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In a D-dimensional Lifshitz black hole we calculate exactly the quasinormal frequencies of a test Dirac field in the massless and zero angular
eigenvalue limits. These results are an extension of the previous calculations in which the quasinormal frequencies of the Dirac field are
determined, but in four dimensions. We discuss the four-dimensional limit of our expressions for the quasinormal frequencies and compare
with the previous results. We also determine whether the Dirac field has unstable modeBidithensional Lifshitz spacetime.
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1. Introduction extended in Refs. 15 and 16. Céatalet al.[15] calculate the
) QNF of the Dirac field propagating in the four-dimensional
We know condensed matter systems for which the space andfshitz black hole (3), that is, when(® is the line element
time at the critical points (Lifshitz fixed points) show the of the two-dimensional plari2. In the D-dimensional Lif-
anisotropic scale invariance shitz black hole (3) the QNF of the electromagnetic field are
v A2 ¢ 225 1) calculated exactly in Ref. 16. In this reference it is found that
! v ’ for D = 5,6, 7, and for the scalar type electromagnetic field

wherez > 1 is the critical exponent. To extend the AdS- We need to impose a slightly different boundary condition as
CFT correspondence to systems with Lifshitz points, in re — oo 0 get a discrete and stable spectrum of QNF, since
cent times a detailed analysis is carried out of the spacetimdge usually imposed Dirichlet boundary condition lead us to

that at large- asymptote to the so called Lifshitz metric [1,2] & continuous spectrum of QNF with possible unstable QNM.
s ) For other values of the spacetime dimension the spectrum of
z l

ds? = " g2 — g2 — 2402 @) QNF for the scalar type electromagnetic field is discrete and
JRE r2 ’ stable when we impose the Dirichlet boundary condition as
r — oo. For the vector type electromagnetic field the usual
Dirichlet boundary condition lead us to a discrete and stable
spectrum of QNF. As for the Klein-Gordon field [7] the QNF
formulas (1). of the electromagnetic field depend on the spacetime dimen-

Owing to the quasinormal modes (QNM) are useful toSion. Hence in asymptotic Lifshitz black holes for the elec-
determine relevant physical properties of the black holes [3ifomagnetic and Klein-Gordon fields their spectra of QNF de-

6], recently the quasinormal frequencies (QNF) of severaP€nd on the spacetime dimension.
asymptotic Lifshitz black holes have been computed [7-16]. In this work our main objective is to show that the an-
In this work we study the damped oscillations of the Diracalytical results of Ref. 15 in four dimensions (those on the
field propagating in thé)-dimensional D > 4) asymptotic ~ exact calculation of the QNF for the massless Dirac field and
Lifshitz static black hole witlt = 2 [2,7] for the massive Dirac field with angular eigenvalue equal to
4 9 —_ zero) can be extended to thle-dimensional Lifshitz black
gs? = " ( _ 7"+> a2~ L9202 (3)  hole (3) (0 > 4), thatis, when @2 is the line element of

i r? r2—ri the (D — 2)-dimensional plan&”~2. These calculations al-

wherer_ locates the event horizon. THe-dimensional Lif- low us to study additional properties about the behavior of

shitz black hole (3) is a solution of a Lagrangian with scalarthe Lifshitz black holes under small perturbations and using

and vector fields [2] or with higher curvature terms [7]. these results we examine whether the spectrum of QNF for
To explore the classical stability of thi-dimensional the Dirac field depend on the spacetime dimension as for the

Lifshitz black hole in Ref. 7 Giacominit al. calculate ex- Klein-Gordon and electromagnetic fields. We also study the
actly the QNF of the massive Klein-Gordon field. They find classical stability of the Dirac field in thB-dimensional Lif-
that its spectrum of QNF s discrete and its QNM are stableShitz spacetime (2).

