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This work deals with the gauge symmetry breaking and the vacuum stability conditions in a minimalS3-invariant extension of the Standard
Model. In the theory, there are threeSU(2)L Higgs doublets that belong to the singlet and doublet representations of theS3-flavor group.
We find that, as function of the vacuum expectation values of the twelve real Higgs fields, the Higgs potential has three types of minimum:
a normal minimum, an electric Charge breaking (CB) minimum and a CP violating minimum (CPB) depending on the vacuum expectation
values (vev) of the Higgs fieldsH1, H2 andHS . Assuming that the non-vanishing vev of the Higgs doublet in the singlet representation of
S3 is real, we obtain that the deepest minimum is the normal minimum. This condition corresponds to the Pakvasa-Sugawara minimum in
which we obtain anS2 residual symmetry. This feature simplifies the structure and therefore the computation of the Higgs mass matrices.
We present some results on the mass spectrum of the Higgs bosons in the theory.

Keywords:Higgs bosons non-standard model; electroweak interactions; extensions of Higgs sector; spontaneous symmetry breaking; sym-
metry in theory of fields and particles; symmetry breaking; gauge field theory.

Este trabajo trata del rompimiento de la simetrı́a de norma y las condiciones de estabilidad del vacı́o de una extensión ḿınima invariante
deS3 del Modelo Est́andar. En la teorı́a hay tres bosones de Higgs que son dobletes deSU(2)L y que pertenecen a las representacions de
singlete y doblete del grupo de saborS3. Encontramos que, como función de los valores de expectación del vaćıo (vev) de los doce campos
reales de Higgs, el potencial de Higgs tiene tres tipos de mı́nimo: un ḿınimo normal, un ḿınimo que rompe la carga eléctrica (CB) y uno
que viola CP (CPB), dependiendo de los valores de los vev de los campos de HiggsH1, H2 y HS . Suponiendo que el vev diferente cero del
doblete de Higgs en la representación de singlete deS3 es real, obtenemos que el mı́nimo más profundo es el ḿınimo normal. Esta condición
corresponde al ḿınimo de Pakvasa-Sugawara en el cual obtenemos una simetrı́aS2 residual. Esta caracterı́stica simplifica la estructura, y por
lo tanto, el ćalculo de las matrices de masas de los Higgs. Presentamos algunos resultados en el espectro de masas de los bosones de Higgs
en la teoŕıa.

Descriptores: Bosones de Higgs en modelos no-estándar; interacciones electrodébiles; extensiones del sector de Higgs; rompimiento
espont́aneo de la simetrı́a; simetŕıas en teoŕıas de campo y partı́culas; rompimiento de la simetrı́a; teoŕıas de norma.
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1. Introduction

In the Standard Model (SM) each family of fermions enters
independently and the masses of the particles are free pa-
rameters, whose values are determined experimentally. One
possibility to reduce the number of free parameters in the
SM and to try to relate the different families is to add a
flavour symmetry. Recently interesting progress in this di-
rection has been made by means of a discreteS3 flavour
group [1-3]. This extended model has been used to calcu-
late neutrino masses and mixings [4,5] and flavour changing

neutral currents (FCNC) [6,7]. In this model the Higgs sec-
tor is extended by two additional electroweak Higgs doublets
in order to generate the fermion masses without breaking the
flavour symmetry. Thus, the Higgs fields belong to the three-
dimensional reducible representation of the flavour permuta-
tional groupS3 [3]. In this paper we study the gauge symme-
try breaking and the vacuum stability conditions in this min-
imal S3-invariant extension of the Standard Model. In this
model there are contributions to Charge Breaking (CB) and
Charge Parity breaking (CPB) symmetries coming from the
Higgs sector. Since the potential and its minimization play a
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vital part in the successful construction of the model we an-
alyze theS3-invariant Higgs boson potential. The stationary
points can be classified as Normal, CB and CPB minimums
according to the vacuum expectation value of the Higgs fields
H1, H2 andHS .

We find the conditions under which the potential mini-
mum preserving electric charge and CP symmetries, is the
global one, that is, the normal minimum is deepest than
the CB and CPB minima. One condition corresponds to
the Pakvasa-Sugawara [1] minimum in which anS2 resid-
ual symmetry is obtained. In conclusion, we show that in this
model there is no CPB or CB coming from the Higgs sector
when the flavour permutational symmetryS3 is exact.

