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Vacuum stability in a minimal s3 extension of the standard model
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This work deals with the gauge symmetry breaking and the vacuum stability conditions in a miiin@hriant extension of the Standard

Model. In the theory, there are thréd/(2) Higgs doublets that belong to the singlet and doublet representations &§-tevor group.

We find that, as function of the vacuum expectation values of the twelve real Higgs fields, the Higgs potential has three types of minimum:
a normal minimum, an electric Charge breaking (CB) minimum and a CP violating minimum (CPB) depending on the vacuum expectation

values (vev) of the Higgs fieldd, H. and Hs. Assuming that the non-vanishing vev of the Higgs doublet in the singlet representation of

Ss is real, we obtain that the deepest minimum is the normal minimum. This condition corresponds to the Pakvasa-Sugawara minimum in
which we obtain arb> residual symmetry. This feature simplifies the structure and therefore the computation of the Higgs mass matrices.

We present some results on the mass spectrum of the Higgs bosons in the theory.

Keywords:Higgs bosons non-standard model; electroweak interactions; extensions of Higgs sector; spontaneous symmetry breaking; sym-
metry in theory of fields and particles; symmetry breaking; gauge field theory.

Este trabajo trata del rompimiento de la sirfeele norma y las condiciones de estabilidad delovde una extenén minima invariante

de S5 del Modelo Esindar. En la teda hay tres bosones de Higgs que son dobleteSlde) ., y que pertenecen a las representacions de
singlete y doblete del grupo de salfy. Encontramos que, como fuidci de los valores de expectanidel vato (vev) de los doce campos

reales de Higgs, el potencial de Higgs tiene tres tipos thénmo: un ninimo normal, un fmimo que rompe la cargaétrica (CB) y uno

que viola CP (CPB), dependiendo de los valores de los vev de los campos deFHighs y Hs. Suponiendo que el vev diferente cero del
doblete de Higgs en la representatie singlete d§; es real, obtenemos que elmimo mas profundo es el mimo normal. Esta condién
corresponde al mimo de Pakvasa-Sugawara en el cual obtenemos unaiifietesidual. Esta caracfstica simplifica la estructura, y por

lo tanto, el @lculo de las matrices de masas de los Higgs. Presentamos algunos resultados en el espectro de masas de los bosones de Hig
en la teota.

Descriptores: Bosones de Higgs en modelos noaestar; interacciones electrghiles; extensiones del sector de Higgs; rompimiento
esponéneo de la simef; simetras en tedas de campo y pddulas; rompimiento de la siméd; teofas de norma.

PACS: 14.80.Cp; 14.80.Bn; 12.60.Fr; 11.30.Qc; 11.30.j; 11.15.Ex

1. Introduction neutral currents (FCNC) [6,7]. In this model the Higgs sec-
tor is extended by two additional electroweak Higgs doublets

. . in order to generate the fermion masses without breaking the
!n the Standard Model (SM) each family of _fermlons entersfIavour symmetry. Thus, the Higgs fields belong to the three-
independently and the masses of the particles are free p

. . Bimensional reducible representation of the flavour permuta-
rameters, whose values are determined experimentally. O

. ’ fonal groupSs [3]. In this paper we study the gauge symme-
possibility to reduce the number of free parameters in thefry breaking and the vacuum stability conditions in this min-

ﬁM and to trytto rt;late tze _d|tffere?_t families is FO t?:_jd daimal Ss-invariant extension of the Standard Model. In this
a\/tgur :;ymn;e . edceTj y Interes |r}g péqgreizlln 'S B model there are contributions to Charge Breaking (CB) and
rection has been made by means of a disctatdlavour Charge Parity breaking (CPB) symmetries coming from the

group [1'.3]' This extended. model has been used to cal_c Higgs sector. Since the potential and its minimization play a
late neutrino masses and mixings [4,5] and flavour changing
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vital part in the successful construction of the model we an3. The S5 flavour symmetry

alyze theSs-invariant Higgs boson potential. The stationary

points can be classified as Normal, CB and CPB minimumd he ingredients of the extension of the SM are the following:

according to the vacuum expectation value of the Higgs fields

H,, Hy andHs. (i) To extend the flavour and family concepts to the Higgs
We find the conditions under which the potential mini- sector,

mum preserving electric charge and CP symmetries, is the . ) . ]

global one, that is, the normal minimum is deepest than (i) To associate each family to an irreducible representa-

the CB and CPB minima. One condition corresponds to tion of the flavour group and

the Pakvasa-Sugawara [1] minimum in which & resid- o .

