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In aD-dimensional Lifshitz black hole we calculate exactly the quasinormal frequencies of a test Dirac field in the massless and zero angular
eigenvalue limits. These results are an extension of the previous calculations in which the quasinormal frequencies of the Dirac field are
determined, but in four dimensions. We discuss the four-dimensional limit of our expressions for the quasinormal frequencies and compare
with the previous results. We also determine whether the Dirac field has unstable modes in theD-dimensional Lifshitz spacetime.
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1. Introduction

We know condensed matter systems for which the space and
time at the critical points (Lifshitz fixed points) show the
anisotropic scale invariance

xi → λ2xi, t → λ2ẑt, (1)

where ẑ > 1 is the critical exponent. To extend the AdS-
CFT correspondence to systems with Lifshitz points, in re-
cent times a detailed analysis is carried out of the spacetimes
that at larger asymptote to the so called Lifshitz metric [1,2]

ds2 =
r2ẑ

l2ẑ
dt2 − l2

r2
dr2 − r2dΩ2, (2)

where dΩ2 denotes the line element of the(D − 2)-dimen-
sional planeRD−2 andl is a positive constant. In this met-
ric the parameter̂z coincides with the critical exponent of the
formulas (1).

Owing to the quasinormal modes (QNM) are useful to
determine relevant physical properties of the black holes [3-
6], recently the quasinormal frequencies (QNF) of several
asymptotic Lifshitz black holes have been computed [7-16].
In this work we study the damped oscillations of the Dirac
field propagating in theD-dimensional (D ≥ 4) asymptotic
Lifshitz static black hole witĥz = 2 [2,7]

ds2 =
r4

l4

(
1− r2

+

r2

)
dt2 − l2dr2

r2 − r2
+

− r2dΩ2, (3)

wherer+ locates the event horizon. TheD-dimensional Lif-
shitz black hole (3) is a solution of a Lagrangian with scalar
and vector fields [2] or with higher curvature terms [7].

To explore the classical stability of thisD-dimensional
Lifshitz black hole in Ref. 7 Giacomini,et al. calculate ex-
actly the QNF of the massive Klein-Gordon field. They find
that its spectrum of QNF is discrete and its QNM are stable.
Furthermore the QNF depend on the spacetime dimensionD
(see the expressions (33) and (34) of Ref. 7). Their results are

extended in Refs. 15 and 16. Catalán,et al. [15] calculate the
QNF of the Dirac field propagating in the four-dimensional
Lifshitz black hole (3), that is, when dΩ2 is the line element
of the two-dimensional planeR2. In theD-dimensional Lif-
shitz black hole (3) the QNF of the electromagnetic field are
calculated exactly in Ref. 16. In this reference it is found that
for D = 5, 6, 7, and for the scalar type electromagnetic field
we need to impose a slightly different boundary condition as
r → ∞ to get a discrete and stable spectrum of QNF, since
the usually imposed Dirichlet boundary condition lead us to
a continuous spectrum of QNF with possible unstable QNM.
For other values of the spacetime dimension the spectrum of
QNF for the scalar type electromagnetic field is discrete and
stable when we impose the Dirichlet boundary condition as
r → ∞. For the vector type electromagnetic field the usual
Dirichlet boundary condition lead us to a discrete and stable
spectrum of QNF. As for the Klein-Gordon field [7] the QNF
of the electromagnetic field depend on the spacetime dimen-
sion. Hence in asymptotic Lifshitz black holes for the elec-
tromagnetic and Klein-Gordon fields their spectra of QNF de-
pend on the spacetime dimension.

In this work our main objective is to show that the an-
alytical results of Ref. 15 in four dimensions (those on the
exact calculation of the QNF for the massless Dirac field and
for the massive Dirac field with angular eigenvalue equal to
zero) can be extended to theD-dimensional Lifshitz black
hole (3) (D ≥ 4), that is, when dΩ2 is the line element of
the(D− 2)-dimensional planeRD−2. These calculations al-
low us to study additional properties about the behavior of
the Lifshitz black holes under small perturbations and using
these results we examine whether the spectrum of QNF for
the Dirac field depend on the spacetime dimension as for the
Klein-Gordon and electromagnetic fields. We also study the
classical stability of the Dirac field in theD-dimensional Lif-
shitz spacetime (2).

In a curved spacetime it is well known that in some phys-
ical phenomena the fermion fields behave in a different way
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than the boson fields. For example, the fermion fields do
not suffer superradiance when they are scattered by rotating
black holes [17-20]. Thus we believe that is relevant to study
the QNM of the Dirac field in asymptotically Lifshitz space-
times. See Refs. 21 to 24 to find other examples where the
spectrum of QNF for the Dirac field is calculated exactly in
other higher dimensional spacetimes.