Furthermore the QNF depend on the spacetime dimergion In a curved spacetime it is well known that in some phys-
(see the expressions (33) and (34) of Ref. 7). Their results atieal phenomena the fermion fields behave in a different way

where d2? denotes the line element of tfi® — 2)-dimen-
sional planeR”~2 and! is a positive constant. In this met-
ric the parametet coincides with the critical exponent of the
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than the boson fields. For example, the fermion fields damaximally symmetric space with line elemerf2d usually

not suffer superradiance when they are scattered by rotatincplled the base manifold.

black holes [17-20]. Thus we believe that is relevant to study  For the D-dimensional Lifshitz black hole (3) and for

the QNM of the Dirac field in asymptotically Lifshitz space- the D-dimensional Lifshitz spacetime (2) the symbad®d

times. See Refs. 21 to 24 to find other examples where thdenotes the line element of ti& — 2)-dimensional plane

spectrum of QNF for the Dirac field is calculated exactly inR”=2, which is a maximally symmetric space, therefore

other higher dimensional spacetimes. we can use the coupled system of partial differential equa-
Thus in what follows for the massless Dirac field andtions (6) to study the behavior of the Dirac field in these

for the massive Dirac field with angular eigenvalue equal tawo backgrounds. Furthermore the eigenvalyesme equal

zero we calculate their QNF when they propagate infihe to x = in with n € R [29]. Notice thats = 0 is an allowed

dimensional Lifshitz black hole (3) and determine whethereigenvalue of the Dirac operator on the base manifolds of the

the D-dimensional Lifshitz spacetime (2) is stable againstLifshitz spacetime (2) and of the Lifshitz black hole (3).

Dirac perturbations. We note that the method exploited in

this work to solve the Dirac equation in the-dimensional ) . i

Lifshitz black hole (3) is different from the procedure used in3:  Quasinormal modes of the Dirac field

Ref. 15 for the four-dimensional case, since the procedure of

the previous reference is adapted to four-dimensional s acé—!er.e we calcula_te exaptly th? QNF of the Dirac fielq propa-
timeps P P gating in theD-dimensional Lifshitz black hole (3). First we

We organize this paper as follows. Based on Refs 2éwtice that in theD-dimensional Lifshitz black hole (3) the

to 28 in Sec. 2 we give the main results of the method thaPartlal differential equations (6) simplify to
simplifies the Dirac equation to a pair of coupled partial dR iR

. . . . . 2 uny Ly 2 /2 [ N .~
equations when th®-dimensional background is maximally ~ z(z°—1) @ —i0R =—2(2"—1) (Z +zm> Ry,
symmetric. In Sec. 3 we calculate exactly the QNF of the
Dirac field in theD-dimensional Lifshitz black hole (3). We
compute exactly the QNF for the massive Dirac field with an-
gular eigenvalue equal to zero and for the massless Dirac field
with % # 0 since for these two limiting cases we can solveWhen the components, and«, have the harmonic time de-
exactly the radial equations. In Sec. 4 we determine whethd€ndence }
the Dirac field has unstable modes in thedimensional Lif- V; =€ "'R;(r), 8
shitz spacetime (2) witlk = 2. Finally we discuss some
relevant facts in Sec. 5.

d
z(zQ—l)%+i&)R2:—z(z2—1)1/2 (Z:—zm> Ry, (7)

with j = 1,2. In Egs. (7) we define the quantities=r/r,,

k= (kl)/r4, m = ml, andw = (wl®)/r3. In what follows,

taking as a basis Egs. (7) we calculate exactly the QNF of the

2. Dirac equation in D-dimensional maxi- massless Dirac field with # 0 in Subsec. 3.1, and then we
mally symmetric spacetimes determine the QNF of the massive Dirac field with= 0 in

Subsec. 3.2. We study these two limiting cases since we have

If F, G, andH are functions of- and here 82 is the line el-  not been able to simplify Egs. (7) when # 0 andx # 0

ement of & D —2)-dimensional maximally symmetric space, simultaneously.

