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Time evolution of spinor perturbations in regular black holes
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In this report we present results concerning the study of complete time evolution of massless fermion perturbations propagating in several
four dimensional regular black hole space-times. The black hole solution arises from coupling gravity with external matter sources, like non-
linear electrodynamics or some phantom fields. After numerical integration we obtain the time evolution profiles for fermion fields in this
space-times. By fitting the numerical data, we compute the quasinormal frequencies that characterize the test field evolution at intermediary
times, and for late times, we find power law tails, in strong similarity with usual results for non regular black holes. Quasinormal modes
was also investigated using a WKB approach at six order beyond the eikonal limit, obtaining a good correspondence with the numerical
calculated frequencies.
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1. Introduction

The study of perturbations around black hole solutions can be
traced back to the work of Regge and Wheeler in 1957 [1].
It is well known that the time evolution of such perturbations
outside the horizon can be divided in three stages. Firstly
we have an initial wave burst that comes directly from the
source of perturbation and consequently is strongly depen-
dent on the initial wave form of the fluctuation. Following
this initial transient stage, the system undergo proper damped
quasinormal oscillations, whose frequencies and damping
rates are completely fixed by the geometric structure of the
black hole spacetime, and the physical properties of the test
perturbation. Finally, that quasinormal ringing is followed
by tails at late times, whose exponent are different for each
multipole number describing the mode, and, for higher di-
mensional spacetimes, depends on the dimensionality of the
background. Power law tails are typical for asymptotically
flat spacetimes, whereas for asymptotically de Sitter back-
grounds we can observe also exponential tails. The situation
is different for AdS black holes, in which the complete time
evolution is dominate by quasinormal oscillations [2-5].

As quasinormal frequencies encode information on the
black hole space-time geometry, it is possible, for exam-
ple, estimate the charge, mass and angular momentum of
the black hole from it [4,5]. Quasinormal frequencies also
depends on the parameters that characterize the perturbing
fields. Thus, the propagations of disturbances of different
spin weight is an important subject to study in such back-
grounds.

As fermions universally describe some matter fields, in
most cases they are essential for the structure of the solu-
tions, raising the importance to study fermion fluctuations.
Fermions perturbations has been studied for four dimensional

black holes solution, but also in higher dimensional black
holes backgrounds [7-12].

On other hand, the avoidance of singularities in Gravity
theories is an old problem. In 1968 Bardeen proposed the
first model of a regular black hole without singularity, that
satisfied the weak energy condition [13]. This regular black
hole was interpreted as a solution describing the gravitational
field of a magnetic monopole in nonlinear electrodynamics
[13]. After Bardeen’s model, several regular black hole solu-
tion has been proposed in different contexts [15-20]. All this
black hole solution arises from coupling gravity with exter-
nal matter sources, like non-linear electrodynamics or some
phantom fields.

Concerning perturbations in the above mentioned black
hole backgrounds, in a previous paper Flachi and Lemos de-
termined the quasinormal modes of scalar perturbations [21]
and Li, Ma and Lin studied a Dirac field [22]. In those papers
the authors perform the calculations using mainly a WKB ap-
proximation developed by Iyer and Will [23]. However, they
only studied quasinormal modes, and not the complete time
evolution of perturbations.

This paper is devoted to the study the complete evolution
of massless fermion fluctuations in all the above mentioned
regular black holes backgrounds [13,15-20]. Not only the
quasinormal ringing is sudied, but also late time tails that it is
expected to appear in those gravitational backgrounds. The
paper is organized as follows: Section 2 briefly presents the
regular black holes considered in the rest of this work. In
Sec. 3 we present the evolution equations for fermion fields
in spherically symmetric space-times, and Sec. 4 is devoted
to describe the numerical solution of the evolution equations
for regular black hole backgrounds. In Sec. 5 we present
the results for quasinormal frequencies, and in Sec. 6 we an-
alyze the late time tails present in the dynamic evolution of
the fermion fluctuations. Finally, we present our conclusions.
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2. Regular black hole Solutions

The space-times of all the regular black hole solutions
[13,15-20] considered in this paper can be described by the
line element

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2
2(θ, φ). (1)

wheredΩ2
2 = dθ2 +sin2 θdφ2 describes the unit two-sphere.

In the rest of this section we closely follow the brief re-
view in Sec. 2 of Ref. 21, adding some minor information
from the original references. Regular black hole solutions
can be founded by coupling gravity with a properly matter
source through a typical action defined as:

S =
1

16π

∫
d4x

√−g (R−L ) (2)

whereg is determinant of the metric tensor,R is the Ricci
scalar, andL represents the Lagrangian density of the mat-
ter source.