Thus in what follows for the massless Dirac field and
for the massive Dirac field with angular eigenvalue equal to
zero we calculate their QNF when they propagate in theD-
dimensional Lifshitz black hole (3) and determine whether
the D-dimensional Lifshitz spacetime (2) is stable against
Dirac perturbations. We note that the method exploited in
this work to solve the Dirac equation in theD-dimensional
Lifshitz black hole (3) is different from the procedure used in
Ref. 15 for the four-dimensional case, since the procedure of
the previous reference is adapted to four-dimensional space-
times.

We organize this paper as follows. Based on Refs. 25
to 28 in Sec. 2 we give the main results of the method that
simplifies the Dirac equation to a pair of coupled partial
equations when theD-dimensional background is maximally
symmetric. In Sec. 3 we calculate exactly the QNF of the
Dirac field in theD-dimensional Lifshitz black hole (3). We
compute exactly the QNF for the massive Dirac field with an-
gular eigenvalue equal to zero and for the massless Dirac field
with κ 6= 0 since for these two limiting cases we can solve
exactly the radial equations. In Sec. 4 we determine whether
the Dirac field has unstable modes in theD-dimensional Lif-
shitz spacetime (2) witĥz = 2. Finally we discuss some
relevant facts in Sec. 5.

2. Dirac equation in D-dimensional maxi-
mally symmetric spacetimes

If F , G, andH are functions ofr and here dΩ2 is the line el-
ement of a(D−2)-dimensional maximally symmetric space,
then for aD-dimensional spacetime (D ≥ 4) of the form

ds2 = F (r)2dt2 −G(r)2dr2 −H(r)2dΩ2, (4)

it is known that the Dirac equation

i/∇ψ = mψ, (5)

simplifies to the coupled system of partial differential equa-
tions [25-28] (see for example the formulas (30) in Ref. 28)

∂tψ1 +
F

G
∂rψ1 = −

(
iκ

F

H
+ imF

)
ψ2,

∂tψ2 − F

G
∂rψ2 =

(
iκ

F

H
− imF

)
ψ1, (6)

whereψ1 andψ2 are the components of a two-dimensional
spinor that depends on the coordinates(t, r), andκ are the
eigenvalues of the Dirac operator on the(D−2)-dimensional

maximally symmetric space with line element dΩ2, usually
called the base manifold.

For theD-dimensional Lifshitz black hole (3) and for
the D-dimensional Lifshitz spacetime (2) the symbol dΩ2

denotes the line element of the(D − 2)-dimensional plane
RD−2, which is a maximally symmetric space, therefore
we can use the coupled system of partial differential equa-
tions (6) to study the behavior of the Dirac field in these
two backgrounds. Furthermore the eigenvaluesκ are equal
to κ = iη with η ∈ R [29]. Notice thatκ = 0 is an allowed
eigenvalue of the Dirac operator on the base manifolds of the
Lifshitz spacetime (2) and of the Lifshitz black hole (3).

3. Quasinormal modes of the Dirac field

Here we calculate exactly the QNF of the Dirac field propa-
gating in theD-dimensional Lifshitz black hole (3). First we
notice that in theD-dimensional Lifshitz black hole (3) the
partial differential equations (6) simplify to

z(z2−1)
dR1

dz
−iω̃R1=−z(z2−1)1/2

(
iκ̂

z
+im̃

)
R2,

z(z2−1)
dR2

dz
+iω̃R2=−z(z2−1)1/2

(
iκ̂

z
−im̃

)
R1, (7)

when the componentsψ1 andψ2 have the harmonic time de-
pendence

ψj = e−iωtRj(r), (8)

with j = 1, 2. In Eqs. (7) we define the quantitiesz = r/r+,
κ̂ = (κl)/r+, m̃ = ml, andω̃ = (ωl3)/r2

+. In what follows,
taking as a basis Eqs. (7) we calculate exactly the QNF of the
massless Dirac field withκ 6= 0 in Subsec. 3.1, and then we
determine the QNF of the massive Dirac field withκ = 0 in
Subsec. 3.2. We study these two limiting cases since we have
not been able to simplify Eqs. (7) whenm 6= 0 andκ 6= 0
simultaneously.

3.1. Massless Dirac field

For a classical field propagating in the Lifshitz black hole (3)
we define its QNM as the oscillations that satisfy the bound-
ary conditions [7-16]

i) They are purely ingoing near the horizon.

ii) They go to zero asr →∞.