ual symmetry is obtained. In conclusion, we show that in this (iil) To construct a Lagrangian mvan}gnt under the action of

model there is no CPB or CB coming from the Higgs sector the SU(3). x SU(2) x U(1) x S3 group.

when the flavour permutational symmesl is exact. ) . .
The groupSs is a non-Abelian group and has two one di-

mensional irreducible representationg , and1,, which are

an antisymmetric and a symmetric singlet, respectively, and
it also has a two-dimensional doublet irreducible representa-
tion 2. The direct product of twe; irreducible representa-
tions are:

2. Higgs Boson in the Standard Model

In the SM, oneSU (2) doublet Higgs field is introduced to
break the the&SU (2) xU (1) symmetry and give masses to the

articles. The Higgs potential is given b
P 9osp genby 1, 1,21, 1, @ 14=14, 14 ® 14=1,,

+

V(®) = —p?|®> + \|®|* where & = (i()) . (D) 1, ®2=2,14®2=2,2R02=1, 014 O 2.
. The direct product of twe's doublets

the parametek must be positive to produce a stable vacuum.

The p_arametep can _hz_ive gither sign, hqwever it is chosen ~ (pm g e

negative for a non trivial minimum, that is; 4?<0. In the Pp = and qp =

SM, the states satisfying the relationship

PD2 qD2

has two singlets: the symmetric ong=pp1q9p1 + pp2dp2
10T)% 4 [¢°)2 = pu?/2)\ = v?/2 and the antisymmetric oney=pp1gp2 — pp2gp1; and just

one doublet}, with the following form:

are degenerate minima of the potential and we can choose the

vacuum expectation value in thig®)=v/1/2 direction. One T <pD1qD2 +pD2qD1>

important prediction of the SM is the Higgs Boson, a scalar ~ \Pp19p1 — Pp2ap2)

particle which appears in the physical spectrum. The Higgs

gives mass to the quarks and leptons through the Yukawa coiVith this in mind, the Higgs sector is modified to three

p||ngSmf:va/\/§’ theW andZ gauge boson masses are SU(Q) H|ggS field dOUbletﬂ%l7 Dy, and(bc, which enterin a
given asmy = (g/2) v, reducible triplet representation 6§ as follows

O — H = (D,, Dy, D)7 2
mZ:< 92+g’2/2>v ( b ) ()
Since the triplet representation 8f decomposes tg © 2
and the mass of the Higgs boson is giveniy=v2 v. The ~ We express the three Higgs doublets as
Higgs boson is the only particle of the SM which has not been

discovered yet. Prior to the introduction of the Higgs boson H, = 1 ((I)a + & + <I>C>7

and mass terms, the Lagrangian of the SM is chiral and in- V3

variant with respect to any permutations of the left and right H, %(@a — )

quark and lepton fields. For three quarks and lepton families ( ) = 3
the S5 flavour symmetry is an exact symmetry of the SM La- H, %(‘ba + & — 20,)

grangian. If we assume that ti$g permutational symmetry

is not broken and the Higgs of the SM is &p singlet, only The quark, lepton and Higgs fields are given by

one fermion in each family can acquire mass. Although the

Higgs potential is very simple and sufficient to describe a reQ” = (ur,dr),ur,dr, L' = (vp,er),er,vr, H.

alistic model of mass generation, it might be that this is not

the final form of the theory but rather an effective descriptionAll the fields have three species (flavours) and belong to a
of a more fundamental theory. reducible representatian® 2 of Ss.
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4. Ssinvariant Yukawa Lagrangian 5.1. S;invariant Higgs Potential
We can write the5; invariant Yukawa Lagrangian as The most general Higgs Potential invariant under
EY = EYD + [,Yu + »CYE + LY,,7 (4) SU(?))C X SU(Q)L X U(].)y X Sg
where each term is given as can be writen as
d7ry drA 2
Ly, = =Y{'QHsdir — Y3'Q3Hsd3r V=2 (HITHl + HQTHQ) + (H;Hs) +a (H§Hs>

—~ Y5 [QrrrsHidyr + QmisHad g | 2
- o v (i) (i + By ) + o (i + i)
—Y{QsHrdir — Y5 QrHrdsr + h.c,
2
+d (HIH2 — Hng) +efiin ((HgH) (Hij))
LYU = _Y]_U’@](Z-O?)Hg’uIR _ }/37163(2'0'2)]{;'103]2 + f { (Hng) (HIHS) + (H;HQ) (HJHS)}
—Y5' [ Qrkra(ioo)Hyusr + 1Q s (ios) Hyu g | {

