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A Detrended Fluctuation Analysis (DFA) method is applied to investigate the scaling properties of the energy fluctuations in the spectrum
of “8Ca obtained with (a) a large realistic shell model calculation (ANTOINE code) and (b) with a random shell model (TBRE) calculation.
We compare the scale invariant properties of the energy fluctuations with similar analyses applied to the RMT ensembles GOE and GDE. A
comparison with the related power spectra calculations is made. The possible consequences of these results are discussed.
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Se aplica el ratodo DFA (Detrended Fluctuation Analysis) para investigar las propiedades de escalamiento de las fluctuacioneside la energ
en el espectro déf Ca obtenido con (a) unaiculo del modelo de capas realista (codigo ANTOINE) y con (b) alauto del modelo de

capas aleatorio (TBRE). Comparamos las propiedades invariantes de escala de las fluctuacioneis dera@iisis similares aplicados

a ensembles GOE y GDE de la teode matrices aleatorias (RMT). Se hace una compgaramn @lculos relacionados de espectro de
potencias. Se discute las posibles consecuencias de esos resultados.

Descriptores:Caos cantico; invariancia de escala; TBRE; DFA.

PACS: 05.45.Mt;24.60.L7;52.25.Gj;74.40.+k;89.75.Da

1. Introduction age quantities on this space. In general, the dynamical in-
) ) ) stability of the orbits in a chaotic system is accompanied by
Our present knowledge of highly excited states in heavy nuthe occurrence of strange attractors with a fractal structure
clei is based on the connection with the eigenvalues of rang, phase spacee(g. in the Lorenz model -see Fig. 1). The
dom (chaotic) hamiltonians. On the scale of the mean leveyigin of this fractal structure is related to the existence of a
spacing, the spectra of complex nuclei are statistically derigid treeof periodic orbits ¢ycle3 of increasing lengths and
scribed by Random Matrix Theory (RMT) [1]. This notion se|f.similar structure [7]. The relation between the structure
was introduced by E. Wigner in the 1950s [2]. In particu- of periodic orbits in phase space and RMT is established by
lar, the probability distributiorP(s) of the nearest-neighbor  Gytzwiller trace formula [8]. Thus, at the quantum level we
spacings agrees with the Wigner surmise would hope to find a signature of the fractality in the phase
P(s) = /2 o5/ space in the form of a scale invariance, or, in other words,
to identify the same kind of signature (or symmetry) in the

of RMT. Furthermore, the Bohigas-Giannoni-Schmit- quantum regime
conjecture [3] establishes that quantum systems whose clas- The notion of scale invariance appears in many different
sical analogs are chaotic, have a nearest-neighbor spacimgienomena. For example, in second order phase transitions,
probability distribution given by RMT, whereas for sys- it appears near the so calledtical pointswhere some phys-
tems whose classical counterparts are integrable, the neareisil quantities obey a power law behavior. In paricular, the
neighbor spacings are described by a Poisson distribution [4Jorrelation lenght’ ¢ behaves like& ~ [T' — T,.,.;|~", with
P(s) = e~*. Thus, a widely accepted criterion for a signa- v being the correspondingritical exponent At the critical
ture of quantum chaos is usually made in terms of the forniemperature the correlation lenghtiverges and the system
of P(s). Intermediate situations are analyzed by means ohas no characteristic scales. the system becomes scale in-
interpolated distributions (seeg.Refs 5 and 6). variant, and the correlation function behave§'as) ~ r .
Classical chaos, on the other hand, is a better understood Power law behavior has been observed in the study of
non-linear phenomenon, which gives rise tauapredictable  chaotic time series, for example in the problem of a dripping
time-evolution of the corresponding dynamical systems. Irfaucet [9], in heartbeat dynamics [10] and in many other phe-
particular, it is characterized by an intrinsic instability in the nomena. Recently, it was found that the power spectrum of
orbits due to a high sensitivity to initial conditions. So, in- the fluctuations of the eigenvalues of RMT ensembles and
stead of trying to make a precise prediction of individual tra-nuclear shell (TBRE) model calculations exhibit a power law
jectories the aim of the theory of chaos is a description obehavior~ 1/f (with f being the frequency), whereas, for
the space of possible trajectories and the evaluation of avethe case of integrable systems it was found that the corre-
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sponding power spectrum behaves-as/f? (see Ref. 11). related property is scale invariance which can be thought of