For the D-dimensional Lifshitz black hole (3) in the
massless limit the system of differential equations (7) sim-
plifies to

z(z2 − 1)
dR1

dz
− iω̃R1 = −(z2 − 1)1/2iκ̂R2,

z(z2 − 1)
dR2

dz
+ iω̃R2 = −(z2 − 1)1/2iκ̂R1. (9)
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From these we obtain the decoupled equations for the radial
functionsR1 andR2

d2Rj

dz2
+

(
1
z

+
z

z2 − 1

)
dRj

dz

+
(

ω̃2 + iεω̃

(z2 − 1)2
+

κ̂2 − ω̃2

z2(z2 − 1)

)
Rj = 0, (10)

with ε = 1 (ε = −1) for R1 (R2). Here we study in detail the
radial functionR1 and we notice that similar results are valid
for the radial functionR2.

Making the change of variable

u =
z2 − 1

z2
, (11)

and taking the functionR1 as

R1 = uA(1− u)B+1/4f1, (12)

where the constantsA andB are solutions of the algebraic
equations

A2 − A

2
+

ω̃2 + iω̃

4
= 0, B2 − 1

16
= 0, (13)

we find that the functionf1 is a solution of the hypergeomet-
ric differential equation [30-32]

u(1−u)
d2f1

du2
+(c−(a + b + 1)u)

df1

du
−abf1=0, (14)

with the parametersa, b, andc equal to

a = A + B +
1
4

+
√

κ̂2 − ω̃2

2
,

b = A + B +
1
4
−
√

κ̂2 − ω̃2

2
,

c = 2A +
1
2
. (15)

In what follows we take

A =
1
2
− i

ω̃

2
, B =

1
4
. (16)

We expect to find the same physical results for the other val-
ues of the parametersA andB.

If we assume that the quantityc is not an integer to dis-
card the solutions involving logarithmic terms [31,32], then
we get that the radial functionR1 is given by

R1 = u1/2−iω̃/2(1− u)1/2 (C1 2F1(a, b; c; u)

+ C2 u1−c
2F1(a− c + 1, b− c + 1; 2− c; u)

)
, (17)

where 2F1(a, b; c; u) denotes the hypergeometric function
andC1, C2 are constants [30-32]. We point out that in the
coordinateu the horizon of the Lifshitz black hole (3) is lo-
cated atu = 0 and this coordinate satisfiesu → 1 asr →∞.

Thus near the horizon (u = 0) the previous radial function
behaves as

R1 ≈ C1u
1/2−iω̃/2 + C2u

iω̃/2 ≈ C1 exp(r2
+r∗/l3)

× exp(−iωr∗) + C2 exp(iωr∗), (18)

wherer∗ denotes the tortoise coordinate of the Lifshitz black
hole (3) and it is equal to

r∗ =
l3

2r2
+

ln(u) =
l3

2r2
+

ln
(

z2 − 1
z2

)
, (19)

that is,r∗ ∈ (−∞, 0) for r ≥ r+.
Considering that we have a time dependence of the form

exp(−iωt) (see the formula (8)), near the horizon the first
term of the formula (18) is an ingoing wave and the second
term represents an outgoing wave. Hence to have a purely
ingoing wave near the horizon we must takeC2 = 0. Thus
the radial function that satisfies the boundary condition of the
QNM near the horizon is

R1 = C1u
1/2−iω̃/2(1− u)1/2

2F1(a, b; c; u)

= C1u
1/2−iω̃/2

[
(1− u)1/2 Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

× 2F1(a, b; a + b− c + 1; 1− u) +
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)

× 2F1(c− a, c− b; c + 1− a− b; 1− u)
]
, (20)

where in the second line of the previous expression we
use the Kummer formula for the hypergeometric function
2F1(a, b; c; u) that forc− a− b different from an integer es-
tablishes [30-32] (see for example the formula (4) of Sec. 4.8
in Ref. 31)

2F1(a, b; c;u) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

× 2F1(a, b; a + b + 1− c; 1− u) (21)

+
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
(1− u)c−a−b

× 2F1(c− a, c− b; c + 1− a− b; 1− u).

In our case we can use the Kummer formula sincec − a − b
= −1/2, which differs from an integer.