2. Higgs Boson in the Standard Model

In the SM, oneSU(2) doublet Higgs field is introduced to
break the theSU(2)×U(1) symmetry and give masses to the
particles. The Higgs potential is given by

V (Φ) = −µ2|Φ|2 + λ|Φ|4 where Φ =
(

φ+

φ0

)
, (1)

the parameterλ must be positive to produce a stable vacuum.
The parameterµ can have either sign, however it is chosen
negative for a non trivial minimum, that is,−µ2<0. In the
SM, the states satisfying the relationship

|φ+|2 + |φ0|2 = µ2/2λ = v2/2

are degenerate minima of the potential and we can choose the
vacuum expectation value in the〈φ0〉=v/

√
2 direction. One

important prediction of the SM is the Higgs Boson, a scalar
particle which appears in the physical spectrum. The Higgs
gives mass to the quarks and leptons through the Yukawa cou-
plingsmf=Yfv/

√
2, theW andZ gauge boson masses are

given asmW =(g/2) v ,

mZ =
(√

g2 + g′2/2
)

v

and the mass of the Higgs boson is given bymh=
√

2λv . The
Higgs boson is the only particle of the SM which has not been
discovered yet. Prior to the introduction of the Higgs boson
and mass terms, the Lagrangian of the SM is chiral and in-
variant with respect to any permutations of the left and right
quark and lepton fields. For three quarks and lepton families
theS3 flavour symmetry is an exact symmetry of the SM La-
grangian. If we assume that theS3 permutational symmetry
is not broken and the Higgs of the SM is anS3 singlet, only
one fermion in each family can acquire mass. Although the
Higgs potential is very simple and sufficient to describe a re-
alistic model of mass generation, it might be that this is not
the final form of the theory but rather an effective description
of a more fundamental theory.

3. TheS3 flavour symmetry

The ingredients of the extension of the SM are the following:

(i) To extend the flavour and family concepts to the Higgs
sector,

(ii ) To associate each family to an irreducible representa-
tion of the flavour group and

(iii ) To construct a Lagrangian invariant under the action of
theSU(3)c × SU(2)× U(1)× Sf

3 group.

The groupS3 is a non-Abelian group and has two one di-
mensional irreducible representations1A , and1s, which are
an antisymmetric and a symmetric singlet, respectively, and
it also has a two-dimensional doublet irreducible representa-
tion 2. The direct product of twoS3 irreducible representa-
tions are:

1s ⊗ 1s=1s,1s ⊗ 1A=1A,1A ⊗ 1A=1s,

1s ⊗ 2=2,1A ⊗ 2=2,2⊗ 2=1s ⊕ 1A ⊕ 2.

The direct product of twoS3 doublets

pD =
(

pD1

pD2

)
and qD =

(
qD1

qD2

)

has two singlets: the symmetric oners=pD1qD1 + pD2qD2

and the antisymmetric onerA=pD1qD2 − pD2qD1; and just
one doubletrT

D, with the following form:

rT
D =

(
pD1qD2 + pD2qD1

pD1qD1 − pD2qD2

)
.

With this in mind, the Higgs sector is modified to three
SU(2) Higgs field doubletsΦa, Φb, andΦc, which enter in a
reducible triplet representation ofS3 as follows

Φ → H = (Φa,Φb,Φc)T . (2)

Since the triplet representation ofS3 decomposes to1s ⊕ 2
we express the three Higgs doublets as

Hs =
1√
3

(
Φa + Φb + Φc

)
,

(
H1

H2

)
=




1√
2
(Φa − Φb)

1√
6
(Φa + Φb − 2Φc)


 . (3)

The quark, lepton and Higgs fields are given by

QT = (uL, dL), uR, dR, L† = (νL, eL), eR, νR, H.