then for aD-dimensional spacetiméX > 4) of the form

3.1. Massless Dirac field
ds? = F(r)?dt? — G(r)?dr? — H(r)*dQ?, 4)

o ) ) For a classical field propagating in the Lifshitz black hole (3)
itis known that the Dirac equation we define its QNM as the oscillations that satisfy the bound-
, ary conditions [7-16]
iV =ma, ®)

simplifies to the coupled system of partial differential equa-
tions [25-28] (see for example the formulas (30) in Ref. 28) i) They go to zero a8 — .

i) They are purely ingoing near the horizon.

iy + E&-wl =- (mF + imF) Vo, For the D-dimensional Lifshitz black hole (3) in the
G H massless limit the system of differential equations (7) sim-
F F . pIIerS to
Opthy — aarwz = <“‘5H - sz> P, (6) dR
2(22 — 1)t — iRy, = — (22 — 1)/%i&R,,
where; ands are the components of a two-dimensional dz
spinor that depends on the coordinates-), andx are the 2 _ 4 dRy .. — (2 1)1/24
eigenvalues of the Dirac operator on tHe— 2)-dimensional 2z ) dz iR, (2 )RR (9)
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From these we obtain the decoupled equations for the radidlhus near the horizonu(= 0) the previous radial function

functionsR; and R, behaves as
dsz I (1 z ) dﬁ Ri ~ Chul/?7%/2 4 Cou™/? =~ ¢y exp(rir*/l?’)
dz? 2-1/d
: © : x exp(—iwry) + Ca exp(iwry ), (18)
@ +iew W@\ oo 10
(22 —1)2 - 22(22 — 1) = (10) wherer, denotes the tortoise coordinate of the Lifshitz black

hole (3) and it is equal to
withe =1 (e = —1) for Ry (R2). Here we study in detail the
radial functionR; and we notice that similar results are valid A 13 22 -1
. ) re = —5nu) = —5In{ —— ], (19)
for the radial functionR,. 2r? 2r2 2
Making the change of variable
thatis,r, € (—o0,0) forr > r,.
" 22 -1 (11) Considering that we have a time dependence of the form
22 exp(—iwt) (see the formula (8)), near the horizon the first
term of the formula (18) is an ingoing wave and the second
term represents an outgoing wave. Hence to have a purely
Ry = UA(l _ U)B+1/4fl (12) ingoing wave near the horizon we must take = 0. Thus
’ the radial function that satisfies the boundary condition of the

where the constantd and B are solutions of the algebraic QNM near the horizon is

and taking the functio®?; as

equations -
a R = C’lul/2_“"/2(1 — u)l/QgFl(a7 b; ¢; u)
A D +id 1
A% — Bl + w ; W 0, B* - 6 0, (13) — Oy l/2-ie/2 (1- u)l/QF(C)F(C —a—"b)
! I'(c—a)l(c—b)
o e oo ol MEMPEGEONEt st 11y s T 0=0)
241 s Uy ) F(a)r(b)
d*fy dfi <_
U(l—“)wﬁ‘(c—(ﬂH‘b*'l)u)a—abfl—o’ (14) ol (c—a,c—bjc+1l—a—b1l-u)|, (20)
with the parameters, b, andc equal to where in the second line of the previous expression we
_ _ use the Kummer formula for the hypergeometric function
i A+B+ Ly R — @2 2 F (a,b; c; u) that forc — a — b different from an integer es-
2 ’ tablishes [30-32] (see for example the formula (4) of Sec. 4.8
22 in Ref. 31)
b:A+B+i*%, ()( )
I'e)['(c—a—0
1 2Fi(a,byc;u) = T(c—aT(c—b)
c=24+. (15) g
x oFi(a,b;a+b+1—c¢;1—u) (21)
In what follows we take I(eT(a+b— )
C a —C c—a—>b
1 G 1 o (L —u)
A:i—%, B= . (16) T'(a)L(b)
] . X oFi(c—a,c—bjc+1—a—0b;1—u).
We expect to find the same physical results for the other val-
ues of the parametersand B. In our case we can use the Kummer formula sineea — b
If we assume that the quantityis not an integer to dis- — —1/2, which differs from an integer.
card the solutions involving logarithmic terms [31,32], then  Therefore from the expression (20) for the functifin
we get that the radial functioR; is given by we obtain that as, — 1