Therefore from the expression (20) for the functionR1

we obtain that asu → 1

lim
u→1

R1 = C1
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
, (22)

since the first term goes to zero in this limit and to satisfy
the boundary condition ii) of the QNM asr → ∞ we must
impose

a = −n, or b = −n, n = 0, 1, 2, . . . , (23)
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from which we find that in theD-dimensional Lifshitz black
hole (3) the QNF of the massless Dirac field are equal to

ω = − ir2
+

l3

(
n + 1 +

η2l2

r2
+(4n + 4)

)
, (24)

with η ∈ R [29]. Using a similar method we get that for the
componentψ2 its QNF are equal to

ω = − ir2
+

l3

(
n +

1
2

+
η2l2

r2
+(4n + 2)

)
. (25)

For D = 4 and making the identificationr2
+ = l2/2, as

in Ref. 15, we find that the QNF (24) and (25) of the massless
Dirac field become

ω = − i

l

(
n

2
+

1
2

+
η2

2(2n + 2)

)
,

ω = − i

l

(
n

2
+

1
4

+
η2

2(2n + 1)

)
, (26)

that are equal to the QNF of the Dirac field given in Ref. 15.
Moreover we note that for the QNF (24) and (25) the quantity
c of the formulas (15) is not an integer, as we assumed.

3.2. Massive Dirac field withκ = 0

Another limit for which we can solve exactly the radial equa-
tions is for the massive Dirac field with angular eigenvalue
equal to zero. Therefore in what follows we calculate exactly
the QNF of the massive Dirac field withκ = 0 propagating
in theD-dimensional Lifshitz black hole (3). In contrast to
Cataĺan,et al. [15] that consider negative values of the mass
m, we study positive values ofm. For κ = 0 the system of
differential equations (7) simplifies to

z(z2 − 1)
dR1

dz
− iω̃R1 = −z(z2 − 1)1/2im̃R2,

z(z2 − 1)
dR2

dz
+ iω̃R2 = z(z2 − 1)1/2im̃R1, (27)

from which we obtain the following decoupled equations for
the radial functionsR1 andR2

d2Rj

dz2
+

z

z2 − 1
dRj

dz
+

(
ω̃2 − iεω̃

z2

+
ω̃2 + iεω̃

(z2 − 1)2
− ω̃2 − iεω̃ + m̃2

z2 − 1

)
Rj = 0, (28)

whereε takes the same values forR1 andR2 that in the pre-
vious subsection.

Here we study in detail the radial functionR1 (similar re-
sults are valid for the functionR2). Making the change of
variable (11) and takingR1 as

R1 = uA(1− u)Bf1, (29)

with the quantitiesA andB being solutions of the algebraic
equations

A2 − A

2
+

ω̃2 + iω̃

4
= 0, B2 − m̃2

4
= 0, (30)

we find that the functionf1 is a solution of the hypergeomet-
ric differential equation (14) with parametersa, b, andc equal
to [30-32]

a = A + B +
1
4

+

√
−ω̃2 + iω̃ + 1/4

2
,

b = A + B +
1
4
−

√
−ω̃2 + iω̃ + 1/4

2
,

c = 2A +
1
2
. (31)

In what follows we take

A =
1
2
− i

ω̃

2
, B =

m̃

2
. (32)

We expect to get similar results for the other values of the
constantsA andB.

If the parameterc is not an integer, then the radial func-
tion R1 is given by [31,32]

R1 = u1/2−iω̃/2(1− u)m̃/2 (C1 2F1(a, b; c;u)

+ C2 u1−c
2F1(a− c + 1, b− c + 1; 2− c; u)

)
, (33)

with C1 andC2 constants. Near the horizon of the Lifshitz
black hole (3) (u = 0) we find that the previous radial func-
tion behaves as

R1 ≈C1 exp(r2
+r∗/l3)

× exp(−iωr∗) + C2 exp(iωr∗). (34)

Since we assume a time dependence of the formexp(−iωt)
we see that in the previous approximation for the radial func-
tion R1 the first term is an ingoing wave, whereas the sec-
ond term is an outgoing wave. Hence to get a purely ingoing
wave near the horizon of the Lifshitz black hole (3) we must
imposeC2 = 0.

Therefore the radial function satisfying the boundary con-
dition i) of the QNM is equal to

R1 =C1u
1/2−iω̃/2(1− u)m̃/2

2F1(a, b; c; u)

=C1u
1/2−iω̃/2

[
(1− u)m̃/2 Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

× 2F1(a, b; a + b + 1− c; 1− u)

+(1− u)−m̃/2 Γ(c)Γ(a + b− c)
Γ(a)Γ(b)

× 2F1(c− a, c− b; c + 1− a− b; 1− u)
]
, (35)

where in the second line of the previous equation we use
Kummer’s formula for the hypergeometric function (21),
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since the quantityc − a − b = −m̃ is not an integer [30-
32]. From the last expression for the radial functionR1, in
the limit u → 1 we note that the first term goes to zero,
whereas the second diverges in this limit. Therefore to sat-
isfy the boundary condition ii) of the QNM we must impose

a = −n, or b = −n, n = 0, 1, 2, 3, . . . (36)

