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Resonant N&™ —Yb3" energy-transfer in the Nd and Y co-doped S1.6Bao.+(NbOs)2 (SBN) crystal is investigated by using pulsed

and steady state laser spectroscopy. Spectroscopic data revealed that the energy transfer occurs via a non-radiative process. The efficier
of this energy transfer was estimated from spectral data in around 35%. Back energy transfer is not observed at the 295-415 K temperatur
range. A marked reduction in the luminescence intensity of'Yimns directly excited into thei?F7/2 —>2F5/2 transition, taking place

at around 345 K, is due to the ferro to paraelectric phase transition in SBN. This thermal behavior, which is not clearly manifested when
Yb3* ions are excited via Nt ions, has been explained in terms of structural changes taking place around*thel® when the crystal
becomes non-polar.

Keywords:Energy transfer efficiency; luminescence; spectroscopy; SBRY Ndb®*; phase transition.

La transferencia de endegresonante Nti© —Yb** en el cristal Sf.6Ba.4(NbOs)2 (SBN) codopado conYh™ y Nd** es investigada
mediante espectroscopiskr pulsado y estacionario. Datos especioisos revelaron que la transferencia de el@eogurre ¥a un proceso
no-radiativo. La eficiencia de esta transferencia de éadog estimada de los datos espectrales en alrededor de 35%. La transferencia de
enerda a la inversa (YB" —Nd*") no es observada en el rango de temperaturas 295-415 K. Una marcadateduick intensidad de
luminiscencia de los iones Yb directamente excitados dentro de su traﬁ$i8F7/2 HQFs/Q, ocurriendo en alrededor de 345 K, es debida

a la transidbn de fase ferro a parasitrica de SBN. Esta conduci@rinica, la cual no es claramente manifestada cuando los ion¥s Yb

son excitadosfa los iones N&*, ha sido explicada ef@tminos de cambios estructurales ocurriendo alrededor de los ioféscvando el

cristal se convierte en no-polar.

Descriptores:Transferencia de enday luminiscencia; transiciones de fase; espectroscopia; SB;Netb> .

PACS: 42.55.Rz; 42.62.Fi; 42.70.Hj; 42.70.Mp

1. Introduction depending upon its stoichiometry (0:22%<0.75) [3,4] or its
doping [5]. Therefore, it is expected that the good properties

There is an increasing interest in nonlinear host crystals fopltogether of YB* and Nd'* ions in Strontium Barium Nio-
trivalent rare earth ions, since they emerge as promising mgzaticould lead to an efficient Yb laser oscillation under
terials for tunable and pulsed coherent light generation in th&ld”" pumping via energy transfer. According to all these
visible region. So it is the case of ¥b-doped nonlinear Perspectives, we have 3|nvest|gated the spectroscopic prop-
crystals, which have interested to a great extent as potentigfties of the N&* —Yb®* energy transfer in a congruent
solid-state materials emitting in the green by self-frequency>.6Ba.4Nb>Og crystal (abbreviated SBN) as well the ef-
doubling (SFD) of its infrared laser line«(1 um) [1]. In fect of the phase transition on the luminescence of'Yions
addition, Nd*-doped non-linear crystals can be SFD andSensitized by N ions.

self-frequency sum mixing diode pumped solid state lasers The SBN crystal has a tungsten bronze-type tetragonal
emitting coherent radiation in the blue and green [2], becausgiyycture with a P4bm space group [6]. Its general formula
of the multiple pump channels of Nd ion. is (A1)1(A2)2(B1)2(B2)sOs. The Al sites, with G sym-