The first solution that will be consider in this paper was
proposed by Bardeen in Ref. 13, and reinterpreted in Ref. 14
as a magnetic solution to Einstein equations coupled to non-
linear electrodynamics with matter Lagrangian density given
by

L (F ) =
3

2sα2

( √
2 α2F

1 +
√

2 α2F

)5/2

,

with F ≡ (1/4)FµνFµν , being Fµν the electromagnetic
field strength. In this model the parameterα can be
interpreted as the charge of the self-gravitating magnetic
monopole [14], and its numerical value, as well as those of
the massm, determine if the solution have zero, one or two
horizons. The line element of Bardeen’s regular black hole is
given by (1) with:

f(r) = 1− 2mr2

(r2 + α2)3/2
. (3)

A quite similar solution was founded by Hayward in
Ref. 15, in which:

f(r) = 1− 2mr2

r3 + 2l2m
= 1− 2mr2

r3 + 2α2
. (4)

As pointed out in Ref. 21, this solution requires a mat-
ter source whose energy-momentum tensor is de-Sitter at the
core and vanishes at spatial infinity. The parameterα is re-
lated with the de Sitter core radiusL and the massm through
α = L

√
m. For this solution the existence and number of

horizons is again determined by the relative values ofm and
L (or α). As we can easily observe, in the limitα → 0 the
Bardeen and Hayward solutions reduce to the Schwarzschild
black hole.

Another magnetically charged solution is given
by Bronnikov in Ref. 16, where he used
L (F ) = F/ cosh2

(
a|F/2|1/4

)
to obtain the line element

(1) with

f(r) = 1− 2m

r

(
1− tanh

r0

r

)
. (5)

The above result, (5), was also obtained in Ref. 17, as the
zeroth order perturbative solution of the equations of motion
coming from quadratic gravity coupled with nonlinear elec-
trodynamics, using for the matter source the lagrangian den-
sity

L (F ) = F

[
1− tanh2

(
s

4

√
Q2F

2

)]
,

wheres = |Q|/2b, Q is the magnetic charge of the solution
andb is a free parameter. In this model,s andb can be ad-
justed for obtain regularity at the center [17]. Schwarzschild
black hole is obtained from the above solution in the limit
r0 → 0.

Nonlinear electrically charged configurations can lead to
regular black holes solutions. In Ref. 19, Ayón-Beato and
Garćıa proposed a model in which

f(r) = 1− 2mr2

(r2 + q2)3/2
+

q2r2

(r2 + q2)2
(6)

In the above solutionm andq are respectively the mass and
the electric charge of the configuration. For charges below
some critical valueqc, we have a solution with separated in-
ner and event horizon, respectively. Forq = qc the horizons
shrink into a single one leading to an extreme black hole solu-
tion, whereas forq > qc the horizon structure are absent, and
we are in presence of a globally regular gravitational back-
ground.

It is important to mention that solution (6), as discussed
in Ref. 16 by Bronnikov, should be taken with care, due to
the presence of some cusps in the Lagrangian density, which
implies that the regular electric solution correspond to differ-
ent Lagrangians in different parts of space. However, as in
Ref. 21, taking into account that the above solution coincides
with a Schwarzschild black hole forq = 0, we will take this
as a good example for check the validity of our calculational
schemes.

Using the results of Ref. 16 on the basic properties that
the Lagrangian densityL (F ) can have, for lead to an elec-
trically charged regular black hole configuration, Dymnikova
shows in Ref. 18 that, for certain non-linear electrodynamics
sources, there exist solutions with

f(r) = 1− 4m

πr

(
tan−1 r

r0
− rr0

r2 + r2
0

)
. (7)

which satisfies the weak energy condition. In the above ex-
pressionr0 = πq2/(8m) is a length scale parameter involv-
ing the massm and the chargeq of the electric solution. In the
limit r0 → 0, the solution coincides with the Schwarzschild
black hole.

The last gravitational background to be considered in this
paper is presented in Ref. 20. It comes from coupling gravity
with a phantom field, using an action of the form

S =
∫ √

g d4x[R + εgµν∂µφ∂νφ− 2V (φ)] (8)
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whereε is set to -1. The solution obtained is given by (1)
with

f(r)=1+
cr2

b2
+

ρ0r
2

b3

(
b
√

r2 − b2

r2
+tan−1

√
r2 − b2

b

)
(9)

The parametersb, c andρ0 characterize the features of the
phantom potential fieldU(b, c, ρ0). In this paper, we fix the
values ofc andρ0 asc = −(3π/2b) andρ0 = 3, correspond-
ing to a black hole with unit mass. As in the other regular
black hole solutions, we can obtain the Schwarzschild black
hole in the limitb → 0.

3. Massless Dirac perturbations

In curved space-time the massless Dirac equation is:

/∇ψ = Γµ∇µψ = 0 (10)

where/∇ is the Dirac Operator,Γµ are the gamma matrices of
the curved space-time, the covariant derivative is defined as
∇µ = ∂µ−(1/4)wab

µ γaγb, with µ anda being the tangent and
space-time indices respectively, related by the basis of one
forms~e a ≡ ea

µ. The connectionωab
µ ≡ ωab obey the relation

d~e a + ωa
b ∧ ~e b = 0, beingγa the gamma matrices of flat

space-time, related with the curved space-time ones trough
Γµ = eµ

aγa. It form a Clifford algebra and consequently sat-
isfy the anti-commutation relations{γa, γb} = −2ηab con
η00 = −1.