Using the values for the parametersa andb of the formulas
(31) we obtain that in theD-dimensional Lifshitz black hole
(3) the QNF of the massive Dirac field withκ = 0 are equal
to

ω = − ir2
+

l3

(
n +

1
2

+
m̃

2

)
. (37)

For the radial functionR2 a similar method also gives
the previous QNF. If we maker2

+ = l2/2, as previously,
for D = 4 the QNF (37) coincide with those calculated in
Ref. 15, that is, the formula (37) produces the values re-
ported in the previous reference, except that our expression
(37) gives the additional QNF−(i/l)(1/4 + ml/4) for the
componentψ2 of Ref. 15. Furthermore, for the QNF (37) we
get that the parameterc of the formulas (31) is not an integer,
as we assumed.

4. Modes of the Dirac field in the Lifshitz
spacetime

To extend the results of the previous section here we deter-
mine the modes of the Dirac field in theD-dimensional Lif-
shitz spacetime (2). In a similar way to the electromagnetic
field [16], in the Lifshitz spacetime (2) the modes of the Dirac
field must satisfy the boundary conditions:

1) The modes go to zero asr →∞.

2) The modes are regular atr = 0.

Our objective is to determine for the Dirac field the exis-
tence of unstable modes that satisfy the previous boundary
conditions, that is, for the Dirac field propagating in theD-
dimensional Lifshitz spacetime (2) we are looking for modes
whose amplitudes increase with the time and that fulfill the
boundary conditions 1) and 2).

For the Dirac field propagating in theD-dimensional Lif-
shitz spacetime (2) the coupled system of differential equa-
tions (6) simplify to

yẑ+1 dR1

dy
− iω̂R1 = −yẑ

(
iκ

y
+ im̂

)
R2,

yẑ+1 dR2

dy
+ iω̂R2 = −yẑ

(
iκ

y
− im̂

)
R1, (38)

when we take the componentsψ1 andψ2 as in the formula (8)
and we define the quantitiesy = r/l, ω̂ = ωl, andm̂ = ml.
Since we have not been able to simplify in an appropriate
form the system of differential equations (38) whenm 6= 0
andκ 6= 0 simultaneously, in a similar way to the Lifshitz

black hole (3), in what follows we calculate the modes of the
massless Dirac field withκ 6= 0 and of the massive Dirac
field with κ = 0.

4.1. Massless Dirac field (κ 6= 0)

For the Dirac field propagating in theD-dimensional Lifshitz
spacetime (2), in the massless limit we get that the coupled
system of differential equations (38) simplifies to

y
dR1

dy
− iω̂

yẑ
R1 = − iκ

y
R2,

y
dR2

dy
+

iω̂

yẑ
R2 = − iκ

y
R1, (39)

from which we obtain for the functionsR1 andR2 the de-
coupled equations

d2Rj

dy2
+

2
y

dRj

dy
+

(
ω̂2

y2ẑ+2

+
iω̂(z − 1)ε

yẑ+2
+

κ2

y4

)
Rj = 0, (40)

with j = 1, 2, andε = 1 for R1 whereasε = −1 for R2,
as previously. In a similar way to theD-dimensional Lifshitz
black hole (3) we restrict to the casêz = 2, since for this
value of the critical exponent we can solve exactly the radial
equations (40). Thus for̂z = 2 we find that the differential
equations (40) take the form

d2Rj

dx2
+ (κ2 + εiω̂)Rj + ω̂2x2Rj = 0, (41)

where we define the coordinatex by

x =
1
y
. (42)

Making the ansatz

Rj = eiω̂x2/2R̂j , (43)

we obtain that the functionŝRj must be a solution of the dif-
ferential equation

v
d2R̂j

dv2
+

(
1
2
− v

)
dR̂j

dv
− iω̂(ε + 1)− η2

4iω̂
R̂j = 0, (44)

where we use thatκ = iη, as previously [29], and we define
the variablev by

v = −iω̂x2. (45)

We notice that the differential equations (44) for the func-
tions R̂j are confluent hypergeometric differential equations
[31,32]

v
d2f

dv2
+ (b− v)

df

dv
− af = 0, (46)

with parameters

aj = − η2

4iω̂
+

ε + 1
4

, bj =
1
2
. (47)
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If C1j andC2j are constants, the solutions of the differ-
ential equations (41) are [32]

Rj =C1je−v/2U(aj , bj ; v)

+C2jev/2U(bj − aj , bj ; e−iπv), (48)

whereU(a, b; v) denotes the Tricomi solution of the conflu-
ent hypergeometric differential equation (46) [32]. Since we
are looking for unstable modes, in what follows we assume
that the imaginary parts of the frequencies fulfillIm(ω) > 0,
and hence from the formula (45) we get thatRe(v) > 0.
Notice that we choose a time dependence exp(−iωt) (see
the formulas (8)) and forIm(ω) > 0 the amplitude of the
Dirac field increases with the time, that is, forIm(ω) > 0 the
modes are unstable.

