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The study of nuclear isomer properties is a current research focus. To describe isomers, we present a method based on the Projected Shell
Model. Two kinds of isomers,K-isomers and shape isomers, are discussed. For theK-isomer treatment,K-mixing is properly implemented
in the model. It is found however that in order to describe the strongK-violation more efficiently, it may be necessary to further introduce
triaxiality into the shell model basis. To treat shape isomers, a scheme is outlined which allows mixing those configurations belonging to
different shapes.
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Se estudian las propiedades de isómeros nucleares a través del modelo de capas proyectadas. Se discutan isómerosK y de forma nuclear.
Para discutir las propiedades de los isómerosK se tiene que incluir la mezcla de diferentes valoresK en el modelo aśı como la deformación
triaxial. A los iśomeros de forma se pueden tratar en un modelo que permita la mezcla de configuraciones con formas nucleares distintas.

Descriptores:Modelo de capas; niveles de energı́a nucleares.
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1. Introduction

A nuclear isomer is an excited state, in which a combination
of nuclear structure effects inhibits its decay and endows the
isomeric state with a lifetime that can be much longer than
most nuclear states. Known isomers in nuclei span the en-
tire range of lifetimes from 1015 years for180mTa – longer
than the accepted age of the universe – to an informal rule
of thumb on the lower side of approximately 1 ns. Nuclear
isomers decay predominantly by electromagnetic processes
(γ-decay or internal conversion). There are also known in-
stances of the decay being initiated by the strong interac-
tion (α-emission) or the weak interaction (β-decay or elec-
tron capture). Decay by proton or neutron emission, or even
by nuclear fission, is possible for some isomers (see recent
examples [1-3].

Often discussed in the literature are three mechanisms [4]
leading to nuclear isomerism, although new types of isomer
may be possible in exotic nuclei [5]. It is difficult for an iso-
meric state to change its shape to match the states to which
it is decaying, or to change its spin, or to change its spin ori-
entation relative to an axis of symmetry. These correspond
to shape isomers, spin traps, andK-isomers, respectively. In
any of these cases, decay to the ground state is strongly hin-
dered, either by an energy barrier or by the selection rules
of transition. Therefore, isomer lifetimes can be remarkably
long. To mention a few examples, anIπ=0+ excited state
in 72Kr has been found as a shape isomer [6], a 12+ state in
98Cd has been understood as a spin trap [7], and in178Hf,
there is a famous 16+, 31-yearK-isomer [8], which has be-
come a discussion focus because of the proposal of using this
isomer as energy storage [9].

Detailed nuclear structure studies are at the heart of un-
derstanding the formation of nuclear isomers with applica-
tions to many aspects in nuclear physics. The study is partic-
ularly interesting and important for unstable nuclei, such as
those in neutron-rich, proton-rich, and superheavy mass re-
gions. In a quantum system, the ground state is usually more
stable than the excited states. However, the lifetime of ground
state of unstable nuclei is short, which makes the labora-
tory study extremely difficult. In contrast, nuclear isomers in
those nuclei may be relatively easy to access experimentally.
Furthermore, the physics may be changed due to the exis-
tence of isomers in those unstable nuclei. It has been pointed
out by Xuet al. [10] that in superheavy nuclei, the isomeric
states decrease the probability for both fission andα-decay,
resulting in enhanced stability for these nuclei. One expects
that the isomers in very heavy nuclei could serve as stepping
stones toward understanding the single-particle structure be-
yond theZ=82 andN=126 shell closures, which is the key
to locating the anticipated ‘island of stability’ [11].

