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Time evolution of spinor perturbations in regular black holes

O. Pavel Ferandez Piedra, J. Bernal Castillo, F. Sosd&idiand Y. Jiranez Santana
Grupo de Estudios Avanzados, Universidad de Cienfuegos,
Carretera a Rodas, Cuatro Caminos, s/n. Cienfuegos, Cuba.
e-mail: opavel@ucf.edu.cu; jbernal@ucf.edu.cu; fsosa@ucf.edu.cu; yjsantana@ucf.edu.cu

Received 17 March 2015; accepted 29 June 2015

In this report we present results concerning the study of complete time evolution of massless fermion perturbations propagating in several
four dimensional regular black hole space-times. The black hole solution arises from coupling gravity with external matter sources, like non-
linear electrodynamics or some phantom fields. After numerical integration we obtain the time evolution profiles for fermion fields in this
space-times. By fitting the numerical data, we compute the quasinormal frequencies that characterize the test field evolution at intermediary
times, and for late times, we find power law tails, in strong similarity with usual results for non regular black holes. Quasinormal modes
was also investigated using a WKB approach at six order beyond the eikonal limit, obtaining a good correspondence with the numerical
calculated frequencies.
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1. Introduction black holes solution, but also in higher dimensional black
holes backgrounds [7-12].
On other hand, the avoidance of singularities in Gravity

The study of perturbations around black hole solutions can bgheories is an old problem. In 1968 Bardeen proposed the
traced back to the work of Regge and Wheeler in 1957 [1]first model of a regular black hole without singularity, that
Itis well known that the time evolution of such perturbations satisfied the weak energy condition [13]. This regular black
outside the horizon can be divided in three stages. Firstlyole was interpreted as a solution describing the gravitational
we have an initial wave burst that comes directly from thefield of a magnetic monopole in nonlinear electrodynamics
source of perturbation and consequently is strongly deper413]. After Bardeen’s model, several regular black hole solu-
dent on the initial wave form of the fluctuation. Following tion has been proposed in different contexts [15-20]. All this
this initial transient stage, the system undergo proper dampeslack hole solution arises from coupling gravity with exter-
quasinormal oscillations, whose frequencies and dampingal matter sources, like non-linear electrodynamics or some
rates are completely fixed by the geometric structure of thehantom fields.
black hole spacetime, and the physical properties of the test  concerning perturbations in the above mentioned black
pertu.rbation. F.inaIIy, that quasinormal ringi.ng is followed pole packgrounds, in a previous paper Flachi and Lemos de-
by tails at late times, whose exponent are different for eackermined the quasinormal modes of scalar perturbations [21]
multipole number describing the mode, and, for higher di-gng | j Ma and Lin studied a Dirac field [22]. In those papers
mensional spacetimes, depends on the dimensionality of thge authors perform the calculations using mainly a WKB ap-
background. Power law tails are typical for asymptotically yroximation developed by lyer and Will [23]. However, they
flat spacetimes, whereas for asymptotically de Sitter backgply studied quasinormal modes, and not the complete time
grounds we can observe also exponential tails. The situatiog\o|ution of perturbations.
is different for AdS black holes, in which the complete time 11,5 haner is devoted to the study the complete evolution
evolution is dominate by quasinormal oscillations [2-5]. 4 assless fermion fluctuations in all the above mentioned

As quasinormal frequencies encode information on thgegular black holes backgrounds [13,15-20]. Not only the
black hole space-time geometry, it is possible, for examyuasinormal ringing is sudied, but also late time tails that it is
ple, estimate the charge, mass and angular momentum @kpected to appear in those gravitational backgrounds. The
the black hole from it [4,5]. Quasinormal frequencies alsopaper is organized as follows: Section 2 briefly presents the
depends on the parameters that characterize the perturbiRggular black holes considered in the rest of this work. In
fields. Thus, the propagations of disturbances of differenec. 3 we present the evolution equations for fermion fields
spin weight is an important subject to study in such backin spherically symmetric space-times, and Sec. 4 is devoted
grounds. to describe the numerical solution of the evolution equations

As fermions universally describe some matter fields, infor regular black hole backgrounds. In Sec. 5 we present
most cases they are essential for the structure of the soltike results for quasinormal frequencies, and in Sec. 6 we an-
tions, raising the importance to study fermion fluctuations.alyze the late time tails present in the dynamic evolution of
Fermions perturbations has been studied for four dimensionahe fermion fluctuations. Finally, we present our conclusions.
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2. Regular black hole Solutions The above result, (5), was also obtained in Ref. 17, as the
. _ zeroth order perturbative solution of the equations of motion

The space-times of all the regular black hole solutions;oming from quadratic gravity coupled with nonlinear elec-

[13,15-20] considered in this paper can be described by thgogynamics, using for the matter source the lagrangian den-

line element sity
2F
1 — tanh? (s ¥ Q2 )

ds* = —f(r)dt*> + f~1(r)dr? + r2dQ3(0,¢). (1) L(F) =F
wheredQ? = df? + sin® fd¢? describes the unit two-sphere.