In Refs. 7, 9, 24 is its showed that by writing
ψ = r−3

∑
`

(
ϕ̃

(+)
` ξ̃

(+)
` + ϕ̃

(−)
` ξ̃

(−)
`

)
where

ϕ̃
(+)
` =

(
iζ`(t, r)
χ`(t, r)

)
, (11)

the Dirac equation in the general spherically symmetric back-
ground can be put as a simple pair of evolution equations, one
for each component of the spinorϕ̃:

∂2ζ`

∂t2
− ∂2ζ`

∂r2∗
+ V+(r)ζ` = 0, (12)

∂2χ`

∂t2
− ∂2χ`

∂r2∗
+ V−(r)χ` = 0, (13)

where:
V± = ±dΛ`

dr∗
+ Λ2

` (14)

and the functionΛ`(r) is given by

Λ`(r) =

√
f(r)
r

(` + 1) . (15)

The above equations gives the temporal evolution of
Dirac perturbations outside the black hole spacetime.ζ`(t, r)
andχ`(t, r) will have similar time evolutions and then they
will have the same spectra, both for scattering and quasi-
normal, due to the supersymmetric character of the potentials
V+ andV− [25]. In the following we will work with Eq. (12)

FIGURE 1. Potential for Dirac perturbations with̀= 0 (bottom)
to ` = 5 (top) andα = 0.1 in Bardeen’s regular black hole.

FIGURE 2. Integration grid in the plane(u, v) limited by the points
N , S, E, W andC. This cell represents an integration step, and the
initial data are specified on the left and bottom sides of the rhom-
bus.

and we eliminate the subscript(+) for the effective potential,
definingV (r) ≡ V+(r).

In Fig. 1 we show effective potential profiles for massless
Dirac perturbation in the four dimensional black hole back-
ground of Ref. 13. The profiles for other regular black holes
are similar. In all cases, the potential has the form of a def-
inite positive barrier. Then, we can expect at intermediary
times well defined damped quasinormal oscillations in the
evolution of fermion perturbations outside this spacetimes.
This fact will be confirmed in the next sections.

4. Time evolution of Dirac perturbations

In order to solve the Eq. 12, we first developed a finite dif-
ference scheme (12). We discretize (12) takingt = t0 + k∆t
andr∗ = r∗0 + j∆r∗, and rewrite the equation as

Rev. Mex. Fis.61 (2015) 400–413
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FIGURE 3. Normal (left) and logarithmic (right) plots of the time-domain evolution of massless Dirac perturbations in Bardeen’s regular
black holes withα = 0.1. From top to bottom:̀ = 1, 2, 3.

ψj
k+1 = −ψj

k−1 +
∆t2

∆r2∗

(
ψj+1

k + ψj−1
k

)

+
(

2− 2
∆t2

∆r2∗
− Vj∆t2

)
ψj

k, (16)

We also chose as initial condition a static Gaussian distribu-
tion

ψ (r∗, t0) = Ae−a(r∗−b)2 ,
∂

∂t
ψ (r∗, t) |t=t0 = 0. (17)

Applying the Von Neumann stability condition to the
above difference equation results in the relation

∆t2

∆r∗2
sin2

(α

2

)
+

∆t2

4
V (α) < 1

Then, definingVmax as the largest value ofVj in the numeri-
cal grid, our numerical solution will be stable if

∆t2

∆r2∗
+

∆t2

4
Vmax < 1 (18)

We can now take∆t = (1/2)∆r∗ and choose a sufficiently
small time step such thatVmax < (3/∆t2) for assure the sta-
bility of our numerical codes. In all the calculations we veri-
fied that this stability condition is fulfilled.

We also implemented the characteristic integration
scheme developed by Gundlach, Price and Pullin [27] to
check the numerical results.

As a first step, we introduced in (12) light-cone coordi-
natesdu = dt− dr∗ anddv = dt + dr∗ to obtain
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FIGURE 4. Normal (left) and logarithmic (right) plots of the time-domain evolution of massless Dirac perturbations in Hayward’s regular
black holes withα = 0.1. From top to bottom:̀ = 1, 2, 3.

(
4

∂2

∂u∂v
+ V (u, v)

)
ζ`(u, v) = 0. (19)

The next step is to discretize the above equation on a
grid with a typical cell of a given integration step showed
in Fig. 2, where the lettersS, W,E, N are used to mark
the points that limits this particular integration cell accord-
ing to: S = (u, v), W = (u + ∆u, v), E = (u, v + ∆v),
N = (u + ∆u, v + ∆v). The discretized version of (19) that
we used was

ζ`(N) = ζ`(W ) + ζ`(E)− ζ`(S)

− ∆u∆v

8
V (S) (ζ`(W ) + ζ`(E)) +O(h4), (20)

We see that the field value at pointN only depends on the
field values atS, E andW . For a set of initial conditions at
the two null surfacesu = u0 andv = v0, we can find, us-
ing (20), the value of the fieldζ` inside the rhombus builded
on this two null surfaces. Now iterating the integration cell,
we can find the complete data that gives the evolution of the
fields in time. Then fitting the numerical data at the corre-
sponding region of the profile, it is possible to find the quasi-
normal frequencies.