Moreover, nuclear isomers may play a significant role
in determining the abundances of the elements in the uni-
verse [12]. In hot astrophysical environments, an isomeric
state can communicate with its ground state through thermal
excitations. This could alter significantly the elemental abun-
dances produced in nucleosynthesis. The communication be-
tween the ground state of26Al and the first excited isomeric
state in this nucleus has the consequence that the astrophys-
ical half-life for 26Al can be much shorter than the labora-
tory value [13]. One is just beginning to look at the impact
that nuclear isomers have on various other nucleosynthesis
processes such as the rapid proton capture process thought
to take place on the accretion disks of binary neutron stars.
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There are cases in which an isomer of sufficiently long life-
time (probably longer than microseconds) may change the
paths of reactions taking place and lead to a different set of
elemental abundances [14].

With rapidly growing interest in the isomer study and in-
creasing possibility of experimental access to isomeric states,
theoretical effort is much needed. The present paper dis-
cusses a Projected Shell Model (PSM) description for nuclear
isomers. As isomeric states are a special set of nuclear states,
special emphasis is given when these states are treated. In
Sec. 2 of the paper, we present a description forK-isomers,
in which K-mixing is emphasized. We point out, however,
that an extended PSM based on triaxially-deformed basis is
required to describe the strongK-violation. In Sec. 3, shape
isomer examples are presented and a perspective how con-
figurations with different shapes can be mixed is outlined.
Finally, the paper is summarized in Sec. 4.

2. K-mixing in the projected shell model

Many long-lived, highly-excited isomers in deformed nuclei
owe their existence to the approximate conservation of the
K quantum number. The selection rule for an electromag-
netic transition would require that the multipolarity of the
decay radiation,λ, be at least as large as the change in the
K-value (λ≥∆K). However, symmetry-breaking processes
make possible transitions that violate theK-selection rule.
A microscopic description ofK-violation is through the so-
called K-mixing in the configuration space. A theoretical
model that can treatK-mixing has preferably the basis states
that are eigenstates of angular momentumI but labeled byK.
Diagonalization of two-body interactions mixes these states
and the resulting wavefunctions contain the information on
the degree ofK-mixing. In this kind of approach, the mixing
and its consequences are discussed in the laboratory frame
rather than in a body-fixed frame in whichK is originally
defined.

2.1. The model

The projected shell model (PSM) [15,16] seems to fulfill the
requirement. It is a shell model that starts from a deformed
basis. In the PSM, the shell-model basis is constructed by
considering a few quasiparticle (qp) orbitals near the Fermi
surfaces and performing angular momentum projection (if
necessary, also particle-number projection) on the chosen
configurations. With projected multi-qp states as the basis
states of the model, the PSM is designed to describe the rota-
tional bands built upon qp excitations.

Suppose that a PSM calculation begins with axially de-
formed Nilsson single-particle states, with pairing correla-
tions incorporated into these states by a BCS calculation.
This defines a set of deformed qp states (witha†ν anda†π being
the creation operator for neutrons and protons, respectively)
with respect to the qp vacuum|0〉. The PSM basis is then

constructed in the multi-qp states with the following forms

e− e nuclei :{|0〉, a†νa†ν |0〉, a†πa†π|0〉, a†νa†νa†πa†π|0〉,
a†νa†νa†νa†ν |0〉, a†πa†πa†πa†π|0〉, . . .}

o− o nuclei :{a†νa†π|0〉, a†νa†νa†νa†π|0〉, a†νa†πa†πa†π|0〉,
a†νa†νa†νa†πa†πa†π|0〉, . . .}

odd− ν nuclei :{a†ν |0〉, a†νa†νa†ν |0〉, a†νa†πa†π|0〉,
a†νa†νa†νa†πa†π|0〉, . . .}

odd− π nuclei :{a†π|0〉, a†νa†νa†π|0〉, a†πa†πa†π|0〉,
a†νa†νa†πa†πa†π|0〉, . . .}

The omitted index for each creation operator contains labels
for the Nilsson orbitals. In fact, this is the usual way of build-
ing multi-qp states [10,17-19].