In the rest of this section we closely follow the brief re- wheres = |Q|/2b, @ is the magnetic charge of the solution
view in Sec. 2 of Ref. 21, adding some minor informationandb is a free parameter. In this modelandb can be ad-
from the original references. Regular black hole solutiongusted for obtain regularity at the center [17]. Schwarzschild
can be founded by coupling gravity with a properly matterblack hole is obtained from the above solution in the limit

)

source through a typical action defined as: rog — 0.
1 Nonlinear electrically charged configurations can lead to
S = Tor /d4x\/fg(R - %) (2)  regular black holes solutions. In Ref. 19, GkBeato and
Garda proposed a model in which
whereg is determinant of the metric tensaR, is the Ricci
scalar, and?’ represents the Lagrangian density of the mat- Fr)=1— 2mr? n ¢°r? 6)
ter source. (r2 +¢2)3/2 ~ (r2 + ¢?)2

The first solution that will be consider in this paper was ] .
proposed by Bardeen in Ref. 13, and reinterpreted in Ref. 1} the above solutiom: andq are respectively the mass and
as a magnetic solution to Einstein equations coupled to norfe electric charge of the configuration. For charges below
linear electrodynamics with matter Lagrangian density giversOme critical valug., we have a solution with separated in-

by ner and event horizon, respectively. ko ¢. the horizons
3 Norera 5/2 shrink into a single one leading to an extreme black hole solu-
ZL(F) = 5 ( > , tion, whereas fog > ¢. the horizon structure are absent, and
2sa® \ 1 +V2a2F we are in presence of a globally regular gravitational back-
with F = (1/4)F,, F*, being F* the electromagnetic ground.
field strength. In this model the parameter can be It is important to mention that solution (6), as discussed

interpreted as the charge of the self-gravitating magnetié" Ref. 16 by Bronnikov, should be taken with care, due to
monopole [14], and its numerical value, as well as those othe presence of some cusps in the Lagrangian density, which
the massn, determine if the solution have zero, one or two implies that the regular electric solution correspond to differ-

horizons. The line element of Bardeen’s regular black hole i€nt Lagrangians in different parts of space. However, as in
given by (1) with: Ref. 21, taking into account that the above solution coincides
with a Schwarzschild black hole fgr= 0, we will take this

flr)=1- 2mr? _ (3) asagood example for check the validity of our calculational
(r2 +a?)3/2 schemes.
A quite similar solution was founded by Hayward in Using the results of Ref. 16 on the basic properties that
Ref. 15, in which: the Lagrangian density?(F') can have, for lead to an elec-
—_— P trically charged regular black hole configuration, Dymnikova
fr)=1- 10— A (4)  showsin Ref. 18 that, for certain non-linear electrodynamics
r? + 20%m r? +2a? sources, there exist solutions with
As pointed out in Ref. 21, this solution requires a mat-
ter source whose energy-momentum tensor is de-Sitter at the fr)=1- am <tan1r _ 2””0 2) @)
core and vanishes at spatial infinity. The parametés re- r To 77 4T

lated with the de Sitter core radiisand the mass: through
a = L./m. For this solution the existence and number of

horizons is again determined by the relative values:gind ing the massn and the charge of the electric solution. In the

L (ora). As we can easily observe, in the limit — 0 the |, ro — 0, the solution coincides with the Schwarzschild
Bardeen and Hayward solutions reduce to the Schwarzschil lack hole

black hole. . . . . The last gravitational background to be considered in this
Another magnetically charged solution is given ; . X .
paper is presented in Ref. 20. It comes from coupling gravity

by  Bronnikov 2in Ref. 16, \./vhere. he used with a phantom field, using an action of the form
Z(F) = F/cosh? (a|F/2['/*) to obtain the line element ’

(1) with ) 5
F) =1 2 (1 ). - S= /\/gd R+ g™ 0,00,6—2V(9)]  (®)

r

which satisfies the weak energy condition. In the above ex-
pressionqy = 7q?/(8m) is a length scale parameter involv-
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wheree is set to -1. The solution obtained is given by (1) is|
with

2 2 (/12 — B2 /r2 — p2 I

f(r):1+cb%+ng ( 7’T2 +tan17db> 9 Lol

V(r)

The parameters, ¢ and p, characterize the features of the
phantom potential field/ (b, ¢, po). In this paper, we fix the
values ofc andp, asc = —(37/2b) andp, = 3, correspond-
ing to a black hole with unit mass. As in the other regular
black hole solutions, we can obtain the Schwarzschild black

hole in the limitb — 0. 0.0b

3. Massless Dirac perturbations

0.5
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FIGURE 1. Potential for Dirac perturbations with= 0 (bottom)

to/ = 5 (top) anda = 0.1 in Bardeen’s regular black hole.

