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Initial steps are presented on the cranking of the Semimicroscopic Algebraic Cluster Model (SACM). This permits to treat Hamiltonians
which do not present a dynamical symmetry.

Keywords:Cluster models.

Se presentan pasos iniciales parerahkingdel Modelo Semimicrosapico de @imulos Nucleares (SACM). El procedimiento permite tratar
Hamiltonianos cuales no presentan una sifaatinamica.

Descriptores:Modelos de amulos.

PACS: 21.60.Gx

1. Introduction Some work was published on the application of the
cranking method related to clusterization (see, for example
Ref. 10). The one, which is closely related to what we will
gresent is published in Refs. 11 and 12. There, the cranking
ormalism is applied to the Interacting Boson Approxima-

The Semimicroscopic Algebraic Cluster Mod8IACM) was
introduced in Refs. 1 and 2. One important advantage of thi

model is the treatment of the Pauli exclusion principle. The IBA) [13]. An intrinsi h i stat introduced

model space is microscopic, observing the Pauli exclusioﬁ'%n( ) [ ].t n Iorl1 rmstlc go (te}:en S aetyvas]:n rto uce 'i'h

principle, while the Hamiltonian consists of phenomenolog-W OS€ parameters do not obey the properties ot a tensar. 1he
method allowed to calculate rotational spectra of Hamiltoni-

ical interaction terms. Most applications of the SACM are ith d cal N d the determinati f
restricted todynamical symmetriesvhere the Hamiltonian ans with no dynamical symmetry and the determination o
the moment of inertia of the nucleus in consideration. The

is a function of the Casimir operators within a given group L . : )
chain (see, for example Ref. 3). However, more interestinai/pprox'mat'on of small rotational frequencies was applied,

cases appear outside dynamical symmetries, allowing the i vhich echLtJdes, however, the possibility to treat large angu-
vestigation of phase transitions.g, transitions between dy- ar momenta.
namical symmetries.

In Ref. 4 a geometric mapping of the SACM was given, [N this contribution we extend the ideas of [11,12] to the
allowing to consider more general Hamiltonians. This wasSACM. There, the basic excitations are not the quadrupole
exploited in Ref. 5 to consider the transition from #i&(3)  ones but dipole bosons}, (m = 0,+1). The procedure is
to the SO(4) dynamical symmetry. Phase transitions wereillustrated for the case dfO+q, i.e. two spherical clusters.
discussed and the persistence of effective symmetries [6]. Fdrhe Hamiltonian will be chosen within a dynamicgi/ (3)
example, deformed nuclei exhibit a rotational structure, reSymmetry. This is by no means a severe restriction, because
lated to aSU(3) symmetry, though this symmetry is badly first of all the cranking formalism works everywhere, and
broken due to the spin-orbit and pairing interactions. Thesecondly, for this simple case the cranking of the SACM is
topic on effective symmetries deals with the understanding/€'y easy to illustrate. For a complete presentation, we refer
on how such symmetries apparently survive. A reswn to aforthcoming publication [14].
the different types of symmetries is given in Ref. 7.

There is an alternative way to treat Hamiltonians within ~ The paper is structured as follows: In section 2 the SACM
and outside dynamical symmetries. It is the crankingis briefly resumed and the particular Hamiltonian, used for
method [8,9] which imposes rotations on the system. It althe application td®O+q, is discussed. In section 3 the in-
lows to generate rotational bands and the calculation of motrinsic coherent state is introduced and some particular ex-
ment of inertias. Changes in the rotational behavior are repectation values are presented. In section 4 the application
lated to phase transitions. Thus, the cranking method not onlio 'O+« is given and the results are commented. Finally,
allows to study different phases but also provides additionain section 5 conclusions are drawn and an outline for future
information on the spectrum and moments of inertia. steps is given.