The angular-momentum-projected multi-qp states, each
being labeled by aK quantum number, are thus the build-
ing blocks in the PSM wavefunction, which can be generally
written as

|ψI,σ
M 〉 =

∑

κ,K≤I

f I,σ
κ P̂ I

MK |φκ〉 =
∑

κ

f I,σ
κ P̂ I

MKκ
|φκ〉. (1)

The indexσ denotes states with the same angular momentum
andκ labels the basis states.P̂ I

MK is the angular-momentum-
projection operator [15] and the coefficientsf I,σ

κ are weights
of the basis states. The weightsf I,σ

κ are determined by diag-
onalization of the Hamiltonian in the projected spaces, which
leads to the eigenvalue align (for a givenI)

∑

κ′
(Hκκ′ − EσNκκ′) fσ

κ′ = 0. (2)

The Hamiltonian and the norm matrix elements in Eq. (2) are
given by

Hκκ′=〈φκ|ĤP̂ I
KκK′

κ′
|φκ′〉, Nκκ′=〈φκ|P̂ I

KκK′
κ′
|φκ′〉. (3)

Angular-momentum-projection on a multi-qp state|φκ〉 with
a sequence ofI generates a band. One may define the rota-
tional energy of a band (band energy) using the expectation
values of the Hamiltonian with respect to the projected|φκ〉

EI
κ =

Hκκ

Nκκ
=
〈φκ|ĤP̂ I

KκKκ
|φκ〉

〈φκ|P̂ I
KκKκ

|φκ〉
. (4)

In a usual approximation with independent quasiparticle
motion, the energy for a multi-qp state is simply taken as the
sum of those of single quasiparticles. This is the dominant
term. The present theory modifies this quantity in the fol-
lowing two steps. First, the band energy defined in Eq. (4)
introduces the correction brought by angular momentum pro-
jection and the two-body interactions, which accounts for the
couplings between the rotating body and the quasiparticles in
a quantum-mechanical way. Second, the corresponding ro-
tational states (labeled byK) are mixed in the subsequent
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procedure of solving the eigenvalue Eq. (2). The energies are
thus further modified by configuration mixing.

For deformed states with axial symmetry, each of the ba-
sis states in Eq. 1,i.e. the projected|φκ〉, is aK-state. For ex-
ample, ann-qp configuration gives rise to a multiplet of2n−1

states, with the totalK expressed byK=|K1 ±K2 ± · · · ±
Kn|, whereKi is for an individual neutron or proton. In this
case, shell model diagonalization,i.e. solving the eigenvalue
Eq. (2), is equivalent toK-mixing. The degree ofK-mixing
can be read from the resulting wavefunctions.

The above discussion is independent of the choice of the
two-body interactions in the Hamiltonian. In practical calcu-
lations, the PSM uses the separable forces with pairing plus
quadrupole-quadrupole terms (these have been known to be
essential in nuclear structure calculations [20]), with inclu-
sion of the quadrupole-pairing term

Ĥ=Ĥ0−1
2
χ

∑
µ

Q̂†µQ̂µ −GM P̂ †P̂ −GQ

∑
µ

P̂ †µP̂µ. (5)

The strength of the quadrupole-quadrupole forceχ is deter-
mined in such a way that it holds a self-consistent relation
with the quadrupole deformationε2. The monopole-pairing
force constantsGM are

GM =
[
G1 ∓G2

N−Z
A

]
A−1, (6)

with “−” for neutrons and “+” for protons, which roughly re-
produces the observed odd–even mass differences in a given
mass region whenG1 andG2 are properly chosen. Finally,
the strengthGQ for quadrupole pairing was simply assumed
to be proportional toGM , with a proportionality constant
fixed in a nucleus, choosing from the range 0.14 – 0.18.

2.2. The178Hf example

The nucleus178Hf has become a discussion focus because of
the possibility to trigger the 2.45MeV, 31-year16+-isomer
decay. The triggering could be made by applying external
electromagnetic radiation which, if successful, will lead to
the controlled release of nuclear energy [9]. Information on
the detailed structure as well as the transition of this and the
surrounding states thus becomes a crucial issue. In the PSM
calculation for178Hf [8], the model basis was built with the
deformation parametersε2=0.251 and ε4=0.056. Fig. 1
shows the calculated energy levels in178Hf, which are com-
pared with the known data [21]. Satisfactory agreement is
achieved for most of the states, except that for the bandhead
of the first8− band and the14− band, the theoretical values
are too low.