In curved space-time the massless Dirac equation is:
Yy =TIV, =0

whereY is the Dirac Operatol* are the gamma matrices of w1
the curved space-time, the covariant derivative is defined as
V= 8H—(1/4)wgb7ﬂb, with 1 anda being the tangent and
space-time indices respectively, related by the basis of one
formse® =ej. The connectiow,‘jb = w® obey the relation

de ® + wi A é° = 0, beingy, the gamma matrices of flat
space-time, related with the curved space-time ones trougt
I'* = etl4®. It form a Clifford algebra and consequently sat-

u

(10) i

T
1
|
|
|
:
D

O

isfy the anti-commutation relationgy®, v’} = —21? con
00
e =-1

p=r—3%, (@f)éé“ + @é_)éé_)> where

S(+) _ [ ie(t,T)
906+ ( X:(tﬂ‘) )7 (11)

In Refs. 7, 9, 24 is its showed that by writing

v( vl

the Dirac equation in the general spherically symmetric backficure 2. Integration grid in the plany, v) limited by the points
ground can be put as a simple pair of evolution equations, ong/, S, E, W andC. This cell represents an integration step, and the

for each component of the spingr

¢ 9%
o2 o2 + Vi(r)¢e =0, (12)
Pxe 0*xu
12 - arz +V*(T>Xf _07 (13)
where:
Vi = LT A2 (14)
dr,
and the functiom\,(r) is given by
Ae(r) = # (+1). (15)

initial data are specified on the left and bottom sides of the rhom-
bus.

and we eliminate the subscript) for the effective potential,
definingV (r) = V4 ().

In Fig. 1 we show effective potential profiles for massless
Dirac perturbation in the four dimensional black hole back-
ground of Ref. 13. The profiles for other regular black holes
are similar. In all cases, the potential has the form of a def-
inite positive barrier. Then, we can expect at intermediary
times well defined damped quasinormal oscillations in the
evolution of fermion perturbations outside this spacetimes.
This fact will be confirmed in the next sections.

The above equations gives the temporal evolution of

Dirac perturbations outside the black hole spaceti{p@, )

andy,(t, ) will have similar time evolutions and then they

4. Time evolution of Dirac perturbations

will have the same spectra, both for scattering and quasin order to solve the Eq. 12, we first developed a finite dif-
normal, due to the supersymmetric character of the potentiaference scheme (12). We discretize (12) takingt, + kAt

V, andV_ [25]. In the following we will work with Eq. (12)

andr, = r. + jAr., and rewrite the equation as
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FIGURE 3. Normal (left) and logarithmic (right) plots of the time-domain evolution of massless Dirac perturbations in Bardeen’s regular
black holes withe = 0.1. From top to bottom? = 1, 2, 3.

Then, defining/max as the largest value df; in the numeri-

i i A2 iy i cal grid, our numerical solution will be stable if
warl = —tp_ + Ar2 (wk + 4y )
* At AP
AtQ ) ) m + TVmX <1 (18)
+ <22A7ﬁvjAt )qpi, (16) *
We also chose as initial condition a static Gaussian distribu\—Ne can now takedt = (1/2)Ar, and choose a sufficiently

small time step such thafnax < (3/At?) for assure the sta-
9 bility of our numerical codes. In all the calculations we veri-

Y (ra, to) = Ae—a(r-=0)? &w (ro,t) lim, = 0. (17) fied thatthis st.ability condition is fulfilled. - .
. 3 - We also implemented the characteristic integration
Applying the Von Neumann stability condition to the scheme developed by Gundlach, Price and Pullin [27] to

tion

above difference equation results in the relation check the numerical results.
A2, « At? As a first step, we introduced in (12) light-cone coordi-
Ar2om (5) + TV(O‘) <1 natesdu = dt — dr, anddv = dt + dr, to obtain
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FIGURE 4. Normal (left) and logarithmic (right) plots of the time-domain evolution of massless Dirac perturbations in Hayward’s regular
black holes withe = 0.1. From top to bottom? = 1, 2, 3.

82
(48u8v * V(uvv)) Ce(u,v) = 0.

(19)

We see that the field value at point only depends on the
field values atS, E andW. For a set of initial conditions at
the two null surfacess = ug andv = vg, we can find, us-

The next step is to discretize the above equation on #ng (20), the value of the field, inside the rhombus builded
grid with a typical cell of a given integration step showed on this two null surfaces. Now iterating the integration cell,
in Fig. 2, where the letter$, W, £, N are used to mark we can find the complete data that gives the evolution of the
the points that limits this particular integration cell accord-fields in time. Then fitting the numerical data at the corre-
ingto: S = (u,v), W = (u+ Au,v), E = (u,v + Av),  sponding region of the profile, it is possible to find the quasi-
N = (u+ Au,v + Av). The discretized version of (19) that normal frequencies.
we used was The Figs. 3-8 show the time domain profile of the evo-
lution of Dirac massless perturbations in all the regular black
hole solutions under study. As we can see, in all the regular
black holes studied the Dirac perturbation follow the usual
dynamics in time domain. First, we observe an initial tran-
sient stage, that is strongly dependent upon the initial shape

Ce(N) = C(W) + C(E) — ()
AulAv
-8

V(S) (Ce(W) + G(EB)) + O(hY),  (20)
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FIGURE 5. Normal (left) and logarithmic (right) plots of the time-domain evolution of massless Dirac perturbations in Bronnikov-Berej's
regular black holes withy = 0.1. From top to bottom? = 1, 2, 3.

of the perturbation and the observation point. This stagd. Quasi-normal modes

is followed by characteristics exponentially damped oscil-

lations, the so called quasinormal vibrations. This phase i§1 the following we will assume for the functiog) (¢, ) the
known as quasi-normal ringing. Finally, as is usual in asymplime dependence:

totically flat or asymptotically de Sitter space-times, there ap-

pear at late times power law tails through which the perturba- Ce(t,7) = Ry(r) exp(—iwet), (21)
tions die.