For v → ∞ (r → 0) we find that the functionsRj of the
formula (48) behave as

Rj ≈ C1j

ev/2vaj
+ C2jev/2vaj−bj , (49)

where we use that the Tricomi solution satisfies [32]

U(a, b; v) ≈ v−a, (50)

asv →∞. Owing toRe(v) > 0 we find that the first term in
the formula (49) goes to zero asv →∞, whereas the second
term diverges in this limit. Hence to fulfill the boundary con-
dition 2) we must takeC2j = 0, and the radial functionsRj

simplify to
Rj = C1je−v/2U(aj , bj ; v). (51)

It is convenient to recall that when the quantityb is dif-
ferent from an integer the Tricomi solutionU(a, b; v) satis-
fies [32]

U(a, b; v) =
Γ(1− b)

Γ(a− b + 1) 1F1(a, b; v)

+
Γ(b− 1)

Γ(a)
v1−b

1F1(a− b + 1, 2− b; v), (52)

where1F1(a, b; v) is the confluent hypergeometric function
[31,32]. Using this property of the Tricomi solution we write
the radial functions (51) as

Rj = C1j

[
Γ(1/2)e−v/2

Γ(aj + 1/2) 1F1(aj , bj ; v)

+
Γ(−1/2)
Γ(aj)

e−v/2v1/2
1F1(aj − bj + 1, 3/2; v)

]
. (53)

In the limit v → 0 (r → ∞) we get that the previous func-
tions behave in the form

lim
v→0

Rj ≈ Γ(1/2)
Γ(aj + 1/2)

. (54)

Hence to satisfy the boundary condition 1) we must impose

aj +
1
2

= −n, n = 0, 1, 2, 3, . . . , (55)

from which we obtain that the frequencies of the modes that
fulfill the boundary conditions 1) and 2) are equal to

ω̂j = −i
η2

4
1

n + (ε + 1)/4 + 1/2
. (56)

Considering that forε = 1 andε = −1 it is true that

ε + 1
4

+
1
2

> 0, (57)

we obtain that for the frequencies (56) their imaginary parts
satisfy Im(ω̂j) < 0, and we notice that this fact contra-
dicts our assumption that the frequencies of the modes fulfill
Im(ω) > 0. Therefore we do not find unstable modes satis-
fying the boundary conditions 1) and 2) and we infer that the
modes of the massless Dirac field withκ 6= 0 are stable in the
D-dimensional Lifshitz spacetime (2).

4.2. Massive Dirac field withκ = 0

As for theD-dimensional Lifshitz black hole (3), in theD-
dimensional Lifshitz spacetime (2) witĥz = 2 we can solve
exactly the radial equations (38) of the massive Dirac field in
the limit when the angular eigenvalue goes to zero. It is con-
venient to recall thatκ = 0 is an allowed eigenvalue for the
Dirac operator on the base manifold of the Lifshitz spacetime
(2) [29]. In this limit, from Eqs. (38) we obtain the following
decoupled equations for the functionsR1 andR2

d2Rj

dy2
+

1
y

dRj

dy
+

(
ω̂2

y6
+

2iω̂ε

y4
− m̂2

y2

)
Rj = 0, (58)

where the quantitiesj andε take the same values that in the
previous sections. Making the change of variable (42) and
taking the functionsRj as in the formula (43), in this case we
find that the functionŝRj of this expression must be solutions
of the differential equations

d2R̂j

dv2
+

(
1
v
− 1

)
dR̂j

dv
−

(
(ε + 1)

2v
+

m̂2

4v2

)
R̂j = 0, (59)

where we use the variablev of the formula (45).
Proposing that the functionŝRj take the form

R̂j = vAj Řj , (60)

with the quantitiesAj being solutions of

A2
j −

m̂2

4
= 0, (61)

and substituting the expression (60) into Eq. (59), we find that
the functionsŘj must solve the differential equationsi

v
d2Řj

dv2
+ (2Aj + 1− v)

dŘj

dv

−
(

1 + ε

2
+ Aj

)
Řj = 0. (62)
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As in the previous subsection these are confluent hypergeo-
metric differential equations (46) with parameters

aj = Aj +
1 + ε

2
, bj = 2Aj + 1. (63)