It was found that the obtained states are generally
K-mixed. If the mixing is not strong, one may still talk
about the dominant structure of each band by studying the
wavefunctions. We found that the6+ band has mainly a 2-qp
structure{ν[512]5/2− ⊕ ν[514]7/2−}, the 16+ band has a

TABLE I. Comparison of calculated174Yb ground band with data.
E(I) are in keV andB(E2, I → I − 2) in W.u..

SpinI E(I), Exp E(I), PSM B(E2), Exp B(E2), PSM
2 76.5 71.1 201(7) 195.18
4 253.1 236.7 280(9) 279.01
6 526.0 496.1 370(50) 307.59
8 889.9 848.0 388(21) 322.31
10 1336 1290.3 325(22) 331.28
12 1861 1820 369(23) 337.13
14 2457 2433 320 340.91

4-qp structure

{ν[514]7/2− ⊕ ν[624]9/2+ ⊕ π[404]7/2+ ⊕ π[514]9/2−},

the first (lower)8− band has a 2-qp structure

{ν[514]7/2− ⊕ ν[624]9/2+},

the second (higher)8− band has a 2-qp structure

{π[404]7/2+ ⊕ π[514]9/2−},

and the14− band has a 4-qp structure

{ν[512]5/2− ⊕ ν[514]7/2− ⊕ π[404]7/2+ ⊕ π[514]9/2−}.

These states, together with many other states (not shown in
Fig. 1) obtained from a single diagonalization, form a com-
plete spectrum including the high-K isomeric states.

As far as energy levels are concerned, the PSM can give
a reasonable description simultaneously for multiple bands.
The next question is how electromagnetic transitions are de-
scribed. The electromagnetic transition between any two of
these states can be directly calculated [22] by using the wave-
functions. This is a crucial test for the model wavefunctions.

2.3. TheN = 104 isotones

There have been detailed experimental studies on the6+ iso-
mer in someN=104 isotones [23-25]. These data show that
along theN=104 isotones, lifetime of the6+ isomer can vary
very much, differing by several orders of magnitude. Un-
derstanding the underlying physics is a challenging problem:
what is the microscopic mechanism for such a drastic change
in the neighboring isotones? PSM calculations are performed
for 174Yb. The deformed basis is constructed with deforma-
tion parametersε2 = 0.275 andε4 = 0.042. In Tables I, II,
and III, three groups of results are listed, for theK=0 ground
band (Table I) andK=6 isomer band (Table II) with in-band
transitions, and inter-band transitions (Table III) between the
ground band and theK=6 isomer band. These results sug-
gest that while the energy levels for both ground and isomer
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FIGURE 1. Comparison of the PSM calculation with data for the
rotational bands in178Hf . This figure is adopted from Ref. 8

bands are reproduced, theE(2) transition probabilities are
also correctly obtained. In particular, the calculation yields a
reasonable value of the very small inter-bandB(E2) as what
was observed in174Yb [23] (see Table III). Note that without
mixing configurations in the wavefunction, a direct transition
from the6+ isomer to ground band would be forbidden. The
obtained amount of inter-bandB(E2), though small, is the
consequence ofK-mixing contained in the PSM.

On the other hand, in its isotones176Hf and 178W,
much enhancedB(E2) from the 6+ isomer to ground
band has been obtained experimentally. The values are
1.8×10−5 e2fm4 for 176Hf and 2.6×10−2 e2fm4 for 178W.
If a PSM calculation is performed for these two isotones, one
gets similar small numbers for the inter-bandB(E2) as in
174Yb, which disagree with data. We have to conclude that
although the current PSM hasK-mixing mechanism in the
model, which effectively introducesγ, the mixing within the
truncated space is apparently too weak.