Strontium Barium Niobate SBa,_,Nb,Og crystal isa metry, are partially occupied by 3r ions up to 82% for
very interesting optical material because of its high nonlinear: = 0.75 [6]. The A2 sites, with Csymmetry, are par-
coefficients make this crystal as an excellent (self or externafiially occupied in a disordered way by2Srand B&* host
frequency converter [2]. It is, moreover, a ferroelectric crys-cations up to 85% for: = 0.75 [6]. The distorted octa-
tal with a Curie temperature (Jranging from 325 to 470 K hedral sites, B1 (& symmetry) and B2 (€ symmetry),
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are completely filled by Nb" cations and have sixfold coor-
dination [6]. In SBN:Nd*:Yb3+ crystals Nd* ions occupy
A2 sites [7], whereas that ¥ ions are located in the four
different lattice sites (A1, A2, B1 and B2) [8].
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2. Experimental details
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Congruent SBN crystals doped with ions Nd(0.2 at.%
relative to NB*) and/or YB* (1 at.% relative to Nb™)
were grown from fluxes consisting of mixtures of Barium
and Strontium tetraborates. The concentration ofNand
Yb3* ions incorporated inside the crystal was determined *
by Total X-Ray Fluorescence Spectroscopy. Hereafter, the
crystals studied: SBN:Nd (0.2 at.%), SBN:YB* (1 at.%) : i
and SBN:Nd*(0.2 at.%):YB*(1 at.%) will be referred as 850 900 950 1000 1050 1100 1150
SBN:Nd, SBN:Yb and SBN:Nd:Yb, respectively. Wavelength (nm)

Emission ra were recor xciting with . .
ssion spectra were recorded by exciting aFIGURE 1. Emission spectrum of SBN:Nd:Yb excited at 805 nm.

0.6-W fiber coupled 805 nm laser diode. The emitted light. " . : _
Th t displ level d fNand YB'*+
was focussed onto a SPEX 500 M monochromator, and them Seé?\lsl[eg] ISpiays an energy level diagram ofen 1ons

detected by a calibrated Germanium detector.

Luminescence decay-time measurements were made by The4F3/2 _>4|9/2 emission displayed in this figure was
exciting with an Optical Parametric Oscillator (OPO Quantayecorded from the SBN:Nd singly doped crystal excited at
Ray), which provides 10-ns pulses with an average energy o5 nm. The spectral overlap between the sensitizer emis-
2mJ, and then detected by means of an AsGaln cooled photgion and acceptor absorption is a necessary condition for the
multiplier. An EG&G lock-in amplifier was used to improve gccurrence of the energy transfer. Consequently, the pres-
the signal to noise ratio. Decay-time data were processed lynce of Nd+ «Yb3+ back energy transfer by means of
a Le Croy model LT 372 digitizing oscilloscope. YB3 (2F; 5), NABT(*1g/5) —YD(2Fs/5), Nd(*Fs),) cross

High temperature measurements were carried out byelaxation can be unable due to the vanishing overlap be-
placing the crystal over a small oven platform, so that theween the YB™ emission and N#" absorption [11], as
crystal temperature could be increased at a rate of 1 K/3 mighown in the inset of Fig. 2. The ¥b (2|:5/2 _>2|:7/2)
from 293 to 415 K with a stability of 0.1-0.2 K. emission displayed in the inset of Fig. 2 was obtained form

the SBN:Yb singly doped crystal excited at 903 nm.
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3. Results and discussion
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Figure 1 shows the room temperature emission spec- &
trum obtained in the SBN:Nd:Yb codoped crystal ex-
cited at 805 nm into the'ly, —*F;/, transition of
Nd3+ ion. It consists of broad emission bands correspond-
ing to the Nd*(*F3/2 —*lg/ and*F5,, —*l11,5) and
Yb** (2F5,2 —2F;/2) emissions. The Nt~ emission from
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the *F3/, metastable state involves a non-radiative decay f “:_sz—’ZFs,z (Yb™)
from the’F; ), state. Considering that ¥b ions cannotbe € | | \ /. \ -

excited at 805 nm (see Yb absorption spectrum in Fig. 2),

then the YB* emission is produced through the Ndexci- J .. | D
tation by means of energy transfer. A schematic diagram of 840 880 920 960 1000 1040

energy positions for the differeAt*!L ; states of Né* and
Yb3* ions in SBN [9] is portrayed in the inset of Fig. 1 for

the sake of clarity. FIGURE 2. Overlap region between the Ritl emission (solid line)
The N&#* to Yb®* ion energy transfer is expected to oc- and the YB* absorption [10] (dashed line) in SBN. The inset

cur in SBN:Nd:Yb since the Nt (*F;3,5 —*lo/,) emission  shows spectra of Nd™ absorption [11] (solid line) and Y& emis-

overlaps the YB" (°F;» —2F;,) absorption [10] as can be sion (dashed line) in SBN.

appreciated in Fig. 2.