Ry = ulm_w’/z(l — u)1/2 (C12F1(a,b;c;u)

I'(e)’ —
hIanl _ ()T(a+b—rc) (22)

- T(a)T(b)
+ Cou' " Fi(a—c+1,b—c+1;2—cu)), (17) (@)'(b)

since the first term goes to zero in this limit and to satisfy
where 2 Iy (a, b; c;u) denotes the hypergeometric function the boundary condition ii) of the QNM as— co we must
andC', C; are constants [30-32]. We point out that in the impose
coordinatey the horizon of the Lifshitz black hole (3) is lo-
cated at: = 0 and this coordinate satisfies— 1 asr — oo. a=-—n, or b= —n, n=20,1,2,..., (23)
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from which we find that in thé-dimensional Lifshitz black  with the quantitiesA and B being solutions of the algebraic
hole (3) the QNF of the massless Dirac field are equalto  equations
i 22 A & +iw in?
_ Ty o A2 4 =0, B>-""—0, (30
w = B <n+1+7ﬁ(4n+4))’ (24) 5 1
we find that the functiorf; is a solution of the hypergeomet-
ric differential equation (14) with parametersh, andc equal

with n € R [29]. Using a similar method we get that for the
component), its QNF are equal to

to [30-32]
.2 272
_ s 1, nt 1 /P riw+1/4
For D = 4 and making the identificatior? = [2/2, as b— A+ B4+ L_ —w?+io+1/4
in Ref. 15, we find that the QNF (24) and (25) of the massless 4 2 ’
Dirac field become =244 % (31)
1 (n 1 n?
w==l3T5™" 22n+2))’ In what follows we take
. 1 w m
_ifn 1 n? A=——i=, B=—. (32)
w= z(2+4+2(2n+1)>’ (26) 2 2 2

We expect to get similar results for the other values of the
that are equal to the QNF of the Dirac field given in Ref. 15.constants4 and B.

Moreover we note that for the QNF (24) and (25) the quantity  |f the parameter: is not an integer, then the radial func-
c of the formulas (15) is not an integer, as we assumed. tion R, is given by [31,32]

3.2. Massive Dirac field withx = 0 Ry = ul?7 %2 (1 —w)™2 (O o Fy (a, by c; u)
1—c . .
Another limit for which we can solve exactly the radial equa- + Coul "% Fi(a—ct Lb—ct1;2—cu)), (33)

tions is for the massive Dirac field with angular elgenvaluewith C, andC, constants. Near the horizon of the Lifshitz

equal to zero. Therefore in what follows we calculate exactly, 5k hole (3) ¢ = 0) we find that the previous radial func-
the QNF of the massive Dirac field with = 0 propagating

. . ) o tion behaves as
in the D-dimensional Lifshitz black hole (3). In contrast to

Catahn, et al. [15] that consider negative values of the mass Ry ~C exp(y-ir* /1%)
m, we study positive values of.. Forx = 0 the system of
differential equations (7) simplifies to x exp(—iwry) + Cy exp(iwry). (34)
) dr, .. ) L2 Since we assume a time dependence of the forpi—iwt)
z(2" — 1)@ — Wk = —z(z" — 1)/ %imRy, we see that in the previous approximation for the radial func-
dR tion R; the first term is an ingoing wave, whereas the sec-
2(2% — 1)d—z2 +i0Ry = 2(2> —1)Y%mR,,  (27) ond term is an outgoing wave. Hence to get a purely ingoing

wave near the horizon of the Lifshitz black hole (3) we must
from which we obtain the following decoupled equations forimposeCs = 0.

the radial functionsk?; and R, Therefore the radial function satisfying the boundary con-
dition i) of the QNM is equal to

d*R; z dR; &% — ied ,~ i
@2 T oia ( 2 Ry =Cyu! P72 (1 — u)™ 2,5 Fy (a, b; ¢ u)

m/2F(C)F(C —a—b)