In Fig. 2, we plot experimental excitation energies of
the6+ isomer states together with2+ state ofγ vibration for
Yb, Hf, and W isotopes. There seems to be an correlation
between the two plotted quantities. The correlation is such
that to compare with the2+ γ states, energy of the6+ iso-
mers shows an opposite variation trend with neutron number.
At N=104, nuclei have the highest excitation ofγ vibrational

TABLE II. Comparison of calculated174Yb 6+ isomer band with
data.E(I) are in keV andB(E2, I → I − 2) in W.u..

SpinI E(I), Exp E(I), PSM B(E2), PSM
6 1518.0 1503
7 1671.1 1683
8 1844.7 1886 36.76
9 2038.3 2117 78.18
10 2251.5 2372 115.81
11 2483.7 2652 147.96
12 2734.4 2956 174.91
13 3003.1 3283 197.41

TABLE III. Comparison of calculated inter-band transition of
174Yb 6+ isomer to ground band.B(E2) is in e2fm4

Transition B(E2), Exp B(E2), PSM
6i → 4g 4.3(8)× 10−9 8.49× 10−8

FIGURE 2. Experimental data for excitation energy ofIπ=6+ iso-
mer (filled symbols) and2+ γ vibrational state (open symbols).

states while they show a minimum in6+ isomer energy. In
Fig. 2,174Yb appears to be the only nucleus in the collection
that has the6+ isomer lower than theγ states. Therefore,
below the6+ isomer in174Yb, there are noγ states carry-
ing finiteK to be mixed in the wavefunction. This may have
naively explained why the174Yb isomer decay is so excep-
tionally hindered.

In Ref. 26, aγ-tunneling model was introduced by
Narimatsu, Shimizu, and Shizuma to describe the enhanced
B(E2) values. In their model, theγ degree of freedom is
taken into account, which breaks the axial symmetry explic-
itly. The spontaneous symmetry breaking helps in realizing
larger electromagnetic transitions which would otherwise be
impossible due to the selection rule. In this way, the authors
in Ref. 26, were able to describe the observed large inter-
bandB(E2) in 176Hf and 178W rather successfully. How-
ever, their model could not give the above-discussed small
6+

i → 4+
g inter-bandB(E2) in 174Yb.

Both methods, the configuration mixing implemented by
the PSM and theγ-tunneling by Narimatsuet al., introduce a
mechanism to break the axial symmetry; however the degree
of symmetry breaking is different. If the physical process is
a perturbation in theK space, then it is better described by
the PSM based on the axially symmetric mean field. If it is
not, axial symmetry in the mean field must be broken as in
the γ-tunneling model. The two models may be viewed as
two different simplifications of the complicated many-body
problem; each emphasizes one aspect. It is desired that one
can have one unified microscopic description for all cases.

Rev. Mex. F́ıs. S54 (3) (2008) 122–128
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FIGURE 3. Energy surfaces for various spin states in68Se and72Kr
as functions of deformation variableε2. This figure is adopted from
Ref. 14.

To efficiently introduceγ degree of freedom within the
PSM, one can break the axial symmetry of the single-particle
basis and carry out three-dimensional angular momentum
projection. The shell model diagonalization is then per-
formed in the projected multi-quasiparticle configurations
based onγ deformed basis. One example is the description of
γ vibrational states within the PSM. It was shown [27] that by
using projected triaxially-deformed basis, it is possible to de-
scribe the ground band andγ band simultaneously. Thus, an
extended PSM that introduces triaxiality in the model would
be useful for cases with largeK-violation. Such an extension
has recently be developed for odd-odd nuclei [28] and even-
even nuclei [29], and will be applied to the isomer study.