2
- - T gt t t
Y Qy(ion) Hiurg — Y0, (i02) Hiusg + hec., o (Bt - HH) -+ (H{H; + B }

_ _VveT _ eT N
Lve = —YiliHsern =Yy Lalsear + h{ (ermn) (b)) + (mb) (HL)
— Yy [ LisrsHiesr + LinryHze g |
— Yfng}@[R — Y;ZIH'IegR + h.c., + (HIHS) (HIHS) + (H;HS) (H%LHS> }v (7)

wherea, b, c,...,h are constants. Alsg;;, are constants
whose indices run from 1 to 2 and a sum over repeated in-

Ly, = —Y{'Li(io2) Hgvin = Y5 Ls(io2) Hgvsp dices in that term of Eq. (7) is implicit. Their values are

=Yy [ Likrg(ioa)Hiv g + Ly (io2)Hyvrg | fire = fiz1 = for1 = —fazo = 1,
=Yy Ls(ioo)Hivigr — Y5'Li(io2) Hivsr + h.c.. and all the rest are zero. TH&/(2), Higgs doublets with
Singlets undetS; carry the indexs or 3, and doublets flavourindexl, 2, 5 are
carry indicesl, J = 1,2, and . — <¢1 +i¢2>
0 1 1 0 "\ oy +igio)
=11 o and 7= 0 -1 _ ‘
. _ g, — (P30 g _ (95 +ide ®)
Furthermore, we add a Majorana mass terms for the neutrinos 2 ¢ +ip11 )’ S P9 +ip12 )
L= — MivigCvig — MsvipCusg, (5)  We introduce the following notation :
whereC is the charge matrix. T :Hle, Lo = HQTHQ, T3 = HgHS,

5. The Higgs sector T4 =R (HlTH2) 75 =1 <H1TH2) :

The Higgs sector Lagrangian of ti$g-invariant extension of r6 =R (HIHS> o7 =1 (HIHS) ;
the SM is expressed as

=R (HIH =7 (HIH 9
£®:[DMHS]2+[DNH1]2 xg R( 2 S)7I9 < 2 S)7 ()

whereR andZ are the real and imaginary parts respectively.

2
+ [DuHo]” =V (Hi, Ha, Hs) (6) Thus, the most general Higgs potential invariant under the
whereD,, is the usual covariant derivative. The gauge bosorexact symmetnSU(2)r x U(1)y x Sz can be written as
massed$V andZ are given as: . 1o,
2 _ 90 (v 43+ ) ViX)=A'X+7X BX, (10)
v 4 ' with X the vector of fields
2 12 2 2 2
m2Z: (g t9 )(1:11+’02+’03)' XT:(xl,l'Q,l'g, .......... ,.’Eg), (11a)
A the vector of mass parameters,
In particular, we are interested in the Higgs potential. The T /2 2 9
phenomenology of the Higgs sector will be presented else A" = (ui, i1, 15,0,0,0,0,0,0), (11b)
where. andB is a9 x 9 real parameter matrix
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2(c+g) 2(c—g) b 0 0 0 0 2e 0

2(c—g) 2(c+g) b 0 0 0 0 —2e 0
b b 20 0 0 0 0 0 0
0 0 0 8 O de 0 0 0

B = 0 0 0 0 —8d 0 0 0 0 (11c)

0 0 0 4e 0  2(f+2h) 0 0 0
0 0 0 0 0 0 2(f — 2h) 0 0
% 2% 0 0 0 0 0 2(f + 2h) 0
0 0 0 0 0 0 0 0 2(f — 2h)

6. Stationary Points

I ..
A. The normal minimum

This potential has three types of stationary points:

From the definitions above, we obtain=v? for i=1,2, 3,

T4=V1V2, Teg=V1V3, Tg=VaV3, Y Ts=x7=x9=0. Then, we

can write the minimization conditions as
=07,08 =V = =0, 1#7,89

¢ = 1,98 = V2,09 = v3,0; =0, i F# ov OV Oz

= — — =
81}i 8.1‘j 8%‘ ’