In what follows we takeAj = m̂/2 and hence the previous
quantities are equal to

aj =
m̂ + (1 + ε)

2
, bj = 1 + m̂. (64)

Thus the radial functionsRj are

Rj = e−v/2vm̂/2

(
C1jU(aj , bj ; v)

+ C2jevU(bj − aj , bj ; e−iπv)
)

, (65)

whereC1j andC2j are constants, as previously. In what fol-
lows we assume that the imaginary parts of the frequencies
satisfyIm(ω) > 0, as in the previous subsection, and using
the property (50) of the Tricomi solution, we find that the
second term of the radial functions (65) diverges asv → ∞.
Therefore to get a well behaved solution asv → ∞ we take
C2j = 0 and the radial functions that satisfy the boundary
condition 2) are equal to

Rj = C1je−v/2vm̂/2U(aj , bj ; v). (66)

Taking into account the property (52) of the Tricomi solution
we obtain that the previous radial functions transform into

Rj = C1je−v/2vm̂/2

[
Γ(1− bj)

Γ(aj − bj + 1) 1F1(aj , bj ; v)

+
Γ(bj − 1)

Γ(aj)
v1−bj

1F1(aj − bj + 1, 2− bj ; v)
]

, (67)

that in the limitv → 0 behave as

Rj ≈ Γ(1− bj)
Γ(aj − bj + 1)

vm̂/2

ev/2
+

Γ(bj − 1)
Γ(aj)

1
ev/2vm̂/2

. (68)

From this expression we notice that in the limitv → 0
the first term goes to zero, whereas the second term diverges.
Hence to fulfill the boundary condition 1) we must impose

aj = −n, n = 0, 1, 2, 3, . . . , (69)

form which we obtain

m̂

2
+

1 + ε

2
= −n. (70)

Since in the previous formulas forε = 1 andε = −1 the left
hand side is positive we can not satisfy the conditions (70)
and hence for the massive Dirac field with angular eigenvalue
equal to zero we do not find modes withIm(ω) > 0 that ful-
fill the boundary conditions 1) and 2). Therefore for this field
we do not obtain unstable modes satisfying the boundary con-
ditions 1) and 2).

5. Discussion

From the expressions (24) and (25) for the QNF of the mass-
less Dirac field and from the formula (37) for the QNF of
the massive Dirac field withκ = 0 we find that their imagi-
nary parts satisfyIm(ω) < 0 and considering that we take a
time dependence of the formexp(−iωt) we get that in theD-
dimensional Lifshitz black hole (3) the QNM of the massless
Dirac field with κ 6= 0 and of the massive Dirac field with
κ = 0 are stable since their amplitudes decay as the time in-
creases. Thus when we impose the Dirichlet boundary condi-
tion ii) asr →∞, for the Dirac field we find a discrete spec-
trum of QNF for allD ≥ 4 and its QNM are stable, as for
the Klein-Gordon field [7]. Notice that for the electromag-
netic field of scalar type propagating in theD-dimensional
Lifshitz black hole (3) we need to impose a slightly different
boundary condition asr →∞ whenD = 5, 6, 7 [16].

For the Dirac field propagating in theD-dimensional Lif-
shitz black hole (3) from the expressions (24), (25), and (37)
we find that its QNF do not depend explicitly on the space-
time dimension, and hence the QNM of the Dirac field be-
have in a different way than those of the electromagnetic and
Klein-Gordon fields.

In a similar way to the electromagnetic field [16], we also
show that in theD-dimensional Lifshitz spacetime (2) with
ẑ = 2 the massless Dirac field withκ 6= 0 and the massive
Dirac field withκ = 0 do not have unstable modes that satisfy
the boundary conditions 1) and 2) of Sec. 4. Thus we expect
that theD-dimensional Lifshitz spacetime (2) witĥz = 2 is
linearly stable against Dirac perturbations.

Doubtless, for theD-dimensional Lifshitz black hole (3)
and theD-dimensional Lifshitz spacetime (2) the generaliza-
tion of our results for the Dirac field withm 6= 0 andκ 6= 0
simultaneously deserves further research.