All the fields have three species (flavours) and belong to a
reducible representation1⊕ 2 of S3.
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4. S3 invariant Yukawa Lagrangian

We can write theS3 invariant Yukawa Lagrangian as

LY = LYD
+ LYu + LYE

+ LYν , (4)

where each term is given as

LYD
= −Y d

1 QIHSdIR − Y d
3 Q3HSd3R

− Y d
2

[
QIκIJH1dJR + QIηIJH2dJR

]

− Y d
4 Q3HIdIR − Y d

5 QIHId3R + h.c,

LYU
= −Y u

1 QI(iσ2)H∗
SuIR − Y u

3 Q3(iσ2)H∗
Su3R

− Y u
2

[
QIκIJ(iσ2)H∗

1uJR + ηQIηIJ(iσ2)H∗
2uJR

]

− Y u
4 Q3(iσ2)H∗

I uIR − Y u
5 QI(iσ2)H∗

I u3R + h.c.,

LYE
= −Y e

1 LIHSeIR − Y e
3 L3HSe3R

− Y e
2

[
LIκIJH1eJR + LIηIJH2eJR

]

− Y e
4 L3HIeIR − Y e

5 LIHIe3R + h.c.,

LYν = −Y ν
1 LI(iσ2)H∗

SνIR − Y ν
3 L3(iσ2)H∗

Sν3R

− Y ν
2

[
LIκIJ(iσ2)H∗

1νJR + LIηIJ (iσ2)H∗
2νJR

]

− Y ν
4 L3(iσ2)H∗

I νIR − Y ν
5 LI(iσ2)H∗

I ν3R + h.c..

Singlets underS3 carry the indexs or 3, and doublets
carry indicesI, J = 1, 2, and

κ =
(

0 1
1 0

)
and η =

(
1 0
0 −1

)
.

Furthermore, we add a Majorana mass terms for the neutrinos

LM=−M1ν
T
IRCνIR −M3ν

T
3RCν3R, (5)

whereC is the charge matrix.

5. The Higgs sector

The Higgs sector Lagrangian of theS3-invariant extension of
the SM is expressed as

LΦ = [DµHS ]2 + [DµH1]
2

+ [DµH2]
2 − V (H1,H2,HS) , (6)

whereDµ is the usual covariant derivative. The gauge boson
massesW andZ are given as:

m2
W =

g2
(
v2
1 + v2

2 + v2
3

)

4
,

m2
Z =

(
g2 + g′2

) (
v2
1 + v2

2 + v2
3

)

4
.

In particular, we are interested in the Higgs potential. The
phenomenology of the Higgs sector will be presented else
where.

5.1. S3 invariant Higgs Potential

The most general Higgs Potential invariant under

SU(3)C × SU(2)L × U(1)Y × S3

can be writen as

V = µ2
1

(
H†

1H1 + H†
2H2

)
+ µ2

0

(
H†

SHS

)
+ a

(
H†

SHS

)2

+ b
(
H†

SHS

)(
H†

1H1 + H†
2H2

)
+ c

(
H†

1H1 + H†
2H2

)2

+ d
(
H†

1H2 −H†
2H1

)2

+ efijk

((
H†

SHi

)(
H†

j Hk

))

+ f
{(

H†
SH1

) (
H†

1HS

)
+

(
H†

SH2

)(
H†

2HS

)}

+ g

{(
H†

1H1 −H†
2H2

)2

+
(
H†

1H2 + H†
2H1

)}

+ h

{ (
H†

SH1

) (
H†

SH1

)
+

(
H†

SH2

)(
H†

SH2

)

+
(
H†

1HS

)(
H†

1HS

)
+

(
H†

2HS

)(
H†

2HS

) }
, (7)

wherea, b, c, . . . , h are constants. Alsofijk are constants
whose indices run from 1 to 2 and a sum over repeated in-
dices in that term of Eq. (7) is implicit. Their values are

f112 = f121 = f211 = −f222 = 1,

and all the rest are zero. TheSU(2)L Higgs doublets with
flavour index1, 2, S are

H1 =
(

φ1 + iφ2

φ7 + iφ10

)
,

H2 =
(

φ3 + iφ4

φ8 + iφ11

)
, HS =

(
φ5 + iφ6

φ9 + iφ12

)
. (8)

We introduce the following notation :

x1 =H†
1H1, x2 = H†

2H2, x3 = H†
SHS ,

x4 =R
(
H†

1H2

)
, x5 = I

(
H†

1H2

)
,

x6 =R
(
H†

1HS

)
, x7 = I

(
H†

1HS

)
,

x8 =R
(
H†

2HS

)
, x9 = I

(
H†

2HS

)
, (9)

whereR andI are the real and imaginary parts respectively.
Thus, the most general Higgs potential invariant under the
exact symmetrySU(2)L × U(1)Y × S3 can be written as

V (X) = AT X +
1
2
XT BX, (10)

with X the vector of fields

XT = (x1, x2, x3, .........., x9) , (11a)