It is important to mention that an extensive numerical ex-1hen. the functionZ(r) satisfy the Schrodinger-like equa-
ploration was performed for several values of the parameter%on: 2R
that enter in the regular black hole solutions. Those param- 7 25
eters were chosen such that the considered solution describe "
non-extreme black holes, with two well defined horizons, and  The quasinormal modes are solutions of the wave equa-
coincides with those used in Ref. 21. tion (12) with boundary conditions requiring pure out-going

+ [w?® = V(r)] Re(r) = 0. (22)
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FIGURE 6. Normal (left) and logarithmic (right) plots of the time-domain evolution of massless Dirac perturbations in Dymnikova’s regular
black holes withe = 0.1. From top to bottom? = 1, 2, 3.

waves at spatial infinity and pure in-coming waves on the
event horizon. . TAaBLE |. Lowest lying Dirac quasinormal frequencies for the
In order to evaluate the quasinormal modes we used tW@ardeens’s solution, with: = 1. The results are obtaining by
different methods: fitting the numerical data obtained fromfitting the appropiate region on the numerical data.
characteristic and finite difference integration, and a WKB-
type semianalytical scheme. V4

a=0.1 a=0.3 a=0.6
0 0.1828 — 0.0960z 0.1858 — 0.0950z 0.1977 — 0.0892%

n

0
1 0 0.3808 — 0.0963¢ 0.3867 — 0.09537 0.4080 — 0.08973
The first method uses directly the numerical data obtainedy o .5738 — 0.0962i 0.5818 — 0.0956i 0.5860 — 0.0749;
0
0
0

5.1. Fitting the numerical data

previously by finite difference or characteristic integration
and fit it. This numerical fitting scheme allow us to ob-
tain very accurate results for the fundamental overtone. For
higher overtones is very difficult to be implemented, because5

0.7686 — 0.0963¢ 0.7781 — 0.0952¢ 0.8243 — 0.0898:
0.9593 — 0.09617 0.9741 — 0.09527 1.0300 — 0.0897¢
1.1529 — 0.0962: 1.1690 — 0.09527 1.2442 — 0.0898:
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TaBLE Il. Lowest lying Dirac quasinormal frequencies for the TABLE Ill. Lowest lying Dirac quasinormal frequencies for the
Haywards’s solution, withn = 1. The results are obtaining by  Bronnikov-Berej's solution, withn = 1. The results are obtaining

fitting the aproppiate region on the numerical data.

by fitting the aproppiate region on the numerical data.

a=0.1

a=0.3

a=0.7

a=0.1

a=0.3

a=0.4

0.1827—-0.09611
0.3796—0.0955¢
0.5756—0.0957%
0.7662—0.09621
0.9617—0.09607
1.1564—0.09621

a b WO N P Ol
O O O O O Oo|>

0.1839—-0.09457
0.3800—0.0953:
0.57640—0.0949:
0.7725—0.0949:¢
0.9666—0.0949:7
1.1636—0.0949:

0.1893—-0.0835:
0.3960—0.08502
0.5984—0.0852:
0.8004—0.0855¢
1.0027—-0.08557
1.2006—0.08557%

g h WO N PP O|>

O O O O o Oo|>

0.1897—-0.09731
0.3935—0.0975¢
0.5946—0.09731
0.7953—0.0972¢
0.9973—-0.09731
1.1930—-0.09731

0.2086—0.0982:
0.4308—0.0983:
0.6511—-0.0983:
0.8666—0.0983¢
1.0864—0.09831
1.3000—0.09831

0.2218—-0.0973¢
0.4561—-0.0975¢
0.6879—0.0974:
0.9195—0.0974¢
1.1494—0.09744
1.3809—-0.09734
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FIGURE 8. Normal (left) and logarithmic (right) plots of the time-domain evolution of massless Dirac perturbations in Bronnikov-Fabris’s
regular black holes with = 0.1. From top to bottom? = 1, 2, 3.

in the time domain profile, all overtones are present, and it

is very difficult to isolate each contribution. For the funda-
mental overtone, taking into account that the higher ones are
more damped and decay very quickly, we can choose a time

TABLE IV. Lowest lying Dirac quasinormal frequencies for the
Dymnikova’s solution, withm = 1. The results are obtaining by
fitting the aproppiate region on the numerical data.

interval very far from the begining of the quasinormal ring-

£n ro =01 ro =03 ro =04 ing phase to fit the data. For this reason we only determined
0 0 0.1917—0.0974¢ 0.2187 — 0.0976i 0.2407 — 0.09284 the quasinormal frequencies, using this method, for the fun-
1 0 0.3981 —0.0978; 0.4509 — 0.0979: 0.4947 — 0.0933¢ damental overtone.
2 0 0.6013 —0.0975¢ 0.6793 — 0.0977¢ 0.7450 — 0.0932: . . .