3. Shape isomer and configuration mixing

Coexistence of two or more well-developed shapes at compa-
rable excitation energies is a well-known phenomenon. The
expected nuclear shapes include, among others, prolate and
oblate deformations. In even-even nuclei, an excited 0+ state
may decay to the ground 0+ state via an electric monopole
(E0) transition. For lower excitation energies, the E0 transi-
tion is usually very slow, and thus the excited 0+ state be-
comes a shape isomer.

3.1. Shape isomer in68Se and72Kr and the impact on
isotopic abundance in X-ray bursts

Figure 3 shows calculated projected energies as a function of
deformation variableε2 for different spin states in theN=Z
nuclei 68Se and72Kr. The configuration space and the in-
teraction strengths in the Hamiltonian are the same as those
employed in the previous calculations for the same mass re-
gion [30]. It is found that in both nuclei, the ground state
takes an oblate shape withε2 ≈ −0.25. As spin increases,
the oblate minimum moves gradually toε2 ≈ −0.3. An-
other local minimum with a prolate shape (ε2 ≈ 0.4) is found
to be 1.1 MeV (68Se) and 0.7 MeV (72Kr) high in excita-
tion. Bouchezet al. [6] observed the 671 keV shape-isomer
in 72Kr with half-life τ=38 ± 3 ns. The one in68Se is the

prediction, awaiting experimental confirmation. Isomers in
these nuclei have also been predicted by Kaneko, Hasegawa,
and Mizusaki [31].

The existence of low energy 0+ shape isomer along
the N=Z nuclei has opened new possibilities for the rp-
process [32] reaction path occurring in X-ray burst. Since
the ground states of73Rb and 69Br are bound with re-
spect to these isomers, proton capture on these isomers may
lead to additional strong feeding of the73Rb(p, γ)74Sr and
69Br(p, γ)70Kr reactions. However, the lifetime of the iso-
meric states must be sufficiently long to allow proton cap-
ture to take place. No information is available about the life-
time of the68Se isomer while the 55 ns lifetime of the iso-
mer in72Kr is reported [6]. Based on Hauser Feshbach esti-
mates [32] the lifetime against proton capture is in the range
of ≈100 ns to 10µs depending on the density in the environ-
ment. Considering the uncertainties in the present estimates a
fair fraction may be leaking out of the68Se,72Kr equilibrium
abundances towards higher masses.

3.2. Configuration mixing with different shapes

To calculate isomer lifetime, decay probability is needed.
This involves transitions from the shape isomer to the ground
state, which belong to different shapes or deformation min-
ima. If the energy barrier between the minima is not very
high, configuration mixing of the two shapes must be taken
into account. In the following, we outline a scheme to con-
sider such a mixing. The discussion is general; the shapes can
be any kinds of two deformed ones in a nucleus. For exam-
ple, one of them can be a prolately-deformed and the other an
oblately-deformed shape, or one of them can be a normally-
deformed and the other a superdeformed shape. Generalizing
the method further, it can describe those transitional nuclei
where energy surfaces are typically flat.

The heart of the present consideration is the evaluation
of overlapping matrix element in the angular-momentum-
projected bases. Let us start with the PSM wave function
in Eq. (1).

|ψI,σ
M 〉 =

∑
κ

f I,σ
κ P̂ I

MKκ
|φκ〉.

For an overlapping matrix element, states in the left and
right hand side must correspond to different deformed shapes.
Therefore, two different sets of quasiparticle generated at dif-
ferent deformations are generally involved. Let us denote
|φκ〉 explicitly as |φκ(a)〉 and |φκ(b)〉, for which we define
two sets of quasiparticle operators{a†} and{b†} associated
with the quasiparticle vacua|a〉 and|b〉, respectively.

