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Cranking the semimicroscopic algebraic cluster model

H. Yépez-Mart́ınez
Universidad Aut́onoma de la Ciudad de Ḿexico,
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Initial steps are presented on the cranking of the Semimicroscopic Algebraic Cluster Model (SACM). This permits to treat Hamiltonians
which do not present a dynamical symmetry.
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Se presentan pasos iniciales para elcrankingdel Modelo Semimicrosćopico de Ćumulos Nucleares (SACM). El procedimiento permite tratar
Hamiltonianos cuales no presentan una simetrı́a dińamica.
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1. Introduction

TheSemimicroscopic Algebraic Cluster Model(SACM) was
introduced in Refs. 1 and 2. One important advantage of this
model is the treatment of the Pauli exclusion principle. The
model space is microscopic, observing the Pauli exclusion
principle, while the Hamiltonian consists of phenomenolog-
ical interaction terms. Most applications of the SACM are
restricted todynamical symmetries, where the Hamiltonian
is a function of the Casimir operators within a given group
chain (see, for example Ref. 3). However, more interesting
cases appear outside dynamical symmetries, allowing the in-
vestigation of phase transitions,e.g., transitions between dy-
namical symmetries.

In Ref. 4 a geometric mapping of the SACM was given,
allowing to consider more general Hamiltonians. This was
exploited in Ref. 5 to consider the transition from theSU(3)
to theSO(4) dynamical symmetry. Phase transitions were
discussed and the persistence of effective symmetries [6]. For
example, deformed nuclei exhibit a rotational structure, re-
lated to aSU(3) symmetry, though this symmetry is badly
broken due to the spin-orbit and pairing interactions. The
topic on effective symmetries deals with the understanding
on how such symmetries apparently survive. A resumé on
the different types of symmetries is given in Ref. 7.

There is an alternative way to treat Hamiltonians within
and outside dynamical symmetries. It is the cranking
method [8,9] which imposes rotations on the system. It al-
lows to generate rotational bands and the calculation of mo-
ment of inertias. Changes in the rotational behavior are re-
lated to phase transitions. Thus, the cranking method not only
allows to study different phases but also provides additional
information on the spectrum and moments of inertia.

Some work was published on the application of the
cranking method related to clusterization (see, for example
Ref. 10). The one, which is closely related to what we will
present is published in Refs. 11 and 12. There, the cranking
formalism is applied to the Interacting Boson Approxima-
tion (IBA) [13]. An intrinsic coherent state was introduced,
whose parameters do not obey the properties of a tensor. The
method allowed to calculate rotational spectra of Hamiltoni-
ans with no dynamical symmetry and the determination of
the moment of inertia of the nucleus in consideration. The
approximation of small rotational frequencies was applied,
which excludes, however, the possibility to treat large angu-
lar momenta.

In this contribution we extend the ideas of [11,12] to the
SACM. There, the basic excitations are not the quadrupole
ones but dipole bosonsπ†m (m = 0,±1). The procedure is
illustrated for the case of16O+α, i.e. two spherical clusters.
The Hamiltonian will be chosen within a dynamicalSU(3)
symmetry. This is by no means a severe restriction, because
first of all the cranking formalism works everywhere, and
secondly, for this simple case the cranking of the SACM is
very easy to illustrate. For a complete presentation, we refer
to a forthcoming publication [14].

The paper is structured as follows: In section 2 the SACM
is briefly resumed and the particular Hamiltonian, used for
the application to16O+α, is discussed. In section 3 the in-
trinsic coherent state is introduced and some particular ex-
pectation values are presented. In section 4 the application
to 16O+α is given and the results are commented. Finally,
in section 5 conclusions are drawn and an outline for future
steps is given.
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2. The SACM, a particular Hamiltonian and
the geometrical mapping