The Figs. 3-8 show the time domain profile of the evo-
lution of Dirac massless perturbations in all the regular black
hole solutions under study. As we can see, in all the regular
black holes studied the Dirac perturbation follow the usual
dynamics in time domain. First, we observe an initial tran-
sient stage, that is strongly dependent upon the initial shape
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FIGURE 5. Normal (left) and logarithmic (right) plots of the time-domain evolution of massless Dirac perturbations in Bronnikov-Berej’s
regular black holes withr0 = 0.1. From top to bottom:̀ = 1, 2, 3.

of the perturbation and the observation point. This stage
is followed by characteristics exponentially damped oscil-
lations, the so called quasinormal vibrations. This phase is
known as quasi-normal ringing. Finally, as is usual in asymp-
totically flat or asymptotically de Sitter space-times, there ap-
pear at late times power law tails through which the perturba-
tions die.

It is important to mention that an extensive numerical ex-
ploration was performed for several values of the parameters
that enter in the regular black hole solutions. Those param-
eters were chosen such that the considered solution describe
non-extreme black holes, with two well defined horizons, and
coincides with those used in Ref. 21.

5. Quasi-normal modes

In the following we will assume for the functionζ`(t, r) the
time dependence:

ζ`(t, r) = R`(r) exp(−iω`t), (21)

Then, the functionZ`(r) satisfy the Schrodinger-like equa-
tion:

d2R`

dr2∗
+

[
ω2 − V (r)

]
R`(r) = 0. (22)

The quasinormal modes are solutions of the wave equa-
tion (12) with boundary conditions requiring pure out-going
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FIGURE 6. Normal (left) and logarithmic (right) plots of the time-domain evolution of massless Dirac perturbations in Dymnikova’s regular
black holes withα = 0.1. From top to bottom:̀ = 1, 2, 3.

waves at spatial infinity and pure in-coming waves on the
event horizon.

In order to evaluate the quasinormal modes we used two
different methods: fitting the numerical data obtained from
characteristic and finite difference integration, and a WKB-
type semianalytical scheme.

5.1. Fitting the numerical data

The first method uses directly the numerical data obtained
previously by finite difference or characteristic integration
and fit it. This numerical fitting scheme allow us to ob-
tain very accurate results for the fundamental overtone. For
higher overtones is very difficult to be implemented, because

TABLE I. Lowest lying Dirac quasinormal frequencies for the
Bardeens’s solution, withm = 1. The results are obtaining by
fitting the appropiate region on the numerical data.

` n α = 0.1 α = 0.3 α = 0.6

0 0 0.1828− 0.0960i 0.1858− 0.0950i 0.1977− 0.0892i

1 0 0.3808− 0.0963i 0.3867− 0.0953i 0.4080− 0.0897i

2 0 0.5738− 0.0962i 0.5818− 0.0956i 0.5860− 0.0749i

3 0 0.7686− 0.0963i 0.7781− 0.0952i 0.8243− 0.0898i

4 0 0.9593− 0.0961i 0.9741− 0.0952i 1.0300− 0.0897i

5 0 1.1529− 0.0962i 1.1690− 0.0952i 1.2442− 0.0898i
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FIGURE 7. Normal (left) and logarithmic (right) plots of the time-domain evolution of massless Dirac perturbations in Ayón-Beato’s regular
black holes withq=0.1. From top to bottom:̀ = 1, 2, 3.

TABLE II. Lowest lying Dirac quasinormal frequencies for the
Haywards’s solution, withm = 1. The results are obtaining by
fitting the aproppiate region on the numerical data.

` n α = 0.1 α = 0.3 α = 0.7

0 0 0.1827−0.0961i 0.1839−0.0945i 0.1893−0.0835i

1 0 0.3796−0.0955i 0.3800−0.0953i 0.3960−0.0850i

2 0 0.5756−0.0957i 0.57640−0.0949i 0.5984−0.0852i

3 0 0.7662−0.0962i 0.7725−0.0949i 0.8004−0.0855i

4 0 0.9617−0.0960i 0.9666−0.0949i 1.0027−0.0855i

5 0 1.1564−0.0962i 1.1636−0.0949i 1.2006−0.0855i

TABLE III. Lowest lying Dirac quasinormal frequencies for the
Bronnikov-Berej’s solution, withm = 1. The results are obtaining
by fitting the aproppiate region on the numerical data.

` n α = 0.1 α = 0.3 α = 0.4

0 0 0.1897−0.0973i 0.2086−0.0982i 0.2218−0.0973i

1 0 0.3935−0.0975i 0.4308−0.0983i 0.4561−0.0975i

2 0 0.5946−0.0973i 0.6511−0.0983i 0.6879−0.0974i

3 0 0.7953−0.0972i 0.8666−0.0983i 0.9195−0.0974i

4 0 0.9973−0.0973i 1.0864−0.0983i 1.1494−0.0974i

5 0 1.1930−0.0973i 1.3000−0.0983i 1.3809−0.0973i
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FIGURE 8. Normal (left) and logarithmic (right) plots of the time-domain evolution of massless Dirac perturbations in Bronnikov-Fabris’s
regular black holes withb = 0.1. From top to bottom:̀ = 1, 2, 3.

TABLE IV. Lowest lying Dirac quasinormal frequencies for the
Dymnikova’s solution, withm = 1. The results are obtaining by
fitting the aproppiate region on the numerical data.