~2 o~ <2 o~ 22 =Chul/?2 (1 — —
L @i @ ied Ri=0, (28 ! [( ) I'(c—a)'(c—b)
(22 —1)2 22 -1
X oF(a,b;a+b+1—¢1—u)
wheree takes the same values f& and R, that in the pre- —oD(e)D(a+b—c)
. . 1 _ )—m/Q—
vious subsection. +(1 —u T ()T (0)
Here we study in detail the radial functidty (similar re-
sults are valid for the functio®,). Making the change of x oFi(c—a,c—bjc+1—a—b;1—u)l, (35)
variable (11) and takind; as
where in the second line of the previous equation we use
Ry =ut(1—w)Bfy, (29) Kummer’s formula for the hypergeometric function (21),
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since the quantity: — a — b = —m is not an integer [30- black hole (3), in what follows we calculate the modes of the
32]. From the last expression for the radial functiBp, in massless Dirac field with # 0 and of the massive Dirac
the limit w — 1 we note that the first term goes to zero, field with k = 0.

whereas the second diverges in this limit. Therefore to sat-

isfy the boundary condition ii) of the QNM we must impose 4.1. Massless Dirac field£ # 0)

a=-n, or b= —n, n=0,1,2,3,... (36) Forthe Dirac field propagating in the-dimensional Lifshitz
spacetime (2), in the massless limit we get that the coupled
Using the values for the parameterandb of the formulas  system of differential equations (38) simplifies to
(31) we obtain that in thé-dimensional Lifshitz black hole

(3) the QNF of the massive Dirac field with= 0 are equal Vg — —Ri=——R,,
to ! g
ir? 1 m 2 '
w=-—Tt(pe o4+ 37) yUe  @p kg (39)
l 2 2 dy y* Y

For the radial functionR?, a similar method also gives from which we obtain for the function&; and R, the de-
the previous QNF. If we make = [?/2, as previously, coupled equations

for D = 4 the QNF (37) coincide with those calculated in

Ref. 15, that is, the formula (37) produces the values re- d2Rj 2dR; 2
ported in the previous reference, except that our expression a2 'y dy y22+2
(37) gives the additional QNF(i/1)(1/4 + ml/4) for the
component), of Ref. 15. Furthermore, for the QNF (37) we io(z—1)e K2
get that the parameterof the formulas (31) is not an integer, + Tz + e R; =0, (40)
as we assumed.
with j = 1,2, ande = 1 for R, whereasx = —1 for Ry,

: : : i as previously. In a similar way to the-dimensional Lifshitz
4. gf)(;iif"ﬁé the Dirac field in the Lifshitz black hole (3) we restrict to the cagse= 2, since for this

value of the critical exponent we can solve exactly the radial

To extend the results of the previous section here we detefduations (40). Thus for = 2 we find that the differential
mine the modes of the Dirac field in tHe-dimensional Lif- €duations (40) take the form

shitz spacetime (2). In a similar way to the electromagnetic PR

. . . . . . J 2 - A ~2 2

field [16], in the Lifshitz spacetime (2) the modes of the Dirac a2 T (K° + €iw)R; + w'a"R; =0, (41)
field must satisfy the boundary conditions:

where we define the coordinateby
1) The modes go to zero as— co.
x=—. (42)

2) The modes are regular at= 0. Y

Our objective is to determine for the Dirac field the exis- Making the ansatz

tence of unstable modes that satisfy the previous boundary R. — 9e®/2 (43)
conditions, that is, for the Dirac field propagating in the ! 7
dimensional Lifshitz spacetime (2) we are looking for modeswe obtain that the functionéj must be a solution of the dif-
whose amplitudes increase with the time and that fulfill theferential equation
boundary conditions 1) and 2). o - N N )

For the Dirac field propagating in the-dimensional Lif- U@ (1 _ U) dr; iw(e+1) —n R, =0, (44)
shitz spacetime (2) the coupled system of differential equa-  dv? dv diw ! ’

