the difference with respect to the error
function decreases.

For integerλ, the integral in Eq. (9) is easily evaluated,
leading to the series

erfλ(x) =
2Γ(λ + 1

2 )√
π Γ(λ)

×
λ−1∑

k=0

(
λ− 1

k

)
(−1)k

2k + 1
tanh2k+1(αx) . (11)

TABLE I. The values of α that minimize the difference
erf(x)−erfλ(x), for different values ofλ.

λ α

1 1.203315

2 0.778004

3 0.615589

4 0.524697

5 0.464819

7 0.388543

10 0.3224

15 0.261549

20 0.225779

30 0.183755

It is interesting to note here that this series is used to find the
range of validity of the parameter that determines the SUSY
partner potentials for the Pöschl-Teller problem in QM [8].
Since the series (11) is defined for allx, we have defined an
analytical finite series to represent the error function.

Now, the parameterα only appears in the argument of
hyperbolic tangent in Eq. (11), and does not interfere with
the asymptotic values in Eq. (10); then, it is possible to use
it here as a fine tuning parameter to minimize the maximum
difference between the error function and erfλ(x) for all x,
as can be seen in the right panel of Fig. 1. With this ap-
proach, the maximum difference between the error function
and erfλ(x) is less than 0.0022 forλ = 10 and less than
0.00072 forλ = 30.

In the left panel of Fig. 2 we show howα modules
the difference erf(x)-erfλ(x) for the caseλ = 1, using only
one hyperbolic tangent. The dashed curve corresponds to
α = 1.075, and the long-dashed and dash-dotted lines are
for α = 1.15 and 1.3, respectively. Our choice, using the
approach explained above, hasα = 1.203315 and is plotted
with a solid line, while Bassett’s case ofα = 2/

√
π is plotted
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FIGURE 2. Left panel: The difference erf(x)−erf1(x) for α =1.075, 1.15, and 1.3 (dashed curves.) Our choice ofα = 1.203315 is plotted
with a solid line, while Basset’s case ofα = 2/

√
π is plotted using a dotted line. Right panel: the values ofλ andα from Table I, in markers;

the curve is the function1.11λ−0.539.

using a dotted line. In this case, our choice renders a maxi-
mum error which is about half of the maximum error in Bas-
sett’s approximation.

In Table I we give the values ofα which minimize the
difference between the error function and erfλ(x) for differ-
ent values ofλ. As it is shown in the right panel of Fig. (2),
the α dependence onλ almost follows the function 1/

√
λ,

but the exact dependence is difficult to find since it involves
transcendental functions.

1.2. Gaussian distribution generator

One immediate application when having an analytical ap-
proximation to the error function is that one can define a gen-
erator for the Gaussian function. Iff(x) represents a prob-
ability density function (p.d.f.) normalized to unity, defined
for −∞ < x < ∞, andF (a) is the corresponding cumu-
lative distribution function,F (a) =

∫ a

−∞ f(x)dx, where the
inverse ofF (x) exists, then ifu is uniformly generated in
(0,1), we can find a uniquex chosen from the p.d.f. by as-
signingx = F−1(u).

Here we compare the p.d.f.’s obtained when we generated
fifty million events using Bassett’s form for the error function
given by Eq. (2), and our definition Eq. (11) for the cases
λ = 1, with α = 1.203315, andλ = 2, with α = 0.7865.
The histograms of randomly generated numbers were fitted
using a Gaussian function. If the generator had been exact
the width of the Gaussian would be1/

√
2. On the left panel

of Fig. (3) we show the fit to events generated using Bas-
sett’s approximation. On the central and right panel we show
the histograms and fits to events generated using Eq. (11)
with λ = 1, 2. The widths obtained in the three cases were
0.7618, 0.7143 and 0.7071, respectively. In the caseλ = 2,
α was chosen to approximate the correct width.

2. Dawson’s function

As it is well known, Dawson’s function is directly related to
the error function of imaginary argument [9]

F (x) = e−x2

x∫

0

ey2
dy = −

√
π i

2
e−x2

erf(ix) (12)

and its properties are better determined in terms of its deriva-
tives,

F ′(x) = −2xF (x) + 1 , (13a)

F (k+1)(x) + 2xF (k)(x) + 2kF (k−1)(x) = 0 . (13b)

Attempts have been made to find a simple representation
of this function in terms of elementary functions, for exam-
ple, that of Codyet al., [10] who proposed a representation
of F (x) in terms of rational approximations,

Flm(x) = xRlm(x2) , |x| ≤ 2.5 (14a)

Flm(x) =
1
x

Rlm

(
1
x2

)
, 2.5 ≤ |x| ≤ 3.5 ;

3.5 ≤ |x| ≤ 5.0 (14b)

Flm(x) =
1
2x

[
1 +

1
x2

Rlm

(
1
x2

)]
, 5.0 ≤ |x| (14c)

whereRlm(x) are rational functions of degreel in the numer-
ator andm in the denominator.