Wavelength (nm)
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£ 101111 S B L B B B B B B B b) Back energy transfer N+ «—Yb3+

The possibility of Nd+ «—Yb3t back energy transfer in
SBN:Nd:Yb has been investigated by analyzing

(i) the decay-time of YB" Iuminescence for the
(SBN:Yb) singly doped and (SBN:Nd:Yb) codoped
crystals and

0.10 |-

(i) the emission spectrum obtained under¥excitation
for the codoped crystal:

Emitted intensity (arb. units)

o
o
-

(i) The time dependence of the ¥bemission, ob-
tained under N#" excitation at 870 nm, exhibits
an excitation rise at a rate in accordance with
excitation via energy transfer from Rd ions.
After this initial rise, related to théF;,, state
(Nd3T) fluorescence lifetime, the Yty lumines-
cence presents an exponential decay-time. Fig-
ure 4 shows room temperature b lumines-
cence decay-time curves (monitored at 1004 nm)
obtained for the SBN:Nd:Yb and SBN:Yb crys-
tals exciting Nd* ions up to their'F; , state
(870 nm) and YB" ions up to thei’F;,, state
(903 nm), respectively. In the crystal codoped
the decay-time curve shows a rise time of about
160 us, followed by an exponential decay with
a lifetime of about 625:s, essentially the value
obtained for the SBN:Yb singly doped crystal ex-
cited at 903 nm.

| |
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FIGURE 3. Time evolution of the N&" emission {Fs/2 —*111/2)
obtained for the crystals SBN:Nd and SBN:Nd:Yb excited at
870 nm.
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(i) The emission spectrum obtained in the codoped
crystal under YBt ion excitation (at 903 nm)

L 1 " 1 L 1 " . .
0 1000 2000 3000 4000 shows only the broad emission band character-

istic of Yb?* ions without any contribution from
Nd3+ ions even at high temperature (415 K) as
can be appreciated from Fig. 5.

Time (us)
FIGURE 4. Time evolution of YB* emission (1004 nm) obtained

for the SBN:Nd:Yb and SBN:Yb crystals excited at 870 and 903

nm, respectively. . . .
P Y From these two results, (i) and (i), it can be inferred that

Figure 3 shows the room temperature 3Nd back transfer from Ybt to N&B+ ions is not important. As
(4|:3/2 H4|11/2) emission intensity (monitored at 1060 nm) expected, the absence of this back transfer must be a conse-
versus decay-time for the SBN:Nd and SBN:Nd:Yb crystalsquence of a vanishing overlap between the’¥kemission
excited at 870 nm into th#ly , —*F3 , transition of Nd+. and Nd&* absorption, as shown in the inset of Fig. 2. Taking
It can be observed that by co-doping the SBN:Nd crystal withnto account that N&" «—Yb?* back transfer can be con-
Yb3+ ions an increase is observed in the decay rate of théidered negligible in comparison to the Nd—Yb** direct
Nd3+ ion emission. This fact indicates that Nd —Yb3+  energy transfer, then the Rid —Yb** energy transfer effi-

energy transfer is taking place via a non-radiative process. ciencyn; can be estimated from the emission spectrum dis-
|  played in Fig. 1 using the following equation [9]:

1 1150 nm
~ 850 nm (1)
"t Bag ; +Ba; , L 1150 nm . 1150 nm :
1+ 132152) 1 T MNd\ + 1 T A)d
( A AV R Ssofnm wa(2) e 850j1;m vo(Y)
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Wavelenght (nm) FIGURE 6. Temperature dependence of the>Ybemission inten-

sity after excitation of the Yb">F;, level at 903 nm and Nt
FIGURE 5. Emission spectra of SBN:Nd:Yb excited at 903 nm at 4|:3/2 level at 870 nm.

room temperature (solid line) and 415 K (dashed line). The spectra

have been normalized to the lower energy emission band peaking

at 1074 nm. symmetries, respectively [8,12]. According to one of the

. ) . models used to describe the non polar phase [6], theAA
So that a net transfer efficiency of about 35 % is obtained, 4 B sites adopt G,, Cs, and Dy, Symmetries, respec-