2
tions (6) simplify to where we use that = 7, as previously [29], and we define

. the variablev b
5+1L121 — &Ry = —y* (Z: + Zﬁl) Ry, ’ v = —ikx?. (45)
4R P We notice that the differential equations (44) for the func-
yZH—Q +iwRy = —y* ( — 2m> Ry, (38) tions R; are confluent hypergeometric differential equations
dy y [31,32] )
when we take the components andi); as in the formula (8) vﬂ +(b— v)dl —af =0, (46)
and we define the quantitigs= r /I, © = wl, andm = ml. ) dv? dv
Since we have not been able to simplify in an appropriatéVith parameters
form the system of differential equations (38) whan£ 0 2 e+l 1
andx # 0 simultaneously, in a similar way to the Lifshitz aj ==y~ T bj =3 (47)
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If C1; andCy; are constants, the solutions of the differ-
ential equations (41) are [32]

R]‘ zClje_”/zU(aj7 bj; ’U)
+C12jev/2U(bj — aj, bj; e_iﬂ—’l}), (48)

whereU (a, b; v) denotes the Tricomi solution of the conflu-

ent hypergeometric differential equation (46) [32]. Since we
are looking for unstable modes, in what follows we assume

that the imaginary parts of the frequencies fulfiti(w) > 0,
and hence from the formula (45) we get tid(v) > 0.
Notice that we choose a time dependence(eXpt) (see
the formulas (8)) and fofm(w) > 0 the amplitude of the
Dirac field increases with the time, that is, fon(w) > 0 the
modes are unstable.

Forv — oo (r — 0) we find that the function&; of the
formula (48) behave as

Gy
T /290,

+ 8"/ 2% 70 (49)

where we use that the Tricomi solution satisfies [32]

Ula,b;v) = v~ (50)
asv — oo. Owing toRe(v) > 0 we find that the first term in
the formula (49) goes to zero as— oo, whereas the second
term diverges in this limit. Hence to fulfill the boundary con-
dition 2) we must tak&’,; = 0, and the radial function®;
simplify to
Rj = Clje_”/QU(aj,bj;v). (51)
It is convenient to recall that when the quantitys dif-

ferent from an integer the Tricomi solutidfi(a, b; v) satis-
fies [32]

T(1-b)

Ul(a, b;v) :mlFl(aab;U)
L—-1) 1., .
—+ F(a) v 1F1(CL b+1a2 b,’U), (52)

where; Fy (a, b; v) is the confluent hypergeometric function
[31,32]. Using this property of the Tricomi solution we write
the radial functions (51) as

r(1/2)e /2

Rj = Clj 711(07 T 1/2) 1F1(aj,bj;v)
I'(-1/2
+ Me‘“’/%l/zlﬂ(aj - bj + 1,3/2;1}) . (53)
I'(a;)

In the limitv — 0 (r — oo0) we get that the previous func-
tions behave in the form

lim R, ~ /%)

v—0" 7" T(a; +1/2) 4)

Hence to satisfy the boundary condition 1) we must impose

1
+5=-n n=0,1,23,..., (55)

aj

A. LOPEZ-ORTEGA

from which we obtain that the frequencies of the modes that
fulfill the boundary conditions 1) and 2) are equal to

R P 1
wj = —1

4n+(e+1)/4+1/2

(56)

Considering that fore = 1 ande = —1 it is true that

e+1 1 0

4 + 2 >0
we obtain that for the frequencies (56) their imaginary parts
satisfy Im(w;) < 0, and we notice that this fact contra-
dicts our assumption that the frequencies of the modes fulfill
Im(w) > 0. Therefore we do not find unstable modes satis-
fying the boundary conditions 1) and 2) and we infer that the
modes of the massless Dirac field with# 0 are stable in the
D-dimensional Lifshitz spacetime (2).