Obviously, it is not possible to extend our finite series ap-
proximation of the error function to Dawson’s function, and
we shall need to use a different approach to find an analytical
approximation. But before doing so, we shall show here that
there exists a singular SUSY type relation between Dawson’s
function and its derivatives, and the eigenfunctions of the
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FIGURE 3. Histograms (solid lines) and fits (dashed lines) to events generated using Bassett’s approximation, Eq. (2) (left panel), and erf1(x)

with α = 1.203315 (central panel), and erf2(x) with α = 0.7865. The means and widths obtained wereµ = 0.1477× 10−3, σ = 0.7618,
µ = −0.2008× 10−3, σ = 0.7143, andµ = −0.0227× 10−3, σ = 0.7071, respectively.

FIGURE 4. The SUSY type ladder relation between Dawson’s eigenfunctionsDn(x) and the wrong-sign Hermite eigenfunctions̃Hn(x).
The functionD0(x) is missing, but can be found using the second order differential equation (13b) and the lowering operator (13a).

wrong-sign Hermite differential equation, which is found in
a SUSY type factorization of the Hamiltonian of the simple
harmonic oscillator (SHO)[11].

2.1. Generalized factorization of the SHO Hamiltonian

In a previous article [11] we have developed two factoriza-
tions of the SHO Hamiltonian in terms of two non-selfadjoint
operators

B− =
1√
2

(
α−1(x)

d

dx
+ β(x)

)
, (15a)

B+ =
1√
2

(
−α(x)

d

dx
+ β(x)

)
. (15b)

In the first factorization, we required thatB−B+ = H +1/2.
Upon inverting the product,B+B−, the two parameter so-
lutions for α(x) andβ(x) defined a Sturm-Liouville equa-
tion which included the quantum mechanics SHO equation,
its SUSY partners,[12] and Hermite’s equation, as particular
cases for defined regions of the two-parameter space [11].

In a second factorization, we proposed that the Hamilto-
nian be factorized asB+B− = H−1/2, which is possible if
now the functionsα(x) andβ(x) depend on a single param-
eter,γ3, and are given by

αγ3(x) =
√

1 + γ3ex2 ,

βγ3(x) =
x√

1 + γ3ex2
. (16)

The inverse operator productB−B+ now defines a new
eigenvalue equation

Lγ3Hγ3
n + λnωγ3(x)Hγ3

n = 0, (17)

where

Lγ3 =
(
1 + γ3e

x2
) d2

dx2
+ 2γ3xex2 d

dx

+
γ3e

x2
+ γ2

3e2x2 − x2

1 + γ3ex2 (18)

is a one-parameter self-adjoint operator with the weight func-
tion ωγ3(x) = 2

(
1 + γ3e

x2
)

, and it is isospectral to the
quantum SHO Hamiltonian, which is obtained in the limit
γ3 → 0. The eigenfunctions in this case are

Hγ3
n (x) = B−ψn+1(x) , (19)

whereψn(x) are the SHO eigenfunctions.
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FIGURE 5. Left panel: The three Gaussians approximation to Dawson’s function, whereG3(x) = 0.152e−x2/2(1.804)2+0.805e−x2/2(0.825)2

+0.025e−x2/2(5.536)2 . Right panel: Fit to Dawson’s function using the derivate of the three Gaussian approximation. The dotted curves,
with values on the righty-axis, denote the difference∆1(x) and∆2(x), between Dawson’s function and the approximations.

For this work, it is very interesting to note that in the large
limit γ3 À 1, one can obtain the wrong-sign Hermite’s dif-
ferential equation

[
d2

dx2
+ 2x

d

dx
+ 2(n + 1)

]
H̃n(x) = 0 , (20)

which differs from the Hermite equation only in the sign in
front of the first derivative. The corresponding eigenfunc-
tions are of the quantum oscillator type, but vanishing faster
due to a squared exponential factor,H̃n(x) = e−x2

Hn(x).
Also, from the Hermite polynomials’ recursion relations it is
easy to find the raising and lowering operators for these func-
tions:

(
d

dx
+ 2x

)
H̃n(x) = 2nH̃n−1(x), (21a)

− d

dx
H̃n(x) = H̃n+1(x). (21b)

Note that the reversed sign in the first derivative term of
Eq. (20) produces these “reversed” Hermite polynomials’ re-
cursion relations, wheren-th eigenfunction is just the deriva-
tive of the previous one.