` n r0 = 0.1 r0 = 0.3 r0 = 0.4

0 0 0.1917− 0.0974i 0.2187− 0.0976i 0.2407− 0.0928i

1 0 0.3981− 0.0978i 0.4509− 0.0979i 0.4947− 0.0933i

2 0 0.6013− 0.0975i 0.6793− 0.0977i 0.7450− 0.0932i

3 0 0.8038− 0.0976i 0.9084− 0.0979i 0.9921− 0.0934i

4 0 1.0053− 0.0975i 1.1355− 0.0978i 1.2442− 0.0934i

5 0 1.2083− 0.0974i 1.3659− 0.0978i 1.4901− 0.0934i

in the time domain profile, all overtones are present, and it
is very difficult to isolate each contribution. For the funda-
mental overtone, taking into account that the higher ones are
more damped and decay very quickly, we can choose a time
interval very far from the begining of the quasinormal ring-
ing phase to fit the data. For this reason we only determined
the quasinormal frequencies, using this method, for the fun-
damental overtone.

The numerical results from fitting the numerical data
from finite difference integration are presented in Tables I-
VI. The results obtained fitting the numerical data from char-
acteristic integration are similar.
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TABLE V. Lowest lying Dirac quasinormal frequencies for the
Ayón-Beato’s solution, withm = 1. The results are obtaining by
fitting the aproppiate region on the numerical data.

` n q = 0 q = 0.3 q = 0.6

0 0 0.1824−0.0962i 0.1891−0.0954i 0.2172−0.0846i

1 0 0.3800−0.0963i 0.3927−0.0956i 0.4488−0.0853i

2 0 0.5747−0.0964i 0.5928−0.0955i 0.6768−0.0855i

3 0 0.7678−0.0963i 0.7920−0.0956i 0.9041−0.0856i

4 0 0.9593−0.0963i 0.9921−0.0956i 1.1321−0.0856i

5 0 1.1529−0.0963i 1.1893−0.0956i 1.3610−0.0856i

TABLE VI. Lowest lying Dirac quasinormal frequencies for the
Bronnikov-Fabri’s solution, withm = 1. The results are obtain-
ing by fitting the aproppiate region on the numerical data.

` n b = 0.1 b = 0.5 b = 1

0 0 0.1824−0.0962i 0.1807−0.0968i 0.1759−0.0983i

1 0 0.3774−0.0965i 0.3785−0.0975i 0.3660−0.0992i

2 0 0.5747−0.0964i 0.5695−0.0970i 0.5560−0.0993i

3 0 0.7678−0.0963i 0.7601−0.0969i 0.7451−0.0985i

4 0 0.9617−0.0963i 0.9520−0.0968i 0.9286−0.0984i

5 0 1.1529−0.0963i 1.1424−0.0968i 1.1154−0.0984i

5.2. Sixth order WKB approximation

The second method is a semianalytical one used solve
Eq. (22) with the required boundary conditions, based in a
WKB-type approximation, that can give accurate values of
the lowest, which lives longer, quasinormal frequencies, and
was used in several papers to determinate the quasinormal
frequencies in a variety of systems [9,11,12,28-32].

The WKB technique was applied to find quasinormal
modes for the first time by Shutz and Will [33] and reach
up to first order. This approach was extended to the third or-
der beyond the eikonal approximation by Iyer and Will [23]
and to the sixth order by Konoplya [34,35]. In our numer-
ical calculation we used this sixth order WKB expansion,
which gives a relative error about two orders less than the
third WKB order. This expansion allows us to determine the
quasinormal frequencies through the formula

i

(
ω2 − V0

)
√
−2V

′′
0

−
6∑

j=2

κj = n +
1
2
, (23)

wheren = 0, 1, 2, ... if Re(ω) > 0 or n = −1,−2,−3, .. if
Re(ω) < 0 is the overtone number. In (23)V0 is the value
of the potential at its maximum as a function of the tortoise
coordinate, andV

′′
0 represents the second derivative of the

potential with respect to the tortoise coordinate at this max-
imum. The correction termsκj depend on the value of the
effective potential and its derivatives ( up to the 2i-th order)
in the peak.

TABLE VII. Quasinormal frequencies for Bardeen’s solution with
m = 1 and various̀ . WKB results.

` n α = 0.1 α = 0.3 α = 0.6

0 0 0.1830−0.0948i 0.1860−0.0936i 0.1977−0.0881i

1 0 0.3807−0.0963i 0.3863−0.0952i 0.4090−0.0896i

2 0 0.5751−0.0962i 0.5833−0.0952i 0.6170−0.0898i

2 1 0.5581−0.2924i 0.5673−0.2891i 0.6044−0.2716i

3 0 0.7687−0.0962i 0.7795−0.0952i 0.8243−0.0898i

3 1 0.7557−0.2906i 0.7673−0.2876i 0.8147−0.2707i

3 2 0.7313−0.4913i 0.7444−0.4857i 0.7964−0.4554i

4 0 0.9619−0.0961i 0.9754−0.0952i 1.0314−0.0898i

4 1 0.9515−0.2898i 0.9656−0.2868i 1.0236−0.2702i

4 2 0.9313−0.4875i 0.9467−0.4822i 1.0086−0.4532i

4 3 0.9031−0.6916i 0.9202−0.6836i 0.9872−0.6401i

5 0 1.1550−0.0961i 1.1712−0.0952i 1.2383−0.0898i

5 1 1.1463−0.2894i 1.1630−0.2864i 1.2318−0.2700i

5 2 1.1292−0.4854i 1.1470−0.4803i 1.2191−0.4519i

5 3 1.1048−0.6861i 1.1240−0.6784i 1.2007−0.6368i

5 4 1.0743−0.8927i 1.0953−0.8821i 1.1775−0.8253i

TABLE VIII. Quasinormal frequencies for Hayward’s solution
with m = 1 and various̀ . WKB results.