(57)

4.2. Massive Dirac field withs = 0

As for the D-dimensional Lifshitz black hole (3), in thB-
dimensional Lifshitz spacetime (2) with= 2 we can solve
exactly the radial equations (38) of the massive Dirac field in
the limit when the angular eigenvalue goes to zero. It is con-
venient to recall that = 0 is an allowed eigenvalue for the
Dirac operator on the base manifold of the Lifshitz spacetime
(2) [29]. In this limit, from Egs. (38) we obtain the following
decoupled equations for the functioRs and R»

@2
+ (y6 +
where the quantitieg ande take the same values that in the
previous sections. Making the change of variable (42) and
taking the functiond?; as in the formula (43), in this case we

find that the functiong; of this expression must be solutions
of the differential equations

(-2

where we use the variableof the formula (45).
Proposing that the functions; take the form

R, 2

dy2

m
2

2iwe
Y

1R,
y dy

> R; =0, (58)

m?

o’ R; .
: + 402> R; =0, (59)

dv?

dR; _

dv

(e+1)
2v

Rj = UAj Rj (60)
with the quantitiesA; being solutions of
A2
2 m

and substituting the expression (60) into Eq. (59), we find that
the functionsk; must solve the differential equations

d*R; dR;
v d’U2 +(2AJ+1_U)E
1 .
—( ;€+Aj>Rj—o‘ (62)
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As in the previous subsection these are confluent hyperge®. Discussion
metric differential equations (46) with parameters
l4e From the expressions (24) and (25) for the QNF of the mass-
aj = A; + —5 by =24; + 1. (63) less Dirac field and from the formula (37) for the QNF of
the massive Dirac field witk = 0 we find that their imagi-
In what follows we taked; = /2 and hence the previous nary parts satisffm(w) < 0 and considering that we take a

guantities are equal to time dependence of the foreap(—iwt) we get that in theD-
. dimensional Lifshitz black hole (3) the QNM of the massless
aj = M7 b; = 1+ 7. (64)  Dirac field withx # 0 and of the massive Dirac field with
2 k = 0 are stable since their amplitudes decay as the time in-
Thus the radial function®; are creases. Thus when we impose the Dirichlet boundary condi-
tion ii) asr — oo, for the Dirac field we find a discrete spec-
R, — g~ v/2y™/2 (Cl-U(a- bisv) trum of QNF for allD > 4 and its QNM are stable, as for
! A the Klein-Gordon field [7]. Notice that for the electromag-
4 netic field of scalar type propagating in tti&-dimensional
+ C5;€°U(b; — aj,bj; e‘”v)), (65)  Lifshitz black hole (3) we need to impose a slightly different
boundary condition as — oo whenD = 5,6, 7 [16].
whereC; andCs; are constants, as previously. In what fol-  For the Dirac field propagating in the-dimensional Lif-

lows we assume that the imaginary parts of the frequencieshitz black hole (3) from the expressions (24), (25), and (37)
satisfyIm(w) > 0, as in the previous subsection, and usingwe find that its QNF do not depend explicitly on the space-
the property (50) of the Tricomi solution, we find that the time dimension, and hence the QNM of the Dirac field be-
second term of the radial functions (65) diverges as oc. have in a different way than those of the electromagnetic and
Therefore to get a well behaved solutiomas> co we take  Klein-Gordon fields.
C2; = 0 and the radial functions that satisfy the boundary  |n a similar way to the electromagnetic field [16], we also
condition 2) are equal to show that in theD-dimensional Lifshitz spacetime (2) with
B w2 )2 ‘ %2 = 2 the massless Dirac field with # 0 and the massive

Rj = Cie " %0™ 70 a , bj;v). (66)  Dirac field withx — 0 do not have unstable modes that satisfy
the boundary conditions 1) and 2) of Sec. 4. Thus we expect
that the D-dimensional Lifshitz spacetime (2) with= 2 is
linearly stable against Dirac perturbations.