The SACM is calledsemimicroscopicbecause its model
space is microscopic, while the Hamiltonian is of phe-
nomenological nature. The microscopic space is constructed
as follows: The fact is exploited, that the cluster basis is
equivalent to the shell model basis [15]. Each individual light
cluster is represented by anSU(3) irreducible representation
(irrep) of the shell model [16]. In the original version only
a definite isospin value is considered. The relative motion is
described by the irreps of the harmonic oscillator, depending
on the number of relative dipole bosons (π†m). The Wilder-
muth condition [15] is imposed, which requires a minimal
number of relative oscillation quanta, otherwise the Pauli ex-
clusion principle is violated. But this condition is not suf-
ficient. The result of the coupling of theSU(3) irreps and
the relative motion to irreps of the totalSU(3), has to co-
incide with SU(3) irreps of the shell model. Thus, the list
obtained from the coupling is compared to the list of the
shell model and only thoseSU(3) irreps of the cluster ba-
sis are retained which coincide with one of the shell model.
In this way, the Pauli exclusion principle is observed by tak-
ing into account only those irreps which have an overlap with
the shell model. Auxiliary scalar bosons (σ†) are added to
the prescription, such that the total number of bosons, dipole
plus scalar bosons, is fixed. This is a way to introduce a cut-
off into a cluster model and at the same time having Hamil-
tonians which do not change the total number of bosons
N = nπ + nσ.

In group theoretical notation we have

SUC1(3)⊗ SUC2 ⊗ UR(4) ⊃ SUC(3)⊗ SUR(3)

(λ1, µ1) (λ2, µ2) N (λC , µC) (nπ, 0)

SU(3) ⊃ SO(3) ⊃ SO(2)

(λ, µ) L M .(1)

Here, the indicesCk refer to the individual clusters,C to the
coupling of the two cluster irreps,nπ is the number of rela-
tive oscillation quanta,N is the total number of bosons and
λα, µα, with α = Ck, C or no index refer to the correspond-
ing SU(3) irreps. A particular feature of the model is that the
distance of the two clusters at0~ω is proportional to

√
n0 [4],

wheren0 is the minimal number of dipole oscillation quanta.
When the Hamiltonian is in a dynamical symmetry, it is

a function of the Casimir operators, appearing in the corre-
sponding group chain. For this case, the solutions of the
spectrum are analytical and quite complicated systems can
be treated by this model. However, as stated in the introduc-
tion, most interesting cases are represented by Hamiltonians
which are not in a dynamical symmetry. When such Hamil-
tonians are treated, phase changes can be investigated, as was
done in Ref. 5 using an exact diagonalization and the meth-
ods of coherent states, related to a geometrical mapping [4].

The cranking method is an alternative way, permitting the
determination of at least the Yrast band and the moment of
inertia of the nucleus as a function of the angular momentum.
Because we only want to illustrate this method, we rather do
not start from the most general Hamiltonian. In effect, we
will use a Hamiltonian within a dynamical symmetry, which
is not a serious restriction but serves to illustrate the general
method. Results can be easily compared to the exact one.
The Hamiltonian we use is given by

H = [~ωnπ − d1C2(λ, µ)] + γL2. (2)

It describes theSU(3) dynamical symmetry. The second or-
der Casimir operatorC2(λ, µ) of SU(3) acquires the form
nπ(nπ +3) for the case of two spherical clusters. For the op-
erators, the phase conventionOlm = (−1)l−mOl

−m is used.

3. The geometrical mapping and the intrinsic
coherent state

The geometrical mappingis achieved, using as a coherent
state

|a〉 = NNn0

(
a · π†)n0 [

σ† +
(
a · π†)]N |0〉, (3)

with n0 as the minimal number of oscillation quanta and
(N + n0) the total number of oscillation quanta. This is the
same form used as in Ref. 4, with the difference that now
the parametersam of the coherent state are not necessarily
the components of a tensor. This leads to the definition of
the intrinsic coherent state, as introduced in Refs. 11 y 12.
The coherent state in Ref. 3 reflects the fact that there is a
minimal number of bosonsn0.

We use the definition
(
a · π†) =

∑
m

amπ†m. (4)

Theam are in general complex and arbitrary. The complex
conjugate is denoted bya∗m. We also use

ãm = (−1)1−ma−m. (5)

This is important, when we applyπm = (−1)1−mπ−m to
the coherent state on the right. Applying a boson creation
operatorπ†m to the left results ina∗m. We use also

(a∗ · a) =
∑
m

a∗mam. (6)

As particular examples we list the expression for the normal-
ization and a particular expectation value. The formal ex-
pression is the same as in Ref. 4, keeping in mind the distinct
feature of the parametersam. The normalization coefficient
is given by

N−2
Nn0

=
N !2

(N + n0)!
dn0

dγn0
1

dn0

dγn0
2

× [1 + γ1γ2(a∗ · a)]N+n0 |γ1=γ2=1 , (7)
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taken atγ1 = γ2 = 1. A particular expectation value is

〈[π† ⊗ π
][S]

m
〉 = (N + n0) [a∗ × ã]SmN 2

Nn0

N !2

(N + n0)!