Thus, in the case of a system with a (parameter-dependerd} self-similarity on all scales. Thus, a fractal structure lacks

transition from a regular to a chaotic regime, like the hydro-any characteristic length scale. This fractal structure is seen,

gen atom in an external magnetic field, we would expect te@.g, in the Lorenz attractor Fig. 1.

have a power spectrum 1/f? associated with the energy The 1/f behavior of the power spectrum found in

fluctuations at small magnetic fields, and 1/f for mag- quantum fluctuations of the spectra of random hamiltoni-

netic fieldsB 2 1 (in atomic units). To our knowledge, the ans [11,17] suggests that full quantum chaos can be asso-

dependence of this transition on the external magnetic fieldiated with a particular class of scale invariance. Namely, a

intensity has not been well understood so far. This problenscale invariance for which the auto-correlation function be-

will be studied elsewhere. comes (approximately) scale independent. Such situation oc-
The purpose of the present paper is to begin a study of theurs for a power spectrum with a power-law (scale invariant)

self-similar (or fractal) properties of the energy fluctuationsbehavior~ 1/f7 at thecritical value3 = 1. A demon-

in the spectrum of quantum chaotic systems. As a concretstration in the continuum case is the following: suppose

system we study the energy fluctuations in the spectrum dhat the power spectrufhof a given time series has g f

48Ca, obtained with (a) shell model calculations witlres  behavior,.e.

alistic interaction, and (b) with random shell model calcu-

lations (TBRE) both in the fulfp shell. Large shell calcu- S(f)=1/f. @)

lations are considered to exhibit the chaotic behavior foundsince the Fourier Transform of the power spectrum is iden-

in actual experimental spectra (seg. Ref. 23 and refer-  ic4) to the autocorrelation functioi(r) (Wiener-Khinchin
ences therein). We also carry out a comparison with the COFrheorent) we have:

responding behavior of the energy fluctuations in the RMT

ensembles GOE and GDE. We shall also use a recently intro- C(r)=F HS(f)=FH1/f). 2)
duced notion based on the analogy between energy fluctua- i L
tions of chaotic hamiltonians and chaotic time-series, and ap- °"* '_f we make an arbltra+ry scale transformation intinee
ply the method ofletrended fluctuation analysfBFA) [15],  domain (e.7 — ar, a € RT) we have

which is designed to study the hidden fractal properties of 1 (1 N
time series found in many natural phenomena. Clar) =F a (S(fla) ) =F e 7)) @)

Thus
2. Fractality and 1/ f scale invariance
Clar) =C(1). 4)
The concept of a fractal is associated with geometrical Obi—| h dth i f Fourier T
jects satisfying two criteria: self similarity and fractional ere, we have use t € scaling property of ourier frans-
dimensionality. Self similarity means that an object is Com_fqrms, Wh.'Ch IS st_nctly valid only in the continuum case. For.
posed of sub-units and sub-sub-units on multiple levels th(,i(iilscrete time series, there are other tools for studying their

statistically) resemble the structure of the whole object. ascale invariant properties, including the DFA method [15]
( y) ) (see below). In factl/f behavior (referred to as flicker or

1/f noisg occurs in many physical, biological and economic
systems, meteorological data series, the electromagnetic ra-
diation output of some astronomical bodies, and in almost
all electronic devices. In biological systems, it is present in
heart beat rhythms and the statistics of DNA sequences. In
financial systems it is often referred to as a long memory ef-
fect. There are even claims that almost all musical melodies,
when each successive note is plotted on a scale of pitches,
will tend towards al/ f noise spectrum.