) ) ) The numerical results from fitting the numerical data
3 0 0.8038 —0.0976; 0.9084 —0.0979¢ 0.9921 — 0.0934i from finite difference integration are presented in Tables I-
4 0 1.0053 —0.0975¢ 1.1355 — 0.0978: 1.2442 — 0.0934: VI. The results obtained fitting the numerical data from char-
5 0 1.2083 —0.0974:¢ 1.3659 — 0.0978:; 1.4901 — 0.09341 acteristic integration are similar.
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TABLE V. Lowest lying Dirac quasinormal frequencies for the TagLe VII. Quasinormal frequencies for Bardeen’s solution with

Ayobn-Beato’s solution, withn = 1. The results are obtaining by  ,,, _ 1 and varioug. WKB results.
fitting the aproppiate region on the numerical data.

14

q=0

q=0.3

q=20.6

a=0.1

a=0.3

a=0.6

a b~ WO N P, O

O O O O © Oo|>

0.1824—-0.0962:
0.3800—-0.0963:
0.5747—0.09641
0.7678—0.09631
0.9593—-0.0963:
1.1529—-0.09633

0.1891—-0.09541
0.3927—-0.09561
0.5928—-0.09557
0.7920—-0.0956%
0.9921-0.09561
1.1893—-0.0956%

0.2172—-0.08467
0.4488—0.08531
0.6768—0.08557
0.9041—-0.08564
1.1321-0.08561
1.3610—0.0856%

TABLE VI. Lowest lying Dirac quasinormal frequencies for the
Bronnikov-Fabri's solution, withn. = 1. The results are obtain-

ing by fitting the aproppiate region on the numerical data.

L

n

b=0.1

b=0.5

b=1

g A W N P O

O O O o o o

0.1824—0.0962:
0.3774—0.0965¢
0.5747—-0.09641
0.7678—0.09631¢
0.9617—0.0963:
1.1529—-0.09631

0.1807—-0.09687
0.3785—0.0975¢
0.5695—0.0970:2
0.7601—-0.0969:
0.9520—0.0968:2
1.1424—-0.0968%

0.1759—0.09831
0.3660—0.09927
0.5560—0.09931
0.7451—-0.09857
0.9286—0.09841
1.1154—-0.09841

g o o0 o0 g b~ DD DM OWWWNDNPRPOIS

A W NPEFEP, O WDMNEPONDMNEREPOLPRPLOOO|S

0.1830—0.09481
0.3807—0.0963¢
0.5751—-0.09621
0.5581—-0.29241
0.7687—0.09621
0.7557—0.29067
0.7313—0.49134
0.9619—0.09612
0.9515—0.28981
0.9313—-0.4875¢
0.9031-0.69167
1.1550—-0.0961%
1.1463—0.28941
1.1292—-0.4854¢
1.1048—-0.68611
1.0743—-0.89271

0.1860—0.0936¢
0.3863—0.0952¢
0.5833—0.0952:
0.5673—0.2891¢
0.7795—0.09521
0.7673—0.28761
0.7444—0.485717
0.9754—0.0952:
0.9656—0.2868¢
0.9467—0.48227¢
0.9202—0.68361
1.1712—-0.09521
1.1630—0.28641
1.1470—-0.48031
1.1240—-0.67841
1.0953—-0.8821¢

0.1977—0.0881:
0.4090—0.0896¢
0.6170—0.0898:
0.6044—0.27161
0.8243—0.0898:
0.8147—-0.2707¢
0.7964—0.45541
1.0314—0.0898¢
1.0236—0.27021
1.0086—0.45321
0.9872—0.6401:
1.2383—-0.0898:
1.2318—-0.27002
1.2191-0.4519¢
1.2007—-0.6368:
1.1775—0.82534

5.2. Sixth order WKB approximation

The second method is a semianalytical one used solve!

TABLE

VIII. Quasinormal frequencies for
with m = 1 and varioug. WKB results.

Hayward’s solution

a=0.1

a=04

a=0.6

Eq. (22) with the required boundary conditions, based in a0
WKB-type approximation, that can give accurate values of 1
the lowest, which lives longer, quasinormal frequencies, and ,
was used in several papers to determinate the quasinormai
frequencies in a variety of systems [9,11,12,28-32].

The WKB technique was applied to find quasinormal 3

modes for the first time by Shutz and Will [33] and reach 3
up to first order. This approach was extended to the third or-3
der beyond the eikonal approximation by lyer and Will [23] 4

and to the sixth order by Konoplya [34,35]. In our numer- 4
ical calculation we used this sixth order WKB expansion,
which gives a relative error about two orders less than the
third WKB order. This expansion allows us to determine the 4
guasinormal frequencies through the formula 5

_(uﬂ —-L@) 6 o 1
V= DLt

Jj=2
wheren = 0,1,2, ... if Re(w) > 00rn =—-1,—-2,-3,..if

(23)

A W NEFEP O WDMNEPONMNEPEPOLPRLOOO|S

o o1 o1 gl

0.1828—-0.0947¢
0.3804—0.09621
0.5745—0.09611
0.5263—0.4980:
0.7679—0.09611
0.7549—0.29057¢
0.7305—-0.4910z
0.9610—0.09617
0.9505—0.2897¢
0.9303—-0.48731
0.9021-0.69131
1.1539—-0.09611
1.1451-0.2892:
1.1281-0.48521
1.1035—0.68584
1.0730—0.89231