× dn0

dγn0
1

dn0

dγn0
2

γ1γ2

× [1 + γ1γ2(a∗ · a)]N+n0−1 |γ1=γ2=1 , (8)

which includes as a particular case the number operator
(S = 0). We also used the notation

[a∗ × ã][S]
m =

∑
m1m2

(1m1, 1m2|Sm)a∗m1
ãm2 , (9)

Where the coupling sign ”×” instead of ”⊗” was used, in or-
der to indicate that no tensors are coupled. It serves just as a
notation.

In Ref. 9 an expansion of the complicated factor is ap-
plied in terms of powers inam, which describe the difference
to the relative distance of the clusters. The limitN → ∞ is
applied and terms proportional ton0, the minimal number of
dipole oscillation quanta, are neglected. This time we keep
also terms in lowest order inn0.

Finally, some comments are made on the possible sym-
metries of the cranked cluster model. In fact, for the general
case of two different, deformed nuclei, there is no discrete
symmetry present. For the static case, however, the time re-
versal symmetry can be applied, leading to (proved in a sim-
ilar way as done in Ref. 12)

a∗m = (−1)1−ma−m. (10)

Due to the phase choice, this leads to a purely imaginarya0.
Nevertheless, in a parametrization we can assumea0 to be
real, because in the calculation of the expectation value of
the Hamiltonian the factor(i)(−i) = 1, appears always. In
the cranked model, the time reversal symmetry does not exist
and in general there are 3 complex variablesam (m = 0,±1),
i.e., 6 parameter variables.

4. Application to 20Ne→16O+α

In this case, both clusters are spherical,i.e., the quantum
numbers of the clusters in Eq. (1) are

(λ1, µ1) = (λ2, µ2) = (λC , µC) = (0, 0). (11)

This simplifies the calculation because only the relative mo-
tion enters here as an independent degree of freedom. The
minimal number ofπ bosons isn0 = 8. The Hamiltonian
of Eq. (2) is too simple in order to describe the spectrum of
20Ne, though, the ground state band and the position of the
first excited0+ band can be easily fitted. Here, we are not in-
terested to obtain a perfect fit but only illustrate the cranking
method. Thus, we do not present detailed fits.

The calculation of the expectation value of the Hamil-
tonian is simplified, when the following very particular

parametrization of the parametersam is used (it is not the
most general one but still permits to obtain transparent for-
mulas for the expectation values)

a0 = δ cos(θ)

a1 =
δ√
2
sin(θ) = a−1.

(λ1, µ1) = (λ2, µ2) = (λC , µC) = (0, 0). (12)

It is not the most general one, which includeam to be com-
plex and alsoa1 6= a−1. But this parametrization will make
our point clearer, though, a more general parametrization
would give more details.

To the Hamiltonian (2) the term−ΩLx is added, in or-
der to arrive at the cranking Hamiltonian with the rotational
frequencyΩ, i.e.,

H ′ = H − ΩLx , (13)

describing a rotation around thex-axis, which is perpendic-
ular to thez-axis, defined as the one which connects both
clusters.

With this, the geometrical mapped Hamiltonian is given
by

E = n0 [~ω − d1n0 − 4d1 − Ωsin(2θ)]

+ n0N [~ω − 2d1n0 − 4d1 − Ωsin(2θ)] δ2

1
2
n2

0N
2 [−~ω + 2d1n0 + 4d1 + Ωsin(2θ)] δ4

+ γn2
0sin

2(2θ)
(
1 + 2Nδ2 −N2n0δ

4
)

+ 2γn0

(
1 + Nδ2 − 1

2
N2n0δ

4

)
, (14)

whereδ2 is assumed to be small (remember thatδ refers to the
change with respect to the zero order distance[4]). This as-
sumption is not severe, because also the general result can be
used, with arbitraryδ. Note also, that we do not assume small
Ω, thus permitting a future discussion of high spin states.