` n α = 0.1 α = 0.4 α = 0.6

0 0 0.1828−0.0947i 0.1858−0.0911i 0.1893−0.0857i

1 0 0.3804−0.0962i 0.3849−0.0937i 0.3916−0.0890i

2 0 0.5745−0.0961i 0.5813−0.0937i 0.5915−0.0893i

2 1 0.5263−0.4980i 0.5656−0.2842i 0.5765−0.2701i

3 0 0.7679−0.0961i 0.7770−0.0936i 0.7907−0.0893i

3 1 0.7549−0.2905i 0.7649−0.2828i 0.7793−0.2693i

3 2 0.7305−0.4910i 0.7422−0.4774i 0.7573−0.4531i

4 0 0.9610−0.0961i 0.9723−0.0937i 0.9896−0.0893i

4 1 0.9505−0.2897i 0.9626−0.2822i 0.9804−0.2688i

4 2 0.9303−0.4873i 0.9438−0.4741i 0.9624−0.4509i

4 3 0.9021−0.6913i 0.9174−0.6717i 0.9365−0.6370i

5 0 1.1539−0.0961i 1.1675−0.0937i 1.1883−0.0893i

5 1 1.1451−0.2892i 1.1593−0.2818i 1.1806−0.2686i

5 2 1.1281−0.4852i 1.1435−0.4724i 1.1654−0.4497i

5 3 1.1035−0.6858i 1.1207−0.7000i 1.1433−0.6337i

5 4 1.0730−0.8923i 1.0920−0.8667i 1.1150−0.8213i

Tables VII to XII presents the WKB values obtained for
the quasi-normal frequencies with some multipole numbers
` for regular black holes with different solution’s parameters.
As it is observed, the sixth order WKB approach gives results
in agreement with those obtained by fitting the numerical in-
tegration data.
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FIGURE 9. Quasinormal modes of Bardeen’s regular black hole
with α = 0.1.

TABLE IX. Quasinormal frequencies for Bronnikov-Berej’s solu-
tion with m = 1 and various̀ . WKB results.

` n r0 = 0.1 r0 = 0.3 r0 = 0.4

0 0 0.1897−0.0961i 0.2084−0.0975i 0.2215−0.0967i

1 0 0.3940−0.0973i 0.4307−0.0983i 0.4562−0.0973i

2 0 0.5950−0.0973i 0.6496−0.0983i 0.6877−0.0974i

2 1 0.5786−0.2955i 0.6356−0.2979i 0.6754−0.2946i

3 0 0.7951−0.0973i 0.8678−0.0983i 0.9186−0.0974i

3 1 0.7826−0.2939i 0.8571−0.2966i 0.9091−0.2935i

3 2 0.7592−0.4964i 0.8369−0.4998i 0.8913−0.4937i

4 0 0.9950−0.0973i 1.0857−0.0983i 1.1491−0.0974i

4 1 0.9849−0.2931i 1.0771−0.2959i 1.1415−0.2930i

4 2 0.9655−0.4928i 1.0604−0.4968i 1.1268−0.4913i

4 3 0.9384−0.6986i 1.0371−0.7027i 1.1061−0.6938i

5 0 1.1947−0.0972i 1.3035−0.0983i 1.3795−0.0974i

5 1 1.1862−0.2926i 1.2963−0.2956i 1.3732−0.2927i

5 2 1.1698−0.4908i 1.2822−0.4951i 1.3607−0.4900i

5 3 1.1463−0.6933i 1.2620−0.6983i 1.3428−0.6902i

5 4 1.1170−0.9015i 1.2367−0.9063i 1.3204−0.8943i

Figure 9 show the quasinormal modes for Bardeen’s solu-
tion (3). The results obtained for the other regular black hole
backgrounds are similar.

As can be easily seen, the behavior of Dirac quasinormal
frequencies is analogous to that of the scalar perturbation in
regular black holes [21]) as well as Dirac perturbations in
other typical black hole backgrounds [7,9-12,36]. The oscil-
lation frequency increases as the multipole number increases
for fixed overtone numbers. Concerning the damping rate,
increasing̀ the magnitude of the negative imaginary part of
the fundamental overtone (n = 0) first increases but then
decrease quickly reaching a saturation value for higher mul-
tipoles, showing strong similarity with other black hole back-
grounds [7,10,36].

For higher overtones the opposite situation arises for the
behaviour of the quasinormal frequencies. For a fixed angular

TABLE X. Quasinormal frequencies for Dymnikova’s solution with
m = 1 and various̀ . WKB results.

