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The optical properties of exciton polaritons in one-dimensional photonic crystals are theoretically investigated. The periodic photonic struc-
ture is formed by two alternating layers, namely a local dielectric layer and a thin semiconductor one which is characterized by a nonlocal
excitonic dielectric function. We calculate reflectivity spectra for one-dimensional MgO-CuCl photonic crystals, which exhibit a rich res-
onance structure because of the optical manifestation of size-quantized excitons. We study the changes in the resonance structure as tl
thickness of the thin semiconductor layer is varied. It is found that odd quantized-exciton modes are well manifest in the optical spectra
in comparison with even states. We have also investigated the effect of both homogeneous bulk damping and interface-induced broadenin
upon the reflectivity resonances. The broadening due to interface disorder is calculated with the self-consistent Green’s function method.

Keywords:Exciton; semiconductor nanostructures; photonic crystals.

Se estudian faicamente las propiedadégpticas de polaritones exaiticos en cristales fohicos con periodicidad unidimensional. La
estructura petidica esh formada por dos capas alternantes, a saber, una capetidésl local y una capa semiconductora delgada que se
caracteriza por una furmn dieEctrica no local. Calculamos espectros de reflectividad para un cristal unidimensional de MgO-CucCl el cual
exhibe una estructura de resonancias debido a la manifastaatica de excitones cuantizados en tamaEstudiamos los cambios en la
estructura de resonancias conforme el espesor de la capa semiconductora delgadaSe eaconér que los modos impares de excitones
cuantizados se manifiestan bien en los espeéiptisos en comparaan con los estados pares. Hemos investigado tamél efecto que

tiene tanto el amortiguamiento de bulto horango como el inhomameo inducido por las interfaces, sobre las resonancias de reflectividad.
El ensanchamiento debido al desorden interfacial se calcula coetetlmautoconsistente de la fumside Green.

Descriptores:Exciton; nanoestructuras semiconductoras; cristalénfoos.

PACS: 71.35.-y; 78.20.-e; 78.66.-w; 78.67.-n; 78.67.De

1. Introduction semiconductor film thickneds [1, 2,6-8]. In both regimes,
the exciton quantization is responsible for the appearance of
resonances in the optical spectra. In the majority of the in-

The quantization of excitons in different semiconductor het'vestigations the quantum-well or thin-film interfaces are as-

erostructures has been intensively investigated during the 18§}, e 1 be flat. However, realistic heterostructures have in-

thr'ee decade_s (seef, for .exampli., the reV_'eWS [, 2])('1 Thergerent roughness, which produces fluctuations in the exciton
exist two regimes of exciton confinement: strong and weak.,fining potential and, therefore, a substantial increase of
confinement, which depend on the relation between the %50th the inhomogeneous broadening;, and the shiftAw

citon Bohr radiusaz and the sizé, of the semiconductor of exciton resonances [8-13]. So, in comparing theoretical

med<|um. |r:‘ the q.uarr:tunr:.w?:l (stroni conpnement) re9IMespectra with experimental results, it is necessary to take into
ap S I, whereas in the thin-film (weak confinement) regime oo, and A,

ap < lg. In quantum wells, the motion of the electron and

the hole are separately quantized [1,3-5], whereas in the thin- Among the large variety of heterostructures, the so-
film regime their relative motion is the same as in the bulk ex-called photonic crystals (PC) are of great interest at present.
cept for a small distortion near film boundaries, which givesThe use of semiconductors as inclusions in such periodic
rise to exciton-free layers of thickneés~ ag. So, in the structures can affect their spectral and optical properties
latter case, the center-of-mass motion of the exciton is quamear exciton resonance noticeably. As it is shown in the
tized in an effective length s = [, —2[ smaller than the real works [2,14-18], in the case of dielectric-semiconductor PCs
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with weak exciton confinement, slightly-dispersive photonic ~ Consider a monochromatic electromagnetic wave nor-
bands appear at the eigenfrequencies of the size-quantizedhlly incident on the sample surface at= —I;. The
exciton states. Besides, the photonic band structure exhibitdectric field E; of the incident electromagnetic wave is
anticrossing phenomena as a result of the coupling of theriented along thg-axis. Thus, the electric field in the space
photon-like mode with the size-quantized excitons. These-occ < z < —[; can be written as

changes in the photonic band structure lead to a complicated , ,

resonance structure of the optical spectra. Eopi(2) = Ee'tiGHla) 4 B emiai(zHla) (1)

f In_ this W(.)rk we s_hall mve_stlgat_e the optlcal_ mani- where E; and F,. are the amplitudes of the incident and re-
estation of size-quantized excitons in resonant dlelecmcflected electromagnetic waves, — /2 (w/c) is non-zero
semiconductor photonic crystals with one-dimensional pe,, ' ¢

riodicity, i.e. in PCs composed of alternating dielectric and 'Elie) gg{gfn(g;er:tegifuthe ﬁarsevﬁgtoﬂ*e Lsctheisp?r:gnltitl\r/::yvg
semiconductor thin films. In Sec.2, we shall calculate th my d ye 9

reflectivity for the dielectric-semiconductor PC with theqomty for vacuum. In writing (1), we have omitted the factor

transfer-matrix method and a nonlocal model for the dielec-GXp(fm)’ describing the dependence of the electric field on
imet.