A the vector of mass parameters,

AT =
(
µ2

1, µ
2
1, µ

2
0, 0, 0, 0, 0, 0, 0

)
, (11b)

andB is a9× 9 real parameter matrix
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B =




2(c + g) 2(c− g) b 0 0 0 0 2e 0
2(c− g) 2(c + g) b 0 0 0 0 −2e 0

b b 2a 0 0 0 0 0 0
0 0 0 8g 0 4e 0 0 0
0 0 0 0 −8d 0 0 0 0
0 0 0 4e 0 2(f + 2h) 0 0 0
0 0 0 0 0 0 2(f − 2h) 0 0
2e −2e 0 0 0 0 0 2(f + 2h) 0
0 0 0 0 0 0 0 0 2(f − 2h)




. (11c)

6. Stationary Points

This potential has three types of stationary points:

1. The normal minimum with the following field config-
uration:

φ7 = v1 , φ8 = v2 , φ9 = v3 , φi = 0, i 6= 7, 8, 9

2. The stationary point which breaks the electric charge,
here two of the charged fieldsφ acquire non zero vev’s:

φ7 = v ′1 , φ8 = v ′2 , φ9 = v ′3 , φ1 = α, φ3 = β,

3. The CP breaking minimum, where two imaginary
components of the neutral fieldsφ acquire non zero
vev’s:

φ7 = v ′′1 , φ8 = v ′′2 , φ9 = v ′′3 , φ10 = δ, φ11 = γ,

Since we assumeHs to be the SM Higgs, we also assume that
it does not break electric charge nor CP. The 2HDM Higgs
sector has been studied in Ref. 9. In this extended sector,
the tree-level Higgs potential minimum preserving electric
charge and CP symmetries, when it exists is the global one.

A. The normal minimum

From the definitions above, we obtainxi=v2
i for i=1, 2, 3,

x4=v1v2, x6=v1v3, x8=v2v3, y x5=x7=x9=0. Then, we
can write the minimization conditions as

∂V

∂vi
= 0 ↔ ∂V

∂xj

∂xj

∂vi
= 0, (12)

wherei=1, 2, 3 andj=1, 2, .., 9; this is a set of three coupled
equations.

Let us define the vector(V′
N )i = (V′ |XN

)i =∂V/∂xi,
evaluated at the minimum. In this notation the minimization
conditions read

(V′
N )1 = − (V′

N )4
2v1v2

v2
2 −

(V′
N )6

2v1v3
v2
3 , (13a)

(V′
N )2 = − (V′

N )4
2v1v2

v2
1 −

(V′
N )8

2v2v3
v2
3 , (13b)

(V′
N )3 = − (V′

N )6
2v1v2

v2
1 −

(V′
N )8

2v2v3
v2
2 . (13c)

From here it follows that:

V′
N =




−
(

∂V
∂x4

v2 + ∂V
∂x6

v3

)
1

2v1

−
(

∂V
∂x4

v1 + ∂V
∂x8

v3

)
1

2v2

−
(

∂V
∂x6

v1 + ∂V
∂x8

v2

)
1

2v3
∂V
∂x4

0
∂V
∂x6

0
∂V
∂x8

0







−(V′)4
2v1v2

v2
2 +

−(V′)6
2v1v3

v2
3

−(V′)4
2v1v2

v2
1 +

−(V′)8
2v2v3

v2
3

−(V′)6
2v1v2

v2
1 +

−(V′)8
2v2v3

v2
2

(V′)4
0

(V′)6
0

(V′)8
0




. (14)

It is clear from this expression that the first three entries inV′
N have the same sign if the ratios

− (V′)4
2v1v2

,
− (V′)6
2v1v3

,
− (V′)8
2v2v3

have equal signs too.
The stationary point is given by the conditions imposed in Eq. (12). Analyzing the second derivatives of the Higgs potential

V we obtain the conditions for a minimum, these are given by the matrix of the squared scalar Higss masses. Particularly, for
the scalar charged Higgs we have the squared massesm2

H±
1,2

as given in Eq. (37).
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From Eq. (14) we can read(V′
N )i. It is clear from it that

the first three entries inV′
N have the same sign as we men-

tioned before and the squared masses are positive if the sign
of the ratios

− (V′)4
2v1v2

,
− (V′)6
2v1v3

,
− (V′)8
2v2v3

are positive too.
Then, we have that the normal minimum exists if

m2
H±

1,2
> 0. That is,

m2
H±

1,2
=

1
2

[
TrM2

C ±
√

(TrM2
C)2 − 4χ2

]
> 0 , (15)

which leads to

[TrM]2C > (TrM2
C) > 1

2 [TrM]2C . (16)