2.2. Dawson’s eigenfunctions, and a singular SUSY re-
lation

As one can see, Eqs. (20) is the same as (13b) whenk = 1
andn = 0, i.e., the ground state equation of the wrong-sign
Hermite eigenvalue problem, whose eigenfunction is just the
Gaussian functionH̃0(x) = e−x2

and it is not Dawson’s
function! Now,H̃0(x) and F(x) are completely different, and
their first derivatives are also different,

H̃ ′
0(x) = −2xH̃0(x) , (22a)

F′(x) = −2xF(x) + 1 , (22b)

however, they share the same second order differential equa-
tion. The reason for this is that Dawson’s function is the sec-
ond solution of Eq. (20) whenn = 0, since starting with
H̃0(x), that solution is

f(x) = H̃0(x)

x∫

0

e−
y∫
2z dz

(
H̃0(y)

)2 dy = F (x) . (23)

It is even more interesting to see that, using Eqs. (13),
(20) and (21), we can find a SUSY like ladder relation be-
tween the wrong-sign Hermite eigenfunctions̃Hn(x), and
the derivatives of Dawson’s functions, which we shall here-
after call the Dawson’s eigenfunctions,Dn(x) ≡ F (n−1)(x),
for n = 1, 2, 3, . . ., and henceD1(x) ≡ F (x). This ladder
relation is shown in Fig. 4.

The fact thatF (x) has one zero atx = 0, while the Gaus-
sian does not have any zero for all finitex, implies that in
order that both sets of eigenfunctions cover the whole space
of non-singular functionsf(x), there must exist an additional
functionD0(x), however enlarging the eigenvalue equations
for Dawson’s eigenfunctions. This feature is the equivalent
to the SUSY-QM procedure, where the zero-th order SUSY
partner eigenfunction is missing. To find the missingD0(x),
we can see that Eq. (13), in the casek = 0, has two solu-
tions, the constant solution, and the error function. However,
if we assume that the recursion relation (21a) gives rise to
Eq. (13a), then, the (non-trivial) zero-th eigenfunction ought
to beD0(x) = const.

We say here that Dawson’s eigenfunctions and the wrong-
sign Hermite eigenfunctions possess a singular SUSY re-
lation because (i) there is no QM problem associated, (ii )
their relation did not arise from an operator procedure; more-
over, they share the recurrence relations and the second order
differential equation, (iii ) there does not exist an associated
SUSY parameter in this relation, and (iv) in order to cover
the space of nonsingular functions ofx, there must exist a
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zero-less eigenfunctionD0(x), which in this case is the con-
stant function.

2.3. Dawson’s function series approximation

In order to find an analytical approximation for Dawson’s
function, let us first notice that the ratioF (x)/x looks very
much like a Gaussian but with very long tails. This is the
reason why Cody’s rational approximations (14) in terms of
series ofx2 work pretty well.

Given this similarity, a good approximation to Dawson’s
function can be realized in terms of a sum of Gaussians, all
centered at the origin, and with different widths,

F (x) = x

n∑

i=1

ai e−0.5 x2/σ2
i = xGn(x). (24)

The fit ofF (x) with n = 3 is shown in the left panel of Fig. 5.
The lefty-axis shows the function values, while the righty-
axis denotes the difference∆1(x) = F (x) − xG3(x). It is
interesting to note that for|x| > 2.5, a better approximation
is given by the relation

F (x) =
1
2x

(
1− d [xG3(x)]

dx

)
(25)

which is based on Eq. (13a). The right panel of Fig. 5 shows
the difference∆2(x) between Dawson’s function and this ap-
proximation, which is plotted there for|x| ≥ 1.28, since it

diverges when|x| → 0. Then, we can define a segmented
analytical approximation forF (x), the first one defined for
|x| ≤ 2.397, and the second one for|x| > 2.397, since they
match at that point.

3. Conclusion

In this paper we have derived an analytical approximation
for the error function, in terms of a finite series of elemen-
tary functions. This series is derived from the SUSY factor-
ization of the Hamiltonian of a particle subject to a Pöschl-
Teller potential. Considering another known SUSY factor-
ization, we have defined the Dawson eigenfunctions as Daw-
son functions’ derivatives, since they posses a singular SUSY
type relation with the wrong-sign Hermite eigenfunctions. It
would be interesting to make a further analysis of this kind
of SUSY like relations in other spectral problems, as this cer-
tainly broadens our knowledge of SUSY factorizations and
the range of validity of the factorization parameters involved.
Finally, we proposed a series expansion of Dawson’s function
in terms of Gaussian functions.
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