3. Spectrum fluctuations as time-series

The fluctuations in a quantum spectrum are obtained by an
unfolding procedurei.e., by substracting the gross features
of the spectrum which can be modeled by a smooth function.
In essence, this procedure consists in mapping the speétrum
E; into a dimensionless spectrum having a mean level den-
sity of 1:

FIGURE 1. Lorenz strange attractor having a fractal (Hausdorff)

dimension~ 2.06. Ei —e=N(E;), (i=1...N). ®)

Rev. Mex. . S54 (3) (2008) 48-55



50 E. LANDA, I. MORALES, C. HERNANDEZ, V. VELAZQUEZ, J.C. LOPEZ VIEYRA, AND A. FRANK

whereN (E;) is a smooth function fit? of the staircase-like Letd(i), i = 1... N be atime series. The DFA analysis
cumulative density functioV (E;) (seee.g.Ref. 8). In par-  of §(¢) begins by defining an integrated time series
ticular, the nearest neighbor spacing (NNS) is calculated as

$i =€i4+1 —€,i=1,...N —1,and(s) = 1. The spectrum - N
fluctuations can be defined by the quantity v(n) = 2[6(2) (0], ©)
5, = i(Si —(8)) = [ensy1 — 1] — n{s) . (6) with (&) being the average (expectation valuej oThen the

integrated time series is divided into boxes of equal lergth
where a lined* least-squares fit,(n) (trend) is made. The
The stochastic discrete functian measures the deviations gifference (r.m.s.) between the integrated time series and the
of the distance between the first and (he+ 1)'th unfolded fit is measured by thdetrended fluctuation
states, with respect to the corresponding distance in a uni-
form (equally spaced) sequence having a unit level distance LN
(s) = 1. The sequence (6) can be formally interpreted as a Fl)= | = Z[w(n) — he(n)]2. (10)
discrete “time series” (see.g. Ref. 11). In order to under- N n=1
stand the scaling properties of the fluctuations (6), we use the
detrended fluctuation analysis (see below). T_his fluctuation can be CaICI_JIated for a_II sca_le factors (or box
A standard measure for the deviation from equal spacin?'zes)- In alog-log plot, a linear relationship between the
is the Dyson-Methaigidity function [16] luctuation and the box size will indicate a scaling (power
law) behavior. In this case the slopg r 4 in thelog[F(¢)]
1 ad L ) vs log[¢] plot can be used to characterize the scaling prop-
Asz(L;a) = zMinA,B / [N(E)—AE—B|dE, (7) erties (8) of the original time series since = apra in
Ref. 8. As an example, if there is no correlation among
the points in the original time serieg:), i.e. the autocor-
where A, B give the best local fit taV(E) in the observa- relation functioi” C(7) = 0, for any time-lagr # 0, the
tion window o < E < a + L. The harmonic oscilla-  time series behaves as white noise and the integrated time
tor corresponds to the minimum valuk; = 1/12 (max-  seriesy(n) corresponds to a random walk characterized by
imum rigidity), while a completely random (uncorrelated) o, ., = 0.5 (see [18]). Time series with short range (expo-
spectrum with a Poisson distribution has an average (@yer nentially decaying) correlatior(r) ~ e~"/™, , being the
As(L) = L/15 (seee.g. Ref. 8). The case of a GOE characteristic scale, are also characterizedvby-4 ~ 0.5
Spectrum with a Wigner'like NNS pI’Obablllty distribution is a|though some deviations fromDFA ~ 0.5 may occur for
an intermediate case and the rigidity function has the formsmall window sizes. Of special interest are the so cailed
A3(L) = 1/7*(log L—0.0687). Ithas been shown inRef. 17 sjstent(long time memory) time series for which the auto-
that the rlgldlty function (7) is related to the DFA method. correlation function has a power-|aw behaﬁn—) ~ 777,