Thus, in the normal minimum we get

V′
N = A + BXN and XT

NV′
N = 0, (17)

whereXN = X |normal min. In this notation, the potential
evaluated at the normal minimum can be written as:

VN = −1
2
XT

NBXN =
1
2
AT XN . (18)

B. Charge breaking minimum.

In this case, theS3 CB doublet of the Higgs field takes the
valuesφ7=v ′1 , φ8=v ′2 , φ9=v ′3 andφ1=α, φ3=β. Then, the
vectorXCB can be written as:

XCB =




α2 + v′21
β2 + v′22

v′23
αβ + v′1v

′
2

0
v′1v

′
3

0
v′2v

′
3

0




. (19)

Direct analysis of the potential for this stationary point gives:

V′
CB = A + BXCB , (20)

and so the potential evaluated at the CB minimum can be
written as:

VCB = −1
2
XT

CBBXCB =
1
2
AT XCB . (21)

From this equation and Eq. (18) for the normal minimum,
we can compare the potential evaluated at the normal and CB
breaking different minima,

VCB − VN =
1
2

(
XT

CBV′
N −XT

NV′
CB

)
. (22)

If the signs of the ratios

− (V′)4
2v1v2

,
− (V′)6
2v1v3

,
− (V′)8
2v2v3

are positive, the normal minimum exists and the following
product is also positive:

XT
CBV′

N=− (V′
N )6

2v1v3

[
α2v2

3+(v′1v3−v′3v1)2
]

− (V′
N )8

2v2v3

[
β2v2

3+(v′2v3−v′3v2)2
]

− (V′
N )4

2v1v2

[
(αv2 − βv1)2+(v′1v2−v′2v1)2

]
. (23)

If the product:

XT
NV′

CB =
(V′

CB)4
2αβ

{
(v2α− v1β) +

v3

v′3

(
v′1β − v′2α

)}2

(24)

vanishes, the normal minimum is the deepest one. That is:

v′2
v′3

(
v′1
v′2
− α

β

)
+

v2

v3

(
α

β
− v1

v2

)
= 0. (25)

One possible solution to Eq. (25) is that twoS3 doublet Higgs
fieldsH1 andH2 acquire equal vevsv1=v2, v′1=v′2 andα=β.
Then, we can see thatS3 extended Higgs potential has an ac-
cidentalS2 symmetry in the normal and the electric charge
violating minima. This solution corresponds to the Pakvasa-
Sugawara minimum [1], and is the condition for the normal
minimum to be the deepest one. Other possible solution is
realized when(V′

CB)4 vanishes, that is,

2g (αβ + v′1v
′
2) + ev′1v

′
3 = 0, (26)

which implies one parametric relationship.

C. CP breaking.

The CP breaking stationary point is given by the following
vevs:φ7=v′1, φ8=v′2, φ9=v′3, φ10=δ andφ11=γ. Then,

XCP =




δ2 + v′′21

γ2 + v′′22

v′′23

δγ + v′′1 v′′2
v′′1γ − v′′2 δ

v′′2 v′′3
−δv′′3
v′′2 v′′3
−γv′′3




. (27)
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We obtain
XT

CP V′
CP = 0, (28)

and

VCP = AT XCP +
1
2
XT

CP BCP XCP , (29a)

V′
CP = A + BCP XCP . (29b)

In this case, the potential evaluated at the normal minimum
and at the CP violating minimum can be compared as fol-
lows:

VCP −VN = (1/2)[XT
CP V′

N −XT
NV′

CP ] (30)

That is, the normal minimum is the deepest one ifXT
CP V′ is

positive.

XT
CP V′

N =− (V′
N )6

2v1v3

[
δ2v2

3 + (v′′1 v3 − v′′3 v1)2
]

− (V′
N )8

2v2v3

[
γ2v2

3 + (v′′2 v3 − v′′3 v2)2
]

− (V′
N )4

2v1v2

[
(δv2 − γv1)2 + (v′′1 v2 − v′′2 v1)2

]
.