70 H. YEPEZ-MARTINEZ AND P.O. HESS

2. The SACM, a particular Hamiltonian and The cranking method is an alternative way, permitting the
the geometrical mapping determination of at least the Yrast band and the moment of
inertia of the nucleus as a function of the angular momentum.
The SACM is calledsemimicroscopicbecause its model Because we only want to illustrate this method, we rather do
space is microscopic, while the Hamiltonian is of phe-not start from the most general Hamiltonian. In effect, we
nomenological nature. The microscopic space is constructedill use a Hamiltonian within a dynamical symmetry, which
as follows: The fact is exploited, that the cluster basis igis not a serious restriction but serves to illustrate the general
equivalent to the shell model basis [15]. Each individual lightmethod. Results can be easily compared to the exact one.
cluster is represented by &/ (3) irreducible representation The Hamiltonian we use is given by
(irrep) of the shell model [16]. In the original version only 2
a definite isospin value is considered. The relative motion is H = [wnr = diCo (A, p)] + L7 2)
described by the irreps of the harmonic oscillator, dependingt describes theSU (3) dynamical symmetry. The second or-
on the number of relative dipole bosons!(). The Wilder-  der Casimir operato€ (), 1) of SU(3) acquires the form
muth condition [15] is imposed, which requires a minimal n (n, + 3) for the case of two spherical clusters. For the op-
number of relative oscillation quanta, otherwise the Pauli exerators, the phase conventiod™ = (—1)"~"0" , is used.
clusion principle is violated. But this condition is not suf-
ficient. The result of the coupling of th&U (3) irreps and . . T
the relative motion to irreps of the totalU(3), has to co- 3. The geometrical mapping and the intrinsic

incide with SU(3) irreps of the shell model. Thus, the list coherent state
obtained from the coupling is compared to the list of the : o - :
. The geometrical mappings achieved, using as a coherent

shell model and only thos8U (3) irreps of the cluster ba- 9 I ppings eved, using

. ) ; - X state
sis are retained which coincide with one of the shell model.
In this way, the Pauli exclusion principle is observed by tak- N
ing into account only those irreps which have an overlap with la) = Ny (a- 7)™ [of + (a@-71)] 7 |0), (3
the shell model. Auxiliary scalar bosons'() are added to

the prescription, such that the total number of bosons, dipol J'\Eh o ashthe mllnlmatl) nur?ber_l(l)f _OSC'"at'()n q#ﬁ_”“?‘ arr:d
plus scalar bosons, is fixed. This is a way to introduce a cut + 7]:‘0) the to'éa num Rerfo A?SC'. 2“?]” ?jgf?nta. 'f] IS the
off into a cluster model and at the same time having Hamil-5@me form used as in Ret. 4, with the difference that now

he parametera,,, of the coherent state are not necessarily
the components of a tensor. This leads to the definition of
theintrinsic coherent stateas introduced in Refs. 11y 12.
The coherent state in Ref. 3 reflects the fact that there is a
minimal number of bosons,.

We use the definition

tonians which do not change the total number of boson
N =n, + ng.
In group theoretical notation we have

SUc, (3) @ SUc, ® Ur(4) D SUc(3) ® SUx(3)

()\17/’61) ()\27/’[/2) N ()\C7/’LC) (nTHO) (aﬂ'-‘—) _ Zamﬂ-jn (4)
SU(3) D SO(3) D SO(2) m
) I M (1) The a,, are in general complex and arbitrary. The complex

conjugate is denoted hy};,. We also use

Here, the indice€’;, refer to the individual clusterg; to the am = (—1)'"™a_,,. (5)
coupling of the two cluster irreps,,, is the number of rela- L a e
tive oscillation quanta)V is the total number of bosons and 1 iS iS important, when we apphy,,, = (—1)"""'7~" to
Aus fhas With & = Cj, C or no index refer to the correspond- the coherent state on the r|g_ht. Applying a boson creation
ing SU (3) irreps. A particular feature of the model is that the operatorr}, to the left results inu;,,. We use also
distance of the two clusters @tw is proportional to,/nq [4], (a* - a) = Za* . (6)
whereny is the minimal number of dipole oscillation quanta. — "