In particular, Santhanaret al. [17] have applied the DFA  They are characterized by value$ < apra < 1.0, the
method to RMT ensembles as well as to the spectra of heavy|ationship between andappa beingy = 2 — 2appa.

i=1

[

atoms. The power spectrum of the corresponding time-series also
displays a power-law (scale invariant) behawoy) ~ 1/f”
4. Detrended ﬂuctuatlon analys|s (DFA) with ﬁ =1- Y= QOLDFA —1.1In particular, for time series

with 1/ f-noise @ = 1) apra = 1 (seee.g.Ref. 19).
DFA is a method which allows the investigation of long range
correlations and scaling properties in a random time series.
was first introduced in studies of DNA chains [15]. In the fol-
lowing we make a brief description of the DFA method (for
more details we refer the reader to the original paper [15]).
A time seriesi(t) is self similar if the statistical proper-

g. Results

We have applied the DFA method and performed a spectral
analysis to the energy fluctuations in the spectrurf@fa .
For comparison purposes we have also applied the analysis
Yo the case of RMT ensembles GOE and GDE. In all cases
the unfolding (5) to the spectrum was done (for simplicity)

oor ¢ with a polynomial fit. After a careful analysis, a degree-7

6(t) = a”s (a> ; (8)  polynomial fit was used in each cdseowever, the unfold-
ing is a delicate procedure when defining the energy fluc-

wherea is the scale factor in théme axis @ is the corre-  tuations [11]. It can lead to wrong conclusions when not
sponding vertical scaling factor). The exponanh Ref. 8is  properly done. In particular, the results are rather sensitive
defined as the self-similarity parameter. We emphasize thab the degree of the polynomial in a polynomial fitA&( E;)
the equality in Ref. 8 is understood as indicating s$aene  Eq. (5). This fact has been discussed in TBRE calculations in
probability distributions (PDF). Ref. 13. In our analysis we have suitably removed the tails of

rescaled subinterval of it, satisfy the scaling relation
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the spectrum to avoid a strong dependencies of the results in
the polynomial fit.

In the present calculations we have useddfeC-code
(translation of Peng’s original fortran code [20]) with a linear
detrending option. The minimal box size used was 4, and the
maximal box size wa#&V/4, with N the number of points in
the time series. The results of the analysis are presented in
the following paragraphs.

5.1. Realistic shell model calculations

Large shell model calculations with realistic interactions
(KB3) [21] were performed in the fufp shell for*¥Ca in the
subspaceg™ = 0*7,1T,...8% by means of the ANTOINE
code [24]. Within each subspace we calculated the energy
fluctuations following the definition (6) and applied a linear
DFA analysis. The value of the self-similarity parameter
are found to be very close t the largest deviations being
~ 10%). The energy fluctuations represented by the time
seriesd,, and its integrated forny,,, are shown in Figs. 2a
and 3a, respectively, for the case of the subspéte= 0.

The behavior shown in these figures is typical of all cases
studied with shell model calculations with realistic interac-
tions.

Figure 4a shows the results of the DFA analysis for the
case of the/™ = 0T subspace. This case is particularly in-
teresting since this subspace contains Gdlyenergy levels.

It is quite remarkable that, even in this case, the trend of the
fluctuations is well approximated by a linear scaling in the
log-log plot in the whole domain of window sizes giving a
self-similarity parametes = 0.97. Larger calculations show
even better linear scalings. The results of the DFA analysis
are summarized in Table I.