` n r0 = 0.1 r0 = 0.3 r0 = 0.4

0 0 0.1919−0.0964i 0.2188−0.0972i 0.2408−0.0925i

1 0 0.3983−0.0976i 0.4509−0.0978i 0.4943−0.0932i

2 0 0.6013−0.0975i 0.6797−0.0978i 0.7448−0.0933i

2 1 0.5852−0.2962i 0.6670−0.2961i 0.7340−0.2814i

3 0 0.8035−0.0975i 0.9079−0.0978i 0.9946−0.0933i

3 1 0.7912−0.2945i 0.8982−0.2950i 0.9864−0.2809i

3 2 0.7681−0.4974i 0.8799−0.4964i 0.9706−0.4710i

4 0 1.0054−0.0975i 1.1358−0.0978i 1.2441−0.0933i

4 1 0.9955−0.2938i 1.1280−0.2944i 1.2375−0.2806i

4 2 0.9764−0.4939i 1.1129−0.4938i 1.2247−0.4695i

4 3 0.9497−0.7000i 1.0917−0.6977i 1.2061−0.6611i

5 0 1.2072−0.0975i 1.3636−0.0978i 1.4935−0.0933i

5 1 1.1989−0.2934i 1.3570−0.2941i 1.4880−0.2804i

5 2 1.1827−0.4919i 1.3443−0.4924i 1.4772−0.4687i

5 3 1.1596−0.6948i 1.3259−0.6938i 1.4614−0.6588i

5 4 1.1307−0.9032i 1.3030−0.8994i 1.4411−0.8515i

TABLE XI. Quasinormal frequencies for Ayón-Beato’s solution
with m = 1 and various̀ . WKB results.

` n q = 0 q = 0.3 q = 0.6

0 0 0.1826−0.0949i 0.1893−0.0941i 0.2173−0.0836i

1 0 0.3801−0.0964i 0.3927−0.0956i 0.4489−0.0852i

2 0 0.5741−0.0963i 0.5929−0.0956i 0.6771−0.0854i

2 1 0.5570−0.2927i 0.5773−0.2901i 0.6649−0.2576i

3 0 0.7674−0.0963i 0.7923−0.0955i 0.9046−0.0855i

3 1 0.7543−0.2910i 0.7804−0.2886i 0.8953−0.2573i

3 2 0.7298−0.4919i 0.7581−0.4872i 0.8772−0.4313i

4 0 0.9603−0.0963i 0.9915−0.0955i 1.1317−0.0855i

4 1 0.9498−0.2901i 0.9819−0.2878i 1.1243−0.2571i

4 2 0.9295−0.4881i 0.9634−0.4838i 1.1097−0.4301i

4 3 0.9011−0.6925i 0.9375−0.6856i 1.0881−0.6055i

5 0 1.1531−0.0962i 1.1905−0.0955i 1.3588−0.0855i

5 1 1.1443−0.2897i 1.1824−0.2874i 1.3526−0.2570i

5 2 1.1271−0.4860i 1.1668−0.4819i 1.3403−0.4294i

5 3 1.1025−0.6869i 1.1443−0.6806i 1.3221−0.6036i

5 4 1.0718−0.8939i 1.1163−0.8846i 1.2983−0.7800i

number`, the real part of the oscillation frequencies de-
creases as the overtone number increases, and the magnitude
of the imaginary part increases. This is the typical behaviour
for back hole backgrounds: higher overtones decay faster
than lower ones.

Figures (10)-(11) show the dependence of the quasinor-
mal modes with the different physical parameters that char-
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FIGURE 10. Dependance of real (left) and imaginary (right) parts of the first two quasinormal frequencies for Bronnikov-Berej’s regular
black hole with the parameterr0.

TABLE XII. Quasinormal frequencies for Bronikov-Fabris’s solu-
tion with m = 1, c = −(3π/2b), ρ = 3 and various̀ . WKB
results.