1. The normal minimum with the following field config-
uration:

(12)
2. The stationary point which breaks the electric charge,

here two of the charged fielgisacquire non zero vev's: wherei=1, 2,3 andj=1, 2, .., 9; this is a set of three coupled
¢7 =i, P8 = vy, P9 = V5,1 =, ¢3 = 3, equations.
Let us define the vectoiVYy), = (V' [xy); =0V /0x;,
3. The CP breaking minimum, where two imaginary evaluated at the minimum. In this notation the minimization
components of the neutral fields acquire non zero conditions read

vev'’s: Vi) Vi)
! _ N/4,2 N6, 2
7= vé/a ¢s = U,/@/, G9 = 'Uga $10 = g, ¢11 = s (VN)l o 2v1v9 2 2uqv3 s (13a)
i i (Vi) (V)
Since we assumH, to be the SM Higgs, we also assume that (Viv)y = =5 " of — B8, (13b)
it does not break electric charge nor CP. The 2HDM Higgs 20102 20203
sector has beeq studied in_Ref._ 9 In this exte_nded secfcor, Vi), - (Vi) 2 (Vg o (130)
the tree-level Higgs pot(_—:-ntlal minimum preserving electric (VN)s =— 20109 v — Q093 Uy
charge and CP symmetries, when it exists is the global one.
| From here it follows that:
oV oV 1 —(Vv’ —(Vv’
“ oz V2 T gV ) 20 2(1;\1/1;)41’% 2((;\1/1;?6 v3
oV v 1 (v /
- val + 879581}3 vz 2(1)\1/’1134 U% 21121)'38 U%
oV, oV 1 —(Vv’ ’
, (:)l 1V2 V/ 2V3
0 0
)
o (V')
0 0
v
(Tzzg (VI)S
0 0

It is clear from this expression that the first three entrie¥ jp have the same sign if the ratios
-~ (V')y =(V)g —(V')s
20iv2 | 20103 | 20903

have equal signs too.
The stationary point s given by the conditions imposed in Eq. (12). Analyzing the second derivatives of the Higgs potential
V' we obtain the conditions for a minimum, these are given by the matrix of the squared scalar Higss masses. Particularly, for
the scalar charged Higgs we have the squared mas%@s as given in Eq. (37).
1,2
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From Eqg. (14) we can read’y);. Itis clear fromitthat  If the signs of the ratios
the first three entries iV’ have the same sign as we men-

tioned before and the squared masses are positive if the sign —(V), = (Vg — (V')
of the ratios 20109 | 20103 | 2u903
_ !/ _ !/ _ /
v )4, v )6, (V')s are positive, the normal minimum exists and the following
2uivy - 20103 20203 product is also positive:
are positive too. Vi)
Then, we have that the normal minimum exists if T ~7/ VN6 [ 20 Y
! XogViy=— a“ v+ (vivs—v3v
m?. > 0. Thatis, CBENTT o003 [@%us +(v1es—vi01)7]
1,2
VI
1 —(2 N)8 [52?}%"‘(@;@3—0&’02) ]
mili =5 |:T7’MQC +4/(TrMZ%)% — 4x2} >0, (15) v2U3
1,2
, (V3V)4 2 / / 2
e - - . (23
which leads to 20105 [(awg — Bo1)*+(vjva—vho1)?] . (23)
[TrM)Z, > (TrM2) > 1 [TrM]7, . (16)  If the product:
Thus, in the normal minimum we get / 2
9 X5Ven = 28 (o 0g) + 2 (8- via) b 29
3

N=A+BXy and XLV, =0, (17)
. . . vanishes, the normal minimum is the deepest one. That is:
whereXy = X |normalmin- IN this notation, the potential
evaluated at the normal minimum can be written as: , ,
vy <1)1 a> Vg (a 1)1) _0 (25)

vy B

B v

Vy = —%XﬁBXN _ %ATXN. (18) U3 vs
One possible solution to Eq. (25) is that tWedoublet Higgs
fields H, andH, acquire equal vevs, =vy, v =v} anda=4.
Then, we can see that extended Higgs potential has an ac-
cidental So symmetry in the normal and the electric charge
violating minima. This solution corresponds to the Pakvasa-
Sugawara minimum [1], and is the condition for the normal

B. Charge breaking minimum.

In this case, theS; CB doublet of the Higgs field takes the
valuesg,=v}, ps=vy, dpg=0% and¢1=a, ¢p3=0. Then, the
vectorXp can be written as:

a2 4 o2 minimum to be the deepest one. Other possible solution is
3%+ vi2 realized wher(V )4 vanishes, that is,
v
aff + vjvh 2g (af + vivh) + evivs = 0, (26)
Xep = 0 . (19)
v} Vs which implies one parametric relationship.
0
vhvh
0 C. CP breaking

Direct analysis of the potential for this stationary pointgives.r,. . ~p breaking stationary point is given by the following