An « parameter close td indicates an almost per-
fect non-trivial scale invariance. Using the relation
8 = 2apra — 1, we conclude that the power spectrum ex-
hibits a very approximatg/ f behavior. This is confirmed

o 1 ao 2 3po 350

FIGURE 2. Time seriess,, of the energy fluctuations in a shell

TABLE I. Self similarity parametet obtained using a linear DFA  model calculation of the spectrum 8fCa (J™ = 07 states) with

method and thé exponent in the power Spectrum of the energy (a) realistic interactions, (b) with random interactions (TBRE), and
fluctuations in the shell model calculations 6Ca with realistic ~ With RMT ensembles (c) GOE and (d) GDE. For the later the same

interactions in different subspacé€. The dimensionV of each ~ dimension as for th¢™ = 0" subspace was used. Ttime (hor-

subspace is also shown. izontal) axis represents the index of the ordered unfolded (dimen-
sionless) energy,, and the vertical axis represents the correspond-
8 Ca ing energy fluctuation,, i.e. the difference of the:-th unfolded
J « Jé] N energye,, with respect to the-th energy level in an equally spaced
ot 0.969 1.008 347 spectrum with unit energy distance. Notice that the scale for the
1+ 0.998 1.090 880 ]::Iglcctﬁlaattli?)r;]ssln GDE is about 4 times larger than for the shell model
2t 1.013 1.046 1390 '
3t 1.020 1.183 1627 , _ ,
n by the corresponding power spectrum calculations, shown in
4 0.985 1.127 1755 ; h
+ Fig. 5a, where we find an exponeft= 1.008. The power
5 0.916 1.198 1617 : L . o
o 1077 1137 1426 spectrum depicted in Fig. 5a shows the typical behavior in
: : all shell model calculations with realistic interactions: there
7t 1.095 1.180 1095 : . : . :
is a rather large spread in the Fourier amplitudes from a linear
8" 0.964 1.031 808

scaling.
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FIGURE 3. Integrated time serieg,, (Eq. (9)) for the energy fluc- g sure 4. Integrated time series,, (Eq. (9)) for the energy fluc-
tuations in shell model calculation of the spectrum corresponding;ations in shell model calculation corresponding to the spectrum
to *¥Ca (J™ = 0T states) with (a) a realistic interaction, (b) with of ¥Ca (J™ = 07 states) with (a) a realistic interaction, (b) with
random interactions (TBRE), and with RMT ensembles (c) GOE \53ndom interactions (TBRE), and with RMT ensembles (c) GOE
and (d) GDE. For the cases of GOE and QDE the_same dimgnsior}md (d) GDE. For the later the same dimension as forthe-= 0*

as for theJ™ = 0 subspace was used. Ttime (horizontal) axis g pspace was used. Ttime (horizontal) axis represents the index
represents the index of the ordered unfolded (dimensionless) engs the ordered unfolded (dimensionless) enargynd the vertical

ergy e, and the vertical one the corresponding integrated energygne the corresponding integrated energy fluctuatign
fluctuation,,. Notice that the scale for the fluctuations in GDE is

about 6 times larger than for the shell model calculations. The energy fluctuations represented by the time séfjes

The observed spreading is seen independently of the siZdd its integrated formy,, are shown in Figs. 2b and 3b, re-
of the spectrum subspace. We find in all cases that the DFAPECtively. The self similarity parameter was calculated by an
method is a more robust procedure than the direct calculatiofivéraging procedure over the DFA results, and itwas found to

of spectral power when analyzing actual experimental data. P& = 1.01. This value is very similar to the value of the self
similarity parameter obtained in the case of realistic calcula-

5.2. TBRE shell calculations tions (see Table I). Figure 4b shows the averaged results of
the DFA analysis. The linear behavior of these results is very

In the present study we have also applied the DFA method tetriking. Only for very large window sizesi(~ N/4 ~ 87)

the energy fluctuations of the Two Body Random Ensemblave can see a slight deviation from linearity. Since the present