We recall that in the two-dimensional Witten black hole
the QNF of the massive Dirac field are equal to [33] (see the
formulas (61) and (62) in Ref. 33)

ω1 = −i

(
n

2
+

1
2
− m2

w

(2n + 2)

)
,

ω1 = −i

(
n

2
+

1
4
− m2

w

(2n + 1)

)
,

ω2 = −i

(
n

2
+

1
4
− m2

w

(2n + 1)

)
,

ω2 = −i

(
n

2
− m2

w

2n

)
, (71)

where mw is the mass of the Dirac field in the two-
dimensional black hole andn = 1, 2, 3, . . . , in the second
set of QNFω2. If in the values of the previous QNFω1 we
make the identificationmw = iη/

√
2 and we also divide by

l the whole expressions of the QNFω1, then we obtain the
QNF (26) of the massless Dirac field in the Lifshitz black
hole (3). Something similar happens with the QNFω2 of the
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two-dimensional Witten black hole. We do not know an ex-
plication for this fact, but it points out to some connection
between these two backgrounds.

In Ref. 34 Emparan and Tanabe show that for a large class
of black holes, in the limitD →∞ their QNF behave as

ωD =

[
D

2
+ K −

(
eiπ

2

(
D

2
+ K

))1/3

αp

]
1
r+

, (72)

whereK is the angular momentum number,r+ is the radius
of the event horizon, and the quantities−αp are the zeroes
of the Airy function. Emparan and Tanabe proposes that the
behavior for the QNF given in the formula (72) would be true
for other black holes, but as shown in Ref. 16 for the elec-
tromagnetic and Klein-Gordon fields propagating in theD-
dimensional Lifshitz black hole (3) the expression (72) does
not describe the behavior of their QNF in the limitD → ∞.
From our expressions (24), (25), and (37) for the QNF of the
Dirac field and taking into account that they do not depend

on the spacetime dimensionD, we infer that for the Dirac
field propagating in the Lifshitz black hole (3) the formula
(72) does not produce the behavior of its QNF in the limit
D → ∞. For example, the QNF (72) are complex numbers
with real part different from zero, but in theD-dimensional
Lifshitz black hole the QNF (24), (25), and (37) of the Dirac
field are purely imaginary. Furthermore the QNF of the Dirac
field in theD-dimensional Lifshitz black hole (3) depend on
the radius of the horizon asr2

+, whereas in the formula (72)
the dependence on the radius of the horizon is in the form
1/r+. These facts suggest that in the limitD → ∞ the be-
havior of the QNF is not universal.
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IPN, COFAA IPN, and Research Projects IPN SIP-20140832
and IPN SIP-20144150.

i. It is convenient to note that in Eqs. (62) the frequencyω̂ does
not appear explicitly and it is contained only in the variablev
(see the definition (45)).
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22. A. López-Ortega, Gen. Rel. Grav. 39 (2007) 1011.
[arXiv:0704.2468 [gr-qc]].

23. R. Becar, P. A. Gonzalez and Y. Vasquez,Phys. Rev. D89
(2014) 023001. [arXiv:1306.5974 [gr-qc]].

24. A. Lopez-Ortega, Rev. Mex. Fis. 56 (2010) 44.
[arXiv:1006.4906 [gr-qc]].

25. G. W. Gibbons and A. R. Steif,Phys. Lett. B314 (1993) 13.
[arXiv:gr-qc/9305018].

26. S. R. Das, G. W. Gibbons and S. D. Mathur,Phys. Rev. Lett.78
(1997) 417. [arXiv:hep-th/9609052].

27. I. I. Cotaescu,Mod. Phys. Lett. A13 (1998) 2991. [arXiv:gr-
qc/9808030].

28. A. Lopez-Ortega,Lat. Am. J. Phys. Educ.3 (2009) 578.
[arXiv:0906.2754 [gr-qc]].

29. N. Ginoux,The Dirac Spectrum(Lecture Notes in Mathematics
Vol. 1976, Springer, Dordrecht, 2009).

30. M. Abramowitz and I. A. Stegun,Handbook of Mathematical
Functions, Graphs, and Mathematical Table(Dover Publica-
tions, New York, 1965).

31. Z. X. Wang and D. R. Guo,Special Functions(World Scientific
Publishing, Singapore, 1989).

Rev. Mex. Fis.60 (2014) 357–365



QUASINORMAL FREQUENCIES OF THE DIRAC FIELD IN AD-DIMENSIONAL LIFSHITZ BLACK HOLE 365

32. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark,
NIST Handbook of Mathematical Functions, (Cambridge Uni-
versity Press, New York, 2010).

33. A. Lopez-Ortega and I. Vega-Acevedo,Gen. Rel. Grav.43
(2011) 2631. [arXiv:1105.2802 [gr-qc]].

34. R. Emparan and K. Tanabe,Phys. Rev. D89 (2014) 064028.
[arXiv:1401.1957 [hep-th]].

Rev. Mex. Fis.60 (2014) 357–365