VeVS:¢7:UI1, qf)givé, gf)g:’Ué, (,2510:5 and¢11:7. Then,

V/CB =A+ BXCBa (20)
and so the potential evaluated at the CB minimum can be 52 + U'}’;
written as: 7ty
112
1, - B
Vep = —5XipBXop = ;A Xep. (21) Oy + vyvy
Xep=| vfy—f ) (27)
From this equation and Eq. (18) for the normal minimum, vy vy
we can compare the potential evaluated at the normal and CB —ovy
breaking different minima, vV
Ay
1 U3
Vop =V = 5 (XEsViy — XA Vis). (22)
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We obtain Defining:
XLoViep =0, 28
cpVicp (28) - v B 92V
and i ax, T 9x0x,,
1
Vop = ATXop + 5ngBcpxcp, (29a) LLm=1,2,..,9
0X;
Vip=A+BepXcop. (29b) [Cl; = 96, i=1,2,...,9;
In this case, the potential evaluated at the normal minimum j=1,2,..,12. (32)
and at the CP violating minimum can be compared as fol-
lows: The corresponding mass matrix has the form
Vep —Vy = (1/2)[X£*PV§V - X% Pl (30) [M2] — 1 ([Mf] + CTBC) . (33)
2

, - , ;e
That is, the normal minimum is the deepest onK#, V' is The first term in Eq. (33) is

positive.
0%*X,
(Viv)s M2, =V L 34
XepViy == 2vivvg (0703 + (v]'vs — vgvr)?] Ml =V 0¢i0¢; 49
(Vi)s In the normal minimum this matrix takes the form:
e D (s = )] o i A
(Vi) [M}] = Diag (M11a M12)
_ N/4 _ 2 "o N2
201 V2 [(602 = y01)" + (v —vgv)°] whereM?, y M3, are the followings x 6 matrices:
The signs of the ratios 2] V] V{0 0 0
Ve V§ o2V 0 0 0
(VY. (V. — (V! 6 8 3
V1V2 V1V3 V2U3 11 — 0 0 0 2‘/1/ VZ V()‘/ )
are positive, and the normal minimum is the deepest one 0 0 0 V¥ WV 2V
when the second term in the right hand side of Eq. (30) van- 0 0 o Vi 2V W
ishes.
/ / /
7. Higgs mass matrix v Vi Vg 0000
99 Vool 2Vl 0 0 0
We need to know the nature of the stationary points, thus it M2,] = Ve Vg 2l 0 0 0 f (35)
is necessary to compute the second derivatives of the Higgs 12 0 0 0 2V Vi
potential. These are given by o 0 0 Vi o2V W
o 0 0o V. Vi v

v oV 0%z 0*V Oz Oz,
909, - D) 009, + OT102, Oy 0G; (31) Th(ﬂT en_tries in matri_>B are give_n in Eq. (_11c) by the sec_:ond
derivatives of the Higgs potential. Defining thex 12 matrix
| Cij = 8:51/8@ as:

% 0 0 0 0 0 2 0 0 26 0 0
0 0 25 0 0 0 0 2 0 0 205 0
0 0 0 0 0 O 0 0 2¢9 0 0 0
¢ 0 ¢ 0 0 0 ¢5 o7 0 ¢11 ¢10 O
[C] = 0 —¢3 0 ¢ 0 0 ¢ —¢0 0 —¢g o7 O (36)
0 0 0 0 ¢1 0 0 b7 0 0 ¢
0 0 0 0 0 ¢ O 0 —¢w0 —¢9 O o7
0 0 0 0 ¢3 0 O o ¢s 0 0  on
0 0 0 0 0 ¢3 O 0 —¢éun 0 —¢g ¢s

Evaluated at each of the different stationary points, only the figld®s, ¢g, @1, @3, P19 and¢,; appear, the remaining
fields are zero at the stationary points. Hence, the mass matrix of the squared masses can be computed from (33) to (36) it
takes the following form dia@vVI,, MZ, M%, M%).
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The mass of the physical charged Higgs can be expressed as

+
Hi,

1
m? :§TrM2C +1/(TTMZ,)2 — 4x2

V]V VSV VY V)2 — (AV]VE + AV + AVEV] 4 V2 4 V2 1 152). 37)

The mass matrices of the scalar and pseudoscalar Higgs
fields are given byM?% and M3 respectively, and are both
block diagonal. Ss symmetry is unbroken. We also found &n accidental

symmetry at the normal minimum.

8. Conclusions
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