(TBRE) [22] shell model calculations fdfCa in the sub-  analysis was done for the cag& = 0+ which has the small-

space/™ = 0. For this calculations we have used 25 sets ofest dimensionality in thdp shell model calculations, it is

energy levels.
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TABLE Il. Comparison between shell model calculations with (a)
k realistic interactions, (b) random interactions (TBRE) and (c) GOE
calculations in the spectrum subspate= 0" of “*Ca.

a B
BCa,J" =0 (Shell Model) 0.969 1.008
(TBRE) 1.003 0.987
GOE N =347 0.951 0.998
N = 1000 0.942 1.069
GDE N = 347 1.338 1.604
N = 1000 1.398 1.786

power spectrum. This is an advantage of the averaging pro-
cedure. The power spectrum fit is shown in Fig. 5b where it
can be seen that in this case the linear fit in the log-log plot
adequately describes th¢ f# behavior of the power spec-
trum. A different situation was observed in the case of the
corresponding shell model calculations with realistic interac-
tions depicted in Fig 5a. The value obtained for the scaling
exponent wag = 0.99 (see Table II) which implies a scale
invariance of the energy fluctuations in the TBRE calcula-
tions.

02

5.3. GOE

01F

e For comparison purposes we applied the DFA method to the
energy fluctuations in the case of GOE. In order to make a
fair comparison we considered a GOE with the same dimen-
sion as the case of the subspalfe= 0, where both types
of shell model calculations (with realistic and random inter-
actions) were used. A set of 25 matrices in the ensemble was
used. The energy fluctuations represented by the time series
0, and its integrated formp,, are shown in Fig. 2c and Fig. 3c
respectively. With the results of the DFA analysis we ob-
tained a value for the self similarity parametee= 0.95 (see
Table 1), consistent witlx = 1. This 5% deviation from the
FIGURE5. Linear fit of the Power Spectrunivgs | 7|2 vslog k) of ~ €XPected valuer = 1 is probably due to the unfolding pro-
the energy fluctuations i Ca (J™ = 0* subspace) obtained with ~cedure used in the analysis. This is also suggested by the fact
(a) a realistic interaction, (b) with angular momentum-preserving that in larger GOE calculations with a dimensiéh= 1000
random interactions (TBRE), and with RMT ensembles (c) GOE a similar deviation from the value = 1 is observed. It is
and (d) GDE. HereF | is the Fourier amplitude corresponding to important to recall that in the limiV — oo, the cumulative
the frequencys in the discrete Fourier transform of the time series. function NV (FE) follows a semicircular law. However, even
for the caseN = 1000 we observe significant deviations.
natural to expect a similar behavior as in Fig. 4b for largerFor the time being appropriate unfolding will be discussed
subspaces. elsewhere [14].

In Ref 11 Reldo et al. performed the first study of the The corresponding power spectrum calculations, on the
behavior of the power spectrum of the energy fluctuations obther hand, give a scaling exponeght= 0.998 (see Table II).
TBRE random shell model calculations féf\Mg and32Na It seems that in this case the power spectrum approaches the
and found that they obeyld f scaling. Our own power spec- value 1 more than the DFA method, although we should ver-
trum calculations of the energy fluctuations in the subspacéy this for a more ample choice of matrix dimensions. In
J™ = 0% of the spectrum of®Ca Fig. 5b shows a behavior Fig. 4c and 5¢ we show the averaged results for the DFA and
similar to the one obtained by Rélaet al. Ref. 11. En- the averaged power spectrum calculations, respectively, for
ergy fluctuations in TBRE calculations are characterized byhe energy fluctuations in the GOE spectrum with 347 levels
a reduction of the spreading of the Fourier amplitudes in theusing an ensemble with 25 sets.