For simplicity, we assume axial symmetry. The general
three-dimensional angular momentum projection is reduced
to a problem of one-dimensional projection, with the projec-
tor having the following form

P̂ I
MK =

(
I +

1
2

) π∫

0

dβ sinβ dI
MK(β) R̂y(β) (7)
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with

R̂y(β) = e−iβĴy . (8)

In Eq. (7),dI
MK(β) is the small-d function andβ is one of

the Euler angels. The evaluation of the overlapping matrix
element is eventually reduced to the problem

〈Φκ′(b)| ÔR̂y(β) |Φκ(a)〉 , (9)

which is the problem of calculating thêO operator sand-
wiched by a multi-qp state|Φκ′(b)〉 and arotatedmulti-qp
stateR̂y(β) |Φκ(a)〉, with a andb characterizing different qp
sets. In Eq. (9),̂O stands forĤ or 1.

To calculate〈Φκ′(b)| ÔR̂y(β) |Φκ(a)〉, one must com-
pute the following types of contractions for the Fermion op-
erators

Aij = 〈b| [β]a†ia
†
j |a〉 = [V (β)U−1(β)]ij ,

Bij = 〈b| bibj [β] |a〉 = [U−1(β)V (β)]ij ,

Cij = 〈b| bi[β]a†j |a〉 = [U−1(β)]ij , (10)

where we have defined

[β] =
R̂y(β)

〈b| R̂y(β) |a〉 ,

and

〈b| R̂y(β) |a〉 = [det U(β)]1/2. (11)

Equations (10) and (11) are written in a compact form of
N ×N matrix, withN being the number of total single par-
ticles. The general principle of findingU(β) and V (β) is
given by the Thouless theorem [33], and a well worked-out
scheme can be found in the work of Tanabeet al. [34] (see
also Ref. 35).

To write the matricesU(β) andV (β) explicitly, we con-
sider the fact that{ai, a

†
i} and{bi, b

†
i} can both be expressed

by the spherical representation{ci, c
†
i} through the HFB

transformation
[

c
c†

]
=

(
Ua Va

Va Ua

)[
a
a†

]

[
c
c†

]
=

(
Ub Vb

Vb Ub

)[
b
b†

]
.

(12)

Ua, Va, Ub andVb in above equations, which define the HFB
transformation, are obtained from the Nilsson-BCS calcula-
tion. A rotation of the spherical basis can be written in a
matrix form as

R̂y(β)
[

c
c†

]
R̂†y(β) =

(
d(β) 0

0 d(β)

)[
c
c†

]
. (13)

Combining Eqs. (12) and (13) and noting the unitarity of the
HFB transformation, one obtains

R̂y(β)
[

b
b†

]
R̂†y(β) =

(
Ub Vb

Vb Ub

)T (
d(β) 0

0 d(β)

)

×
(

Ua Va

Va Ua

)[
a
a†

]
. (14)

U(β) andV (β) can finally be obtained from the following
equation

(
U(β) V (β)
V (β) U(β)

)
=

(
UT

b V T
b

V T
b UT

b

)(
d(β) 0

0 d(β)

)(
Ua Va

Va Ua

)

=

(
UT

b d(β)Ua + V T
b d(β)Va UT

b d(β)Va + V T
b d(β)Ua

V T
b d(β)Ua + UT

b d(β)Va UT
b d(β)Ua + V T

b d(β)Va

)
.

With the overlapping matrix elements that connect con-
figurations belonging to different shapes, one obtains wave-
functions containing configuration mixing. Using these
wavefunctions, one can further calculate inter-transition
probabilities from a shape isomer to the ground state.

4. Summary

We have introduced the Projected Shell Model descrip-
tion for two kinds of isomers,K-isomers and shape iso-
mers. We have shown that the physics ofK-mixing
in multi-qp states is well incorporated in the model

with the basis states having axial symmetry. Diagonalization
mixes configurations of differentK, which effectively intro-
duces triaxiality. ForK-isomers with much enhanced de-
cay probability to the ground state, a triaxial PSM is needed,
which employsγ deformed basis states. On the other hand,
projected energy surface calculations have led to a picture of
shape coexistence. A scheme has been developed which al-
lows calculations for transition between a shape isomer and
the ground state.
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