0.1858—0.0911¢
0.3849—0.0937¢
0.5813—0.09377¢
0.5656—0.28421
0.7770—0.09361
0.7649—0.2828¢
0.7422—0.47744
0.9723—-0.0937¢
0.9626—0.28227
0.9438—0.47412
0.9174—-0.6717¢
1.1675—0.0937:
1.1593—-0.2818:
1.1435—0.47244
1.1207—0.7000%
1.0920—-0.86671

0.1893—0.08571¢
0.3916—0.0890z
0.5915—0.0893:
0.5765—0.2701%
0.7907—-0.0893:
0.7793—-0.2693:
0.7573—0.4531%
0.9896—0.0893:
0.9804—0.2688:¢
0.9624—0.4509:
0.9365—0.63702
1.1883—0.0893:
1.1806—0.26861
1.1654—0.44973
1.1433-0.6337¢
1.1150—-0.82134

Re(w) < 0 is the overtone number. In (23}, is the value

of the potential at its maximum as a function of the tortoise = Tables VII to XII presents the WKB values obtained for
coordinate, and/0” represents the second derivative of thethe quasi-normal frequencies with some multipole numbers
potential with respect to the tortoise coordinate at this max# for regular black holes with different solution’s parameters.
imum. The correction terms; depend on the value of the Asitis observed, the sixth order WKB approach gives results
effective potential and its derivatives (up to the 2i-th order)in agreement with those obtained by fitting the numerical in-
in the peak. tegration data.
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P . .o P TABLE X. Quasinormal frequencies for Dymnikova’s solution with
m = 1 and varioug. WKB results.
n=-1 o v . - n=1
. { n ro = 0.1 ro = 0.3 ro =0.4
2 n=-2 n=2 0 0 0.1919-0.0964¢ 0.2188—-0.09727 0.2408—0.0925:
1 0 0.3983—0.0976i 0.4509—0.0978i 0.4943—0.0932i
" " 2 0 0.6013—0.0975¢ 0.6797—0.0978; 0.7448—0.0933¢
e, . 2 1 0.5852—0.2962 0.6670—0.2961i 0.7340—0.2814i
10 3 0 0.8035—0.0975¢ 0.9079—0.09787 0.9946—0.0933:
A T s e e BT — 3 1 0.7912—0.29457 0.8982—0.2950¢ 0.9864—0.2809¢
FIGURE 9. Quasinormal modes of Bardeen’s regular black hole 8 2 0.7681-0.4974i 0.8799-0.4964i 0.9706—0.4710:
with o = 0.1. 4 0 1.0054—0.0975¢ 1.1358—0.09787 1.2441—0.0933:
4 1 0.9955—0.2938; 1.1280—0.29447 1.2375—0.28061
: : _ _ 4 2 0.9764—0.4939; 1.1129—0.4938; 1.2247—0.4695i
TABLE IX. Quasinormal frequencies for Bronnikov-Berej's solu- ) ) )
tion with m — 1 and varioug. WKB results. 4 3 0.9497—-0.7000¢ 1.0917—0.6977: 1.2061—0.6611:
5 0 1.2072—0.0975¢ 1.3636—0.0978; 1.4935—0.0933¢
{ n ro =0.1 ro = 0.3 ro = 0.4
5 1 1.1989—0.2934i 1.3570—0.2941i 1.4880—0.2804i
0 0 0.1897—-0.09617 0.2084—0.0975i 0.2215—0.09677 . . .
Lo 5 2 1.1827—0.4919i 1.3443—0.4924i 1.4772—0.4687i
.3940—0.0973i  0.4307—0.0983i 0.4562—0.0973i
03940009731 0.4307-0.09857 - 0.4562-0.0973¢ 5 3 1.1596-0.6948i 1.3259-0.6938; 1.4614—0.6588i
2 0 0-5950-0.09731 - 0.6496-0.09857 0.6877-0.0974i 5 4 1.1307-0.9032i 1.3030-0.8994i 1.4411-0.8515
2 1 0.5786—0.2955i 0.6356—0.2979i 0.6754—0.2946i
3 0 0.7951—-0.09737 0.8678—0.09837 0.9186—0.09747 - - -
3 1 0.7826—0.2939i 0.8571—0.2966i 0.9091—0.2935; TaBLE XI. Quasinormal frequencies for Ap-Beato’s solution
) e vy T vy T ! with m = 1 and varioud. WKB results.
3 2 0.7592—0.4964i 0.8369—0.4998; 0.8913—0.4937i - ; 3 o
n = =0. =0.
4 0 0.9950-0.0973; 1.0857—0.0983i 1.1491—0.0974i _— a a a
.1826—0.0949i  0.1893—0.0941i 0.2173—0.0836i
4 1 0.9849-0.2031¢ 1.0771-0.2959i 1.1415-0.2930i 0-1826-0.0949¢ 0.1893-0.0941¢ - 0.2175-0.0836:
. . . 1 0 0.3801—0.09647 0.3927—0.0956¢ 0.4489—0.08521
4 2 0.9655—0.4928i 1.0604—0.4968i 1.1268—0.4913i
, , , 2 0 0.5741—-0.0963i 0.5929—0.0956i 0.6771—0.0854i
4 3 0.9384—0.6986i 1.0371—0.7027; 1.1061—0.6938i
) ) ) 2 1 0.5570-0.2927i; 0.5773—0.2901¢ 0.6649—0.2576¢
5 0 1.1947-0.0972¢ 1.3035—0.0983: 1.3795—0.0974:
3 0 0.7674—0.0963¢ 0.7923—0.0955¢ 0.9046—0.08557
5 1 1.1862—0.2926i 1.2963—0.2956i 1.3732—0.2927; _ , ,
. 3 1 0.7543-0.2910¢ 0.7804—0.28867 0.8953—0.25731
- TR Reenam AT R A 3 2 0.7208-0.4919i 0.7581-0.4872i 0.8772—0.4313i
> 1'1463_0'69331_ 1‘2620_0'69832. 1‘3428_0'69022. 4 0 0.9603—0.0963i 0.9915—0.0955i 1.1317—0.0855i
> 4 LUT7070.9015i 12367-0.90637 1.3204-0.8943i 4 1 0.9498-0.2001i 0.9819-0.2878; 1.1243-0.2571i
Figure 9 show the quasinormal modes for Bardeen'’s solu-4 2 0:9295-0.4881i 0.9634-0.4838i 1.1097—0.43013
tion (3). The results obtained for the other regular black hole 4 3 0.9011-0.6925¢ 0.9375—-0.6856: 1.0881—0.6055¢
backgrounds are similar. 5 0 1.1531-0.0962¢ 1.1905—0.0955; 1.3588—0.0855¢
As can be easily seen, the behavior of Dirac quasinormals 1 1.1443-0.2807 1.1824-0.2874i 1.3526-0.2570i
frequencies is analogous to that of the _scalar perturpauon_ Ns 5 | 197104860 1.1668—04819i 1.3403—0.4294
regular black holes [21]) as well as Dirac perturbations in 5 3 1102506869 11443068061 1.3921-0.6036i
other typical black hole backgrounds [7,9-12,36]. The oscil- He0TR0obI - L ARRSTUOOURL - Lossd mHOUSb
4 1.0718—0.89397 1.1163—0.8846:7 1.2983—0.7800:

lation frequency increases as the multipole number increase®

for fixed overtone numbers. Concerning the damping rate,

increasing/ the magnitude of the negative imaginary part of number¢, the real part of the oscillation frequencies de-
the fundamental overtone: (= 0) first increases but then creases as the overtone number increases, and the magnitude
decrease quickly reaching a saturation value for higher mulof the imaginary part increases. This is the typical behaviour
tipoles, showing strong similarity with other black hole back-for back hole backgrounds: higher overtones decay faster
grounds [7,10,36]. than lower ones.

For higher overtones the opposite situation arises for the Figures (10)-(11) show the dependence of the quasinor-
behaviour of the quasinormal frequencies. For a fixed angulamal modes with the different physical parameters that char-
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FIGURE 10. Dependance of real (left) and imaginary (right) parts of the first two quasinormal frequencies for Bronnikov-Berej's regular
black hole with the parametes.

regular phantom black holes becomes more rigid with the in-
creasing of the scalar charge
As we can observe from all the above results, all quasi-

TaBLE XIll. Quasinormal frequencies for Bronikov-Fabris’s solu-
tion withm = 1, ¢ = —(3w/2b), p = 3 and various!. WKB

results. normal frequencies have a definite negative imaginary part, a
/ n b=01 b—05 b—1 fact that indicates absence of unstable modes for Dirac pertur-
5 5 , bations in regular black hole backgrounds. The real question
00 0'1826_0'09501. 0'1809_0'09571' 0’1756_0'0983? about the stability of such backgrounds is related with the be-
1 0 0.3799-0.0964¢ 0.3768-0.0969¢ 0.3677—0.0985¢ haviour of proper spacetime fluctuations, a problem that need
2 0 0.5739-0.0963i 0.5693—0.0968i 0.5558—0.09841 to be solved in the future. But the fact that Dirac and scalar
2 1 0.5568—0.2928; 0.5516—0.2945; 0.5362—0.2995; perturbations in those backgrounds propagates without insta-
3 0 0.7671—0.0963i 0.7610—0.0968 0.7430—0.0983i biIiti(Ts, isI a E%Otlj indicqtion for the possible real stability of
3 1 07540020100 0.7475-02027i 0.7281-02075  'cgularblack hole solutions.
_ _ _ An important check of our results can be performed
3 2 0.7294-0.4920: 0.7220—0.4950: 0.6999—0.50381 studing the regular black hole solutions in those limits in
4 0 0.9600—0.0963: 0.9524—0.0968¢ 0.9300—0.09831 which they becomes Schwarzschild solution. We deter-
4 1 0.9494—0.2902 0.9414—0.2918; 0.9179—0.2965% mined the quasinormal modes in those limits and obtained
4 2 0.9291-04882 0.9204—0.4910i 0.8946—0.4994i the known results. As a representative result, we include in
4 3 0.9007-0.6927i 0.8910-0.6970i 0.8620-0.7008i  2pie Xl the frequencies obtained for thetkyBeato's solu-
tion in the limitq = 0.
5 0 1.1527—-0.0963; 1.1436—0.0968; 1.1167—0.0983;
5 1 1.1439-0.2898i 1.1344—0.2913i 1.1066—0.2960i 6. Late-time tail
5 2 1.1266—0.48617 1.1166—0.4888; 1.0869—0.4969: ' S
5 3 1.1020—0.6871% 1.0911—0.69117 1.0587—0.7032: Another interesting fact to analyse is the relaxation of spinor
5 4 1.0713-0.8941; 1.0593—0.8997i 1.0235—0.9166i fluctuations outside the different solutions describing regular