100 ¢
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5.4. GDE tions in the spectrum offCa defined by the stochastic se-
quence (6) exhibit non-trivial scale invariance corresponding
Finally, and for the sake of completeness, we applied the DFAg 3 critical value of the self similarity parameter ~ 1,
method to the case of the integrable GDE random ensenfor which the associated autocorrelation function is statisti-
ble. Again we used the same dimension as the case of th&ly scale independent. This result is in agreement with the
subspace/™ = 0". The energy fluctuations represented by corresponding power spectrum calculations for which a sta-
the time series,, and its integrated formp,, are shown in tistical power-law behavior. 1/f is observed. This scaling
Fig. 2d and 3d, respectively. In this case, the uncorrelatedf the energy fluctuations was observed in both, random shell
nature of the energy fluctuations is noticeable in those figmodel (TBRE) calculations, as well as in shell model calcu-
ures. The self similarity parameter was calculated by an aviations with realistic interactions. However, the DFA results
eraging procedure over the DFA results (Fig. 4d), and it wagippear to be more robust than the power spectrum calcula-
found to bea = 1.34. This value has a deviation 6¥20% tions. The linear scaling showed in Figs. 4a-4d manifest this
from the expected value af = 3/2 (corresponding to un-  fact. In contrast, the power spectrum calculations depicted in
correlated time series), although for larger dimensiens,  Figs. 5a-5d display a rather large spread in the Fourier ampli-
for V= 1000, the value for thex parameter was: = 1.40,  tudes, specially in the case of shell model calculations with
which is closer to the expected value. On the other handy realistic interaction, giving rise to results which are less
the scaling exponent in the power spectrum was found to bgansparent. In other cases we require further manipulation
B = 1.60, which also deviates- 20% from the expected of the data, such as averaging over several calculations. The
value of 3 = 2 for the case of Poisson distributed data. FOrpFA method confirms almost perfect non-trivial statistical
a larger dimensionalityv. = 1000, the value for the3 pa-  scale invariance for high-energy fluctuationéifia. Critical
rameter wagl = 1.80, approaching the expected value. The scale invariance was also observed in the case of GOE. Since
reason for the above mentioned seems to be due to the polihis class of scale invariance is observed in several classical
nomial unfolding used in the present study. We must stresghaotic phenomena, as well as in phase transitional critical
t_he. fact that present calculations should be considered as prgoints (logistic maps, geometrical fractals, dripping faucet
liminary. experiments, etc.), this result suggests a possible underlying
connection between classical and quantum chaos. This is an

6. Conclusions open question which we shall continue to investigate.

The DFA technique has been applied to the nuclear spectrumcknowledgments

of 48Ca for different J™ states obtained with realistic, and
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i. Here, aregularizedspectrum havings) = TsP(s) ds =1, vi. For the time being we assume a finite spectrum Wtienergy
0

. levels.
is assumed. . . . . .
vii. Equivalently, we can make a fit of the density of states function

it. One of the signatures of fractal structure is associated to the p(E), sinceN(E) = j_E dE'5(E').
appearance of energy level repulsion in the quantum spectrurqjiii First order DEA

which leads to the Wigner surmise of RMT. ] ) )
ixz. For atime serie$(i),7 = 1,... N, the autocorrelation func-
#ii. The correlation lenghy is related to the behavior of the corre- tion is defined ag(r) = ZkN—1 6(k)8(k + 7).

lation functionI'(r). Near a critical point the correlation func-
tion has the Ornstein-Zernike fori(r) ~ r~Pe~"/¢ when
T — Terit (Seee.g.Ref. 12).

x. The criterion used to choose the degree of the polynomial fit
was based on the properties of the resultipgtime series,
being better for the minimal polynomial degree leading to a

iv. For a given time serie§,,, the power spectrum is defined as time series oscillating arountl= 0 (when not properly done,
S(f) = |F{6}?, whereF;{5} denotes the component of the a straightforward high-degree polynomial fit can even lead to
discrete Fourier transform éf having frequency. a time series with residual linear tendencies, oscillating

. o . around a non-horizontal straight line).
v. The Wiener-Khinchin theorem establishes that the power spec- 9 )
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