The signs of the ratios

− (V′)4
2v1v2

,
− (V′)6
2v1v3

,
− (V′)8
2v2v3

are positive, and the normal minimum is the deepest one
when the second term in the right hand side of Eq. (30) van-
ishes.

7. Higgs mass matrix

We need to know the nature of the stationary points, thus it
is necessary to compute the second derivatives of the Higgs
potential. These are given by

∂2V

∂φi∂φj
=

∂V

∂xl

∂2xl

∂φi∂φj
+

∂2V

∂xl∂xm

∂xl

∂φi

∂xm

∂φj
. (31)

Defining:

(V′)i =
∂V

∂Xi
, [Blm] =

∂2V

∂Xl∂Xm
,

l,m = 1, 2, ..., 9

[C]ij =
∂Xi

∂φj
, i = 1, 2, ..., 9;

j = 1, 2, ..., 12. (32)

The corresponding mass matrix has the form

[M2] =
1
2

(
[M2

I ] + CT BC
)
. (33)

The first term in Eq. (33) is

[M2
I ]ij = V ′

l

∂2Xl

∂φi∂φj
. (34)

In the normal minimum this matrix takes the form:

[M2
I ] = Diag

(
M2

11, M2
12

)

whereM2
11 y M2

12 are the following6× 6 matrices:

[M2
11] =




2V ′
1 V ′

4 V ′
6 0 0 0

V ′
6 V ′

8 2V ′
3 0 0 0

V ′
4 2V ′

2 V ′
8 0 0 0

0 0 0 2V ′
1 V ′

4 V ′
6

0 0 0 V ′
6 V ′

8 2V ′
3

0 0 0 V ′
4 2V ′

2 V ′
8




,

[M2
12] =




2V ′
1 V ′

4 V ′
6 0 0 0

V ′
4 2V ′

2 2V ′
8 0 0 0

V ′
6 V ′

8 2V ′
3 0 0 0

0 0 0 2V ′
1 V ′

4 V ′
6

0 0 0 V ′
4 2V ′

2 V ′
8

0 0 0 V ′
6 V ′

8 2V ′
3




. (35)

The entries in matrixB are given in Eq. (11c) by the second
derivatives of the Higgs potential. Defining the9×12 matrix
Cij = ∂xi/∂φj as:

[C] =




2φ1 0 0 0 0 0 2φ7 0 0 2φ10 0 0
0 0 2φ3 0 0 0 0 2φ8 0 0 2φ11 0
0 0 0 0 0 0 0 0 2φ9 0 0 0
φ3 0 φ1 0 0 0 φ8 φ7 0 φ11 φ10 0
0 −φ3 0 φ1 0 0 φ11 −φ10 0 −φ8 φ7 0
0 0 0 0 φ1 0 φ9 0 φ7 0 0 φ10

0 0 0 0 0 φ1 0 0 −φ10 −φ9 0 φ7

0 0 0 0 φ3 0 0 φ9 φ8 0 0 φ11

0 0 0 0 0 φ3 0 0 −φ11 0 −φ9 φ8




. (36)

Evaluated at each of the different stationary points, only the fieldsφ7, φ8, φ9, φ1, φ3, φ10 andφ11 appear, the remaining
fields are zero at the stationary points. Hence, the mass matrix of the squared masses can be computed from (33) to (36) it
takes the following form diag(M2

C ,M2
C ,M2

S ,M2
P ).
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The mass of the physical charged Higgs can be expressed as

m2
H±

1,2
=

1
2
TrM2

C ±
√

(TrM2
C)2 − 4χ2

=V ′
1 + V ′

2 + V ′
3 ±

√
(V ′

1 + V ′
2 + V ′

3)2 − (4V ′
1V ′

2 + 4V ′
1V ′

4 + 4V ′
2V ′

3 + V
′2
4 + V

′2
6 + V

′2
8 ). (37)

The mass matrices of the scalar and pseudoscalar Higgs
fields are given byM2

S andM2
P respectively, and are both

block diagonal.

8. Conclusions

We have analyzed the most general Higgs potential invariant
under the non-Abelian flavour symmetryS3 of the extended
SM. In particular, we studied the nature of the critical points
in the Higgs potential: The normal one, the charge violating
and the CP breaking one. We have found that the normal
minimum is stable and it is the deepest one when the flavour

S3 symmetry is unbroken. We also found anS2 accidental
symmetry at the normal minimum.
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