DifferentiateV with respect toθ and setting the result to
zero, leads to the equation

sin(2θ) ≈ Ω
2γn0

×
(

1−Nδ2 +
[
2N2 +

1
2
n0N

2

]
δ4

)
. (15)

Note, that forΩ = 0 theθ = 0, as it should be. In this case
a+1 = 0 = a−1 too.

The expectation value of theLx operator is given by

〈Lx〉 = n0sin(2θ)
(

1 + Nδ2 − 1
2
n0N

2δ4

)
. (16)
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The valueL is the angular momentum and the last equation
relatesθ to L, when we set〈Lx〉 ≈ L (more correctly it is√

L(L + 1)). Whenθ = 0, then L=0. The maximum value
is obtained, when we setsin(2θ) = 1, i.e. θ = π/4. In this
case and settingδ = 0, the expectation value of〈Lx〉 is n0.
Settingδ2 to zero, implies to exclude intershell excitations,
i.e., we explore the0~ω space only. This is a very nice result,
because for the ground state at0~ω the orbital irrep is given
by (n0, 0), i.e., the maximal spin possible isn0! The contri-
butions from the part, depending on powers ofδ2, refers to
intershell excitations, which increase the maximal spin pos-
sible.

Substituting in〈Lx〉 the equation forsin(2θ), we arrive
at

〈Lx〉 ≈ Ω
2γ

(
1 + N4n0δ

4 + N2δ4
)

(17)

We have three equations:∂V/∂δ = 0, with V taken from
Ref. 14,∂V/∂θ = 0 and Eq. (16). Note, that from the first
two equations we getδ andθ as functions inΩ. Therefore,
setting in the expression forδ andθ, the third equation gives
usΩ as a function inL. TheL can then be set to the desired
value,e.g., 0, 2, 4, etc.

The potential is of the form

E = F1(θ) + F2(θ)δ2 + F3(θ)δ4. (18)

Finally, we derive the moment of inertia to lowest order
in δ2. It is just given by the trivial result

∂〈Lx〉
∂Ω

= I ≈ 1
2γ

(
1 + N4n0δ

4 + N2δ4
)
. (19)

To lowest order, it is just1/2γ, which we could have guessed,
setting in the HamiltonianγL2 = (1/2I)L2.

Thus, the cranking formalism leads to consistent results,
using as a trial state the coherent state proposed. The correc-
tion, of course, takes into account contributions from higher
shell excitations.

The results change, when non-spherical clusters are taken
into account. How to proceed is indicated in Ref. 4. There the
contributions of operators, acting on the clusters, are listed.

5. Conclusions and outlook

In this contribution we illustrated the procedure on how to
crank a general Hamiltonian of the SACM, which is not nec-
essarily within a dynamical symmetry. We used, however,
for illustrative reasons a particular Hamiltonian in a dynami-
cal symmetrySU(3) and a particular parametrization of the
coherent state parameters. With this, we reproduce obvious
results, demonstrating the correctness of our procedure.

The next steps are to consider more general Hamiltonians
in the simplified parametrization ofam, in terms ofδ andθ.
This suffices already for the investigation of possible phase
transitions, which should change the rotational behavior of
the system.

The simplified parametrization refers to axial symmetric
systems, as can be seen by the following argument: Because
the geometrical mapping ofLz =

(
π†+1π

+1 − π†−1π
−1

)

leads to an expression proportional to
(|a+1|2 − |a−1|2

)
, it

disappears in our simplified parametrization (a+1 = a−1).
Axial symmetric systems comprise two spherical clusters
or one or two deformed clusters, with axial symmetry,
aligned along thez-axis. Thus, the removal of the condition
a+1 = a−1 leads to the description of cluster systems with
arbitrary relative orientations.

The cranking formalism is general enough to allow the
description of quite complicated Hamiltonians. The complete
formalism is in preparation [14].

Acknowledgements

We acknowledge very helpfull discussions with J. Cseh, J.
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work in progress.

15. K. Wildermuth and Y.C. Tang,A Unified Theory of the Nu-
cleus(Friedr. Vieweg & Sohn Verlagsgesselschaft mbH, Braun-
schweig, 1977).

16. J. P. Elliott,Proc. Roy. Soc. A245128, (1958) 562.

Rev. Mex. F́ıs. S54 (3) (2008) 69–73