` n b = 0.1 b = 0.5 b = 1

0 0 0.1826−0.0950i 0.1809−0.0957i 0.1756−0.0983i

1 0 0.3799−0.0964i 0.3768−0.0969i 0.3677−0.0985i

2 0 0.5739−0.0963i 0.5693−0.0968i 0.5558−0.0984i

2 1 0.5568−0.2928i 0.5516−0.2945i 0.5362−0.2995i

3 0 0.7671−0.0963i 0.7610−0.0968i 0.7430−0.0983i

3 1 0.7540−0.2910i 0.7475−0.2927i 0.7281−0.2975i

3 2 0.7294−0.4920i 0.7220−0.4950i 0.6999−0.5038i

4 0 0.9600−0.0963i 0.9524−0.0968i 0.9300−0.0983i

4 1 0.9494−0.2902i 0.9414−0.2918i 0.9179−0.2965i

4 2 0.9291−0.4882i 0.9204−0.4910i 0.8946−0.4994i

4 3 0.9007−0.6927i 0.8910−0.6970i 0.8620−0.7098i

5 0 1.1527−0.0963i 1.1436−0.0968i 1.1167−0.0983i

5 1 1.1439−0.2898i 1.1344−0.2913i 1.1066−0.2960i

5 2 1.1266−0.4861i 1.1166−0.4888i 1.0869−0.4969i

5 3 1.1020−0.6871i 1.0911−0.6911i 1.0587−0.7032i

5 4 1.0713−0.8941i 1.0593−0.8997i 1.0235−0.9166i

acterize some the regular black hole solutions studied in this
paper. For all the regular black hole solutions, with the
exception of Bronnikov-Fabris’s black hole, as the param-
eter that describes the solution increases, the real part of
the quasinormal frequency increases, and the damping rate
increases first and then decreases, giving place to a longer
ringdown phase. This behavior is similar to that exhibited
by a test Dirac field inD-dimensional Reissner-Nordstrom
black holes [37,38]. Similar behavior is exhibited by a test
scalar field in regular black holes and Reissner-Nordstrom
solution [21]), and also gravitino fluctuations in Reissner-
Nordstrom backgrounds [39]. However, Bronnikov-Fabris’s
regular phantom black hole solution shows a different behav-
ior: as the parameterb increases, the actual oscillation fre-
quency decreases, and the damping factor increases. Then,

regular phantom black holes becomes more rigid with the in-
creasing of the scalar chargeb.

As we can observe from all the above results, all quasi-
normal frequencies have a definite negative imaginary part, a
fact that indicates absence of unstable modes for Dirac pertur-
bations in regular black hole backgrounds. The real question
about the stability of such backgrounds is related with the be-
haviour of proper spacetime fluctuations, a problem that need
to be solved in the future. But the fact that Dirac and scalar
perturbations in those backgrounds propagates without insta-
bilities, is a good indication for the possible real stability of
regular black hole solutions.

An important check of our results can be performed
studing the regular black hole solutions in those limits in
which they becomes Schwarzschild solution. We deter-
mined the quasinormal modes in those limits and obtained
the known results. As a representative result, we include in
Table XI the frequencies obtained for the Ayón-Beato’s solu-
tion in the limit q = 0.

6. Late-time tails

Another interesting fact to analyse is the relaxation of spinor
fluctuations outside the different solutions describing regular
black hole backgrounds at very late times [40,41]. To study
this late-time behavior, we numerically fit the numerical data
obtained from characteristinc integration in the appropriate
region of the time domain, to extract the law that describe the
relaxation.

In general, all our numerical results indicate that the de-
cay of massless Dirac fields shows a time dependance in the
form of a power law, whose exponent changes with the multi-
pole number̀ , but remain fixed for all values of the physical
parameters that describes the different solutions. Also, this
power law exponents are the same for all regular black holes,
a situations similar to that encountered in the case of four
dimensional singular black holes.

In all cases the Dirac perturbations relax at asymptotically
late times following a power law proportional tot−(2`+3), in
strong similarity to the relaxation of fields of different spin in
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FIGURE 11. Dependance of real (left) and imaginary (right) parts of fundamental quasinormal frequency for regular black holes with
the parameters in the solution. From top to bottom we have the results for Hayward’s, Dymnikova’s and Bronnikov-Fabris’s black holes,
respectively.

four dimensional Schwarzschild and stringy black hole back-
grounds [9,10].

However, we remark at this point that this dependance are
only a result consistent with our numerical data. In contrast
to the case for boson fields, in which the general form of the
effective potential is suitable to expand for large values of the
tortoise coordinate [42,43] and then extract the above power
law behaviors directly from this asymptotic expansion, a sim-
ple analytical argument to support the late time behaviour for
fermion test fields do not exist. Then the problem related with
the analytical determination of the decay factors for fermion
perturbations in regular black holes remains open.

7. Concluding remarks

We have studied the propagation of a massless spinor field
outside various regular black hole spacetimes, obtained from

theories that couples gravity with source fields, as nonlinear
electromagnetic or some phantom matter. We have solved the
equation of motion numerically for all cases, using finite dif-
ference and characteristic integration methods, and obtain the
time domain evolution profile. Fitting the numerical data at
the quasinormal ringing stage we determined the quasinormal
frequencies. We also compute the quasinormal spectrum us-
ing a semi-analytical sixth order WKB approximation. This
semianalytical results are in perfect correspondence with the
numerical ones.

The quasinormal stage at late times is characterized by
damped proper oscillations. We have complex frequen-
cies with negative imaginary part, implying stability of the
fermion fluctuations outside the black holes. This picture is
the same for all electric and magnetic solutions. The fact that
we have found no instabilities for the test field after an ex-
tensive explorations with different values of the parameters
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that describes the regular black hole solutions considered, is
not a direct indication of the stability of the solution itself,
although serves as an indication of such stable behaviour.
As the charge parameters that characterizes the different so-
lutions increases, the proper frequencies increases and the
damping decreases, but this behavior is different for regu-
lar phantom black holes, for which an increase in the scalar
charge increases the rigidity of the black hole.

We also computed the decay factors for the late time re-
laxation of spinor perturbations, showing that the fluctuations
relaxes in the same way as Dirac waves in other for dimen-
sional non-regular backgrounds.

Some extensions to this work are interesting. First, it
would be an important question to determine analytically the
late time decay factors, taking into account that for poten-

tials typical of fermion fields do not exist a simple analyti-
cal argument to approach this problem, as in the case of bo-
son fields. Also, the study of the evolution of some boson
perturbations: electromagnetic and gravitational ones in this
space-times would be an interesting subject to be addressed
in future reports.
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