When the Hamiltonian is in a dynamical symmetry, it is As particular examples we list the expression for the normal-

a func_t|on of the Cas_|m|r opergtors, appearing in the COIe;, ation and a particular expectation value. The formal ex-
sponding group chain. For this case, the solutions of th

. . . %ression is the same as in Ref. 4, keeping in mind the distinct
spectrum are analytical and quite complicated systems Cature of the parametets,. The normalization coefficient

be treated by this model. However, as stated in the introduci- .
. . . ... 1s given by
tion, most interesting cases are represented by Hamiltonians
which are not in a dynamical symmetry. When such Hamil- N2 = N2 dro gro
tonians are treated, phase changes can be investigated, as was Nnro = (N 4-ng)! dy} dyye
done in Ref. 5 using an exact diagonalization and the meth- Nin
' i x[T+me(a™-a)]" " |, = )
ods of coherent states, related to a geometrical mapping [4]. Y1=72=1"
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taken aty; = v, = 1. A particular expectation value is parametrization of the parameters, is used (it is not the
N2 most general one but still permits to obtain transparent for-
t (Sly _ “walS N2 2T mulas for the expectation values
<[7T ®7T]m>—(N+n0)[a Xa/}mNNno(N_i_nO)! p )
o Jno ag = ¢ cos(0)
X o W%%
Lo a1 = —=sin(f) = a_;.
V2

* N+ng—
X [L+y72(a” )7 Ly, (8)

L . (A1, 1) = (A2, p2) = (Ac, ue) = (0,0). (12)
which includes as a particular case the number operator

(S = 0). We also used the notation It is not the most general one, which includg to be com-
18] ) plex and alsa; # a_;. But this parametrization will make
la* x @l = Y (lmy,1ms|Sm)ay, @m,,  (9)  our point clearer, though, a more general parametrization
mima would give more details.
Where the coupling sign®” instead of "%” was used, in or- To the Hamiltonian (2) the termQL, is added, in or-
der to indicate that no tensors are coupled. It serves just asdgr 10 arrive at the cranking Hamiltonian with the rotational
notation. frequency(l, i.e,

In Ref. 9 an expansion of the complicated factor is ap-
plied in terms of powers in,,,, which describe the difference ;
to the relative distance of the clusters. The lilNit— o is H =H-QL, , (13)
a_pphed anpl terms proportional i@, the mlnlm_al n_umber of describing a rotation around theaxis, which is perpendic-
dipole oscillation quanta, are neglected. This time we keepar 1o the z-axis, defined as the one which connects both
also terms in lowest order imy. clusters.

Finally, some comments are made on the possible sym- it this, the geometrical mapped Hamiltonian is given
metries of the cranked cluster model. In fact, for the generaj,
case of two different, deformed nuclei, there is no discrete
symmetry present. For the static case, however, the time re- E = ng [hw — ding — 4d; — Qsin(260)]
versal symmetry can be applied, leading to (proved in a sim-

. 2
ilar way as done in Ref. 12) +noN [hw — 2ding — 4dy — Qsin(20)] 6

1
a;kn = (—1)1_ma7m_ (10) 5”%]\]2 [—hw + 2d17’L0 + 4d1 + QSIH(2(9)] (34
Due to the phase choice, this leads to a purely imagingry + yngsin®(20) (1 + 2N§% — N?ngs*)
Nevertheless, in a parametrization we can assugnt® be 1
real, because in the calculation of the expectation value of + 2yng (1 + N§% — N2n0(54> , (14)
the Hamiltonian the factofi)(—i) = 1, appears always. In 2

the cranked model, the time reversal symmetry does not exi%hereéz ;

qi L th | bl is assumed to be small (remember thedfers to the
andin generalthere are 3 complex variabigs(m = 0, £1), change with respect to the zero order distaf¢p. This as-
i.e, 6 parameter variables.