black hole backgrounds at very late times [40,41]. To study

acterize some the regular black hole solutions studied in thithis late-time behavior, we numerically fit the numerical data
paper. For all the regular black hole solutions, with theobtained from characteristinc integration in the appropriate
exception of Bronnikov-Fabris’s black hole, as the paramfegion of the time domain, to extract the law that describe the
eter that describes the solution increases, the real part delaxation.

the quasinormal frequency increases, and the damping rate In general, all our numerical results indicate that the de-
increases first and then decreases, giving place to a longédy of massless Dirac fields shows a time dependance in the
ringdown phase. This behavior is similar to that exhibitedform of a power law, whose exponent changes with the multi-
by a test Dirac field inD-dimensional Reissner-Nordstrom Pole numbet, but remain fixed for all values of the physical
black holes [37,38]. Similar behavior is exhibited by a testparameters that describes the different solutions. Also, this
scalar field in regular black holes and Reissner-Nordstronpower law exponents are the same for all regular black holes,
solution [21]), and also gravitino fluctuations in Reissner-a situations similar to that encountered in the case of four

Nordstrom backgrounds [39]. However, Bronnikov-Fabris’'sdimensional singular black holes.

regular phantom black hole solution shows a different behav-

In all cases the Dirac perturbations relax at asymptotically

ior: as the parametdr increases, the actual oscillation fre- late times following a power law proportional to(2+%), in
quency decreases, and the dampmg factor increases. Th@ﬁr,ong Similarity to the relaxation of fields of different spin in
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FIGURE 11. Dependance of real (left) and imaginary (right) parts of fundamental quasinormal frequency for regular black holes with

the parameters in the solution. From top to bottom we have the results for Hayward’s, Dymnikova’s and Bronnikov-Fabris’s black holes,
respectively.

four dimensional Schwarzschild and stringy black hole backtheories that couples gravity with source fields, as nonlinear
grounds [9,10]. electromagnetic or some phantom matter. We have solved the

However, we remark at this point that this dependance arequation of motion numerically for all cases, using finite dif-
only a result consistent with our numerical data. In contrasterence and characteristic integration methods, and obtain the
to the case for boson fields, in which the general form of theime domain evolution profile. Fitting the numerical data at
effective potential is suitable to expand for large values of thehe quasinormal ringing stage we determined the quasinormal
tortoise coordinate [42,43] and then extract the above powdrequencies. We also compute the quasinormal spectrum us-
law behaviors directly from this asymptotic expansion, a sim4ing a semi-analytical sixth order WKB approximation. This
ple analytical argument to support the late time behaviour fosemianalytical results are in perfect correspondence with the
fermion test fields do not exist. Then the problem related wittnumerical ones.

the analytical determination of the decay factors for fermion  The quasinormal stage at late times is characterized by

perturbations in regular black holes remains open. damped proper oscillations. We have complex frequen-
cies with negative imaginary part, implying stability of the
7. Concluding remarks fermion fluctuations outside the black holes. This picture is

the same for all electric and magnetic solutions. The fact that
We have studied the propagation of a massless spinor fielde have found no instabilities for the test field after an ex-
outside various regular black hole spacetimes, obtained frortensive explorations with different values of the parameters
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that describes the regular black hole solutions considered, tfals typical of fermion fields do not exist a simple analyti-
not a direct indication of the stability of the solution itself, cal argument to approach this problem, as in the case of bo-
although serves as an indication of such stable behaviouson fields. Also, the study of the evolution of some boson
As the charge parameters that characterizes the different sperturbations: electromagnetic and gravitational ones in this
lutions increases, the proper frequencies increases and tBpace-times would be an interesting subject to be addressed
damping decreases, but this behavior is different for reguin future reports.
lar phantom black holes, for which an increase in the scalar
charge increases the rigidity of the black hole.
We also computed the decay factors for the late time reACknowledgments
laxation of spinor perturbations, showing that the fluctuations
relaxes in the same way as Dirac waves in other for dimenThis work has been supported by the University of Cienfue-
sional non-regular backgrounds. gos, Cuba. We would like to express our gratitude to the
Some extensions to this work are interesting. First, itEJDS service of the ICTP, for giving us the possibility to ob-
would be an important question to determine analytically thef@in various references. We also thanks Professor Irina Dym-
late time decay factors, taking into account that for potennikova for kindly send a copy of Ref. 18.
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