Taking into account the property (52) of the Tricomi solution
we obtain that the previous radial functions transform into

—v/2 I'(1—10b;) Doubtless, for theD-dimensional Lifshitz black hole (3)
R; = Cy e /2?2 | ——— 9 __ F\(a;,bj; o 1 ; ;

/ 1 v T(a; —b; +1)" (a5, b55v) and theD-dimensional Lifshitz spacetime (2) the generaliza-
(b, — 1) tion of our results for the Dirac field with: # 0 andx # 0
ﬁful*l’j 1Fi(a; —b; +1,2—bj;v)|, (67) simultaneously deserves further research.

aj

We recall that in the two-dimensional Witten black hole

that in the limitv — 0 behave as the QNF of the massive Dirac field are equal to [33] (see the
/2 formulas (61) and (62) in Ref. 33)

L(1—b;) v™?2 T(;-1) 1

R; ~ —. (68
7 F(Clj — bj + 1) ev/2 F(aj) gv/2ym/2 ( ) (n 1 mi} )
wmi=—t\z+z— 77—~ |,
From this expression we notice that in the limit— 0 2 2 (2n+2)
the first term goes to zero, whereas the second term diverges. In 1 m2,
Hence to fulfill the boundary condition 1) we must impose Wy =t <2 + 1 2n+ 1) 1)> ;
aj =—-n, n=0,1,23,..., (69) w2:_i<7;+411_(2m—%1)>’
n
form which we obtain ,
n m
——_— _ i _my
m + + € . (70) Wy 7 (2 o ) , (71)
2 2
Since in the previous formulas fer= 1 ande = —1 the left  where m,, is the mass of the Dirac field in the two-
hand side is positive we can not satisfy the conditions (70dimensional black hole and = 1,2.3, ..., in the second
and hence for the massive Dirac field with angular eigenvaluset of QNFws. If in the values of the previous QNE, we
equal to zero we do not find modes wit(w) > 0 that ful-  make the identificatiom,, = in/+/2 and we also divide by

fill the boundary conditions 1) and 2). Therefore for this field [ the whole expressions of the QNF, then we obtain the
we do not obtain unstable modes satisfying the boundary cor@NF (26) of the massless Dirac field in the Lifshitz black
ditions 1) and 2). hole (3). Something similar happens with the Qiof the

Rev. Mex. Fis60(2014) 357-365



364 A. LOPEZ-ORTEGA

two-dimensional Witten black hole. We do not know an ex-on the spacetime dimensian, we infer that for the Dirac
plication for this fact, but it points out to some connectionfield propagating in the Lifshitz black hole (3) the formula
between these two backgrounds. (72) does not produce the behavior of its QNF in the limit
In Ref. 34 Emparan and Tanabe show that for a large clas® — oo. For example, the QNF (72) are complex numbers
of black holes, in the limitD — oo their QNF behave as with real part different from zero, but in thB-dimensional
D o /D 1/3 ) Lifshitz black hole the QNF (24), (25), and (37) of the Dirac
Z LK - ( ( + K)) a,| —, field are purely imaginary. Furthermore the QNF of the Dirac
2 2 \2 Pl field in the D-dimensional Lifshitz black hole (3) depend on
whereK is the angular momentum numbet, is the radius
of the event horizon, and the quantitiesy, are the zeroes

the radius of the horizon aﬁ whereas in the formula (72)
the dependence on the radius of the horizon is in the form
of the Airy function. Emparan and Tanabe proposes that the/"+- These facts suggest that in the liniit — oo the be-
behavior for the QNF given in the formula (72) would be true havior of the QNF is not universal.
for other black holes, but as shown in Ref. 16 for the elec-
tromagnetic and Klein-Gordon fields propagating in the 6. Acknowledgments
dimensional Lifshitz black hole (3) the expression (72) does
not describe the behavior of their QNF in the linit— oo. I thank the support of CONACYT Rixico, SNI Mexico, EDI
From our expressions (24), (25), and (37) for the QNF of thdPN, COFAA IPN, and Research Projects IPN SIP-20140832
Dirac field and taking into account that they do not dependand IPN SIP-20144150.

wWp = (72)

1. It is convenient to note that in Egs. (62) the frequeticgoes Rel.
not appear explicitly and it is contained only in the variable

(see the definition (45)).
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