sumption is not severe, because also the general result can be

used, with arbitrary. Note also, that we do not assume small

4. Application to 2°Ne—1°O+a , thus permitting a future discussion of high spin states.
DifferentiateV with respect t@ and setting the result to

In this case, both clusters are spherida, the quantum zero, leads to the equation

numbers of the clusters in Eq. (1) are

(/\17““1) = ()‘2”“2) = (AC":U‘C) = (070) (11) sin(29) ~ 5
1o
This simplifies the calculation because only the relative mo- 1
tion enters here as an independent degree of freedom. The X (1 — N&? + [2]\72 + nONﬂ 54> . (15)
minimal number ofr bosons isyy = 8. The Hamiltonian 2

of Eq. (2) is too simple in order to describe the spectrum ofyote, that for2 = 0 thed = 0, as it should be. In this case
20Neg, though, the ground state band and the position of tth —0=a_, too.

first excited0* band can be easily fitted. Here, we are notin-  The expectation value of the, operator is given by
terested to obtain a perfect fit but only illustrate the cranking
method. Thus, we do not present detailed fits.

The calculation of the expectation value of the Hamil- (Ly) = nosin(26) <1 + N§2 — 1noN254> . (16)
tonian is simplified, when the following very particular 2
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The valueL is the angular momentum and the last equationrb. Conclusions and outlook

relatesd to L, when we setL,) ~ L (more correctly it is

VL(L +1)). When# = 0, then L=0. The maximum value |n this contribution we illustrated the procedure on how to
is obtained, when we sein(2¢) = 1,i.e. # = m/4. Inthis  crank a general Hamiltonian of the SACM, which is not nec-
case and setting = 0, the expectation value df...) isno.  essarily within a dynamical symmetry. We used, however,
Settings* to zero, implies to exclude intershell excitations, for illustrative reasons a particular Hamiltonian in a dynami-
i.e., we explore thé/w space only. This is a very nice result, cal symmetrySU(3) and a particular parametrization of the
because for the ground stateato the orbital irrep is given  coherent state parameters. With this, we reproduce obvious
by (n0,0), i.e., the maximal spin possible is! The contri-  results, demonstrating the correctness of our procedure.
putlons from Fhe_ part, de.pen_dlng on powerséé.,f refer; to The next steps are to consider more general Hamiltonians
intershell excitations, which increase the maximal spin POS;, the simplified parametrization af,,, in terms ofs andé.

sible. _ ‘ _ This suffices already for the investigation of possible phase
Substituting in(L,) the equation fosin(26), we armive  yansitions, which should change the rotational behavior of
at the system.
(L) = 23 (1 + N*ngo* + N254) ann The simplified parametrization refers to axial symmetric
v systems, as can be seen by the following argument: Because
We have three equation8y’/0é = 0, with V' taken from 14 geometrical mapping of, = ﬂ.ilﬂ.ﬂ — ol

Ref. 14,0V/00 = 0 and Eq. (16). Note, that from the first
two equations we get andé as functions ir2. Therefore,
setting in the expression férandé, the third equation gives
us§ as a function in... The L can then be set to the desired
value,e.g, 0, 2, 4, etc.

The potential is of the form

leads to an expression proportional (fa1 |*> — |a—1/?), it
disappears in our simplified parametrization { = a_1).
Axial symmetric systems comprise two spherical clusters
or one or two deformed clusters, with axial symmetry,
aligned along the-axis. Thus, the removal of the condition
ay1 = a_j leads to the description of cluster systems with

E = F1(0) + F5(0)6% 4 F3(0)0*. (18)  arbitrary relative orientations.
Finally, we derive the moment of inertia to lowest order ~ The cranking formalism is general enough to allow the
in 62. Itis just given by the trivial result description of quite complicated Hamiltonians. The complete
O(L.) 1 formalism is in preparation [14].
L= ITa~ — (14 N*ngé* + N?6%). 19
5.9 2~ ( + V0T ) (19)
To lowest order, itis just /2, which we could have guessed,
setting in the Hamiltonian L? = (1/21) L. Acknowledgements
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