aﬁgr qsing the branching ratios previously reported for thecively, while the B, site remains in its Coriginal symmetry.
Nd** in SBN (@LIW2 = 0.396, 54I11/2 = 0_-5*_5413/2 =01 Taking into account that the & and Dy, groups have inver-
and 3,y , = 0.004 [11]), and the intrinsic fluorescence sjon symmetry, then the ¥ty ions located in the Aand B
quantum efficiencies of both Nd (hng =~ 0.8 [9]) and  sites produce very weak emissions (magnetic dipole allowed
Y3t (nyp =~ 0.9 [9]). transitions) in the paraelectric phase. The quenching of the
luminescence of Yb"(A;) and YB*(B,) ions in the para-
(c) Luminescence of SBN:Nd:Yb along phase transition  electric phase induces a strong decrease in the Yimines-
cence above I Thus, the luminescence remaining in the non
In order to investigate the effect of the phase transition on th@olar phase can be attributed to the’YfA,) and Y&+ (B»)
luminescence of Yb™ ions in the SBN:Nd:Yb crystal, the ions [8,12]. Therefore, the room temperature luminescence
spectral evolution of theitF; , —?F;/, emission, exciting of Yb®* ions in SBN:Nd:Yb (after YB" excitation at 903
at 870 nm ‘(Fg/g state of Nd*) and 903 nm 5(F5/2 state of nm) is produced by these ions located in the four different
Yb3+), has been systematically investigated as a function ofattice sites (A1, B1, A2, B2).
temperature from 293 to 415 K. Each emission spectrum was
recorded after a sufficient time to ensure that a steady state In the paraelectric phase those fbions located in
temperature was achieved. Figure 6 displays the variatiothe A1 and Bl sites, which are occupying centrosymmet-
of the YB**+ emitted intensity (measured as the area underic positions, become dead sites, so that their emission
the emission spectrum) as a function of crystal temperatures quenched [8,12]. On the other, the luminescence of
after 870 and 903 nm excitation. The ¥boverall lumines-  Yb3* ions excited via N&" ions (at 870 nm) dose not
cence is reduced with temperature increasing. It can also t&how such abrupt intensity decrease of the3¥tkemis-
noticed a marked reduction in the luminescence intensity o$ion in the ferro to paraelectric phase transition. This fact
Yb3* ions taking place at around 345 K, when these ionssuggests that the occupancy of 3¥bions sensitized by
are excited at 903 nm. The marked intensity decrease dfid*t ions could be predominantly restricted to a less num-
the Yb** emission can be attributed to the presence of théer of sites in SBN (A2 and B2), and so their lumines-
ferro to paraelectric phase transition. This thermal behaviocence is weakly sensitive to temperature changes around
of the YB*t luminescence, which is not clearly manifested phase transition. Anyway, it would be necessary to ex-
when Yt ions are excited via NIt ions, at 870 nm, has plore the possibility of following the ferroelectric phase
been explained invoking the sites occupied by*¥lions in  transition through fluorescence spectroscopy under high
the ferroelectric (polar) phase and how the local structure opressure at low temperature in the SBN:Nd:Yb crystal,
such sites is modified in the paraelectric (non polar) phasesince this spectroscopic technique allows for the analy-
In the polar phase the Yt ions occupying the A As, B; sis of the local structure of the different cationic sites of
and B, cationic lattice sites have,GC,, Cy, and G local  Yb3* both in the ferroelectric and paraelectric phases [12].
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4., Conclusions crystal is strongly related to the distribution of %bions
among the four available cationic sites:;,AA,, B; and
Resonant N&" —Yb®* energy-transfer takes place in the g, viterbium ions excited up to the#s /2 state are dis-
Nd** and YB'* ion co-doped Sy6Bao.4«(NbO;)2 (SBN)  tributed among these four sites, so that their luminescence
crystal as a consequence of a significant spectral overlap. Thgatures are very sensitive to phase transition. This is not
Nd3+ —Yb3* energy transfer occurs via a non-radiative Pro-the case of Ybtions sensitized by Nt ions, whose occu-
cess. The efficiency of this energy transfer was estima‘teéamy could be restricted to a less number of sites in SBN,

from spectral data and resulted in being about 35 %. Backnd so their luminescence is weakly sensitive to temperature
energy transfer is not observed at the 295-415 K temperatutghanges around phase transition.

range. The ferro to paraelectric phase transition (at around

345 K) is clearly manifested in the SBN:Nd:Yb codoped

crystal through a marked reduction in the*fduminescence ~ Acknowledgments

intensity under direct excitation of the ¥b ions at temper-
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