. . . [
tric function of the semiconductor layers. Results for the re- e e . . .

flectivity spectra of MgO-CuCl PCs will be presented and The electric field inside the substrate is written in the form
analyzed in Sec. 3. Here, we shall study the effect of the Bou(2) = BpetatG=NA) )
semiconductor-film thickness upon the resonance structure

of the reflectivity. Besides, applying the method of the self-Here, ¢, = VEs(w/c) ande, is the permittivity of the sub-
consistent Green’s function, we shall calculate the inhomostrate.

geneous broadening,,;, and shiftAw of exciton resonances Inside then-th local dielectric layer (Fig. 1), the electric
in thin films. The changes produced by the inherent interfield can be expressed as

face roughness in the reflectance spectrum for PCs are also ‘ ‘

analyzed. Epn(z2) = Efettaz=2ntla) 4 pe=idalz=2n)

n=1,2,..,N+1. (3)

2. Theoretical formalism Here,z, = (n — 1)A, ¢4 = \/€4(w/c), ande, is the permit-

2.1. Optical functions tivity of the local dielectric layer.

Because of the normal incidence of light on the het-
Let us consider a one-dimensional photonic crystal formedrostructure, we can write the electric field in th¢h semi-
by N unit cells. Each cell contains a dielectric layer (D) conductor layer (Fig. 1) as a combination of transverse bulk
and a semiconductor one (S). The whole heterostructure cofrodes [19]:
tains an additional dielectric layer D as (DS)(DS)...(DS)D 5
and overlies a local supstra_mte. The axiss assumed to bg Esn(z) = Z{A:keiqk(z—zn) + A:lke—iqk(z—zn—ls)}
parallel to the growth direction, and the sample surface is at
z = —lq, Wherel is the thickness of the dielectric layers D.
The interface between the heterostructure and the substrate is
located at: = NA, whereA is the width of the bilayer DS
(see Fig. 1).

k=1
n=1,2,..,N. (4)

Here,l; = A — 1,4 is the thickness of the semiconductor layer,
q1, g2 denote the wave vectors of the transverse bulk exciton-

polaritons and are given by the solution of the equation
X
A 5  w?

q = 075(QZ»W) ;
D S D

€(QZaw) =€ +47TX(QZaW) ’ (5)

E A E £ IS the high-frequency dielectric constant, agf.,w)

n nk n+1 ¥4 is the excitonic contribution to the dielectric susceptibility,
E

n
Id

which is given by

nk n+1 w? /Am

X(QZ) OJ) = w%

. 6
—w? + Dq? — iwys ©)

7z 4+ 7 | z Here,wr stands for the transverse resonance frequengy,
S # z +1 v . ) . : g
is a measure of the oscillator strengthy, is the exciton re
FIGURE 1. Scheme of the 1D dielectric-semiconductor photonic laxation frequency, and = hwy /M is the parameter de-
crystal. scribing the spatial dispersiod/ denotes the total mass of
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the exciton). The Eq. (5) for the wave vectgrhas four so-  we obtain a relation between the amplitudgs, ,, £, , and

lutions, namely the amplitudes;+, E;,:
1[0 w? Ef N Ef
q12 = {2 |:FB + 500072 ( E;J,_l =M E; ) (14)
1/2

2 1/2 where M is the transfer matrix, which is straightforwardly
w? 40?20* M I ; .
4+ {F2B _ 5002} +— , (7)  calculated [2]. In determining the optical properties, we also
¢ hwre use the boundary conditions at the sample surface 1),
and at the interface between the dielectric-semiconductor het-

434 =7 q1,2; (8)  erostructure and the substratet NA):
whereg; andg, are the square roots with positive imaginary Eevt(—=la) = Ep1(=la)
part Sq; > 0, Sg2 > 0), andl' is defined as , ,’
1 Eewt(_ld> = ED,I(_ld) ) (15)
2 2 2 .
FB = 5 [w —wr + zw’ys] . (9) ED,N-H(NA) _ Esub(NA)
Acoording to Egs. (4)-(6), the response of the semiconductor E’D,NH(NA) = E.,(NA). (16)
layers is assumed to be bulk-like. Hence, the excitonic polar- _ _ _
ization P, in the semiconductor layer of theth cell can be The relationship between the amplitudes of the elec-
written as tric field in the first and last local dielectric (D) layers
, is established by using (14) iteratively. Afterwards, the
_ reflectivity R, transmissiori” and absorptio4 are calcu-
- kZ_l X\ ks lated from Egs. (15) and (16):
. . 2 2
% {A:erezqk(z—zn) + A;keflqk(zfznfls)}‘ (10) R= ‘ET’ _ 4t E A=1-R-T. (17)
‘ g | Ei| .

In order to calculate optical functions, we should deter- .
mine the amplitudes of the electromagnetic fields inside alR-2. Inhomogeneous broadening

the layers by applying Maxwell boundary conditions: theThe behavior of excitons in semiconductor thin-film het-

continuity of the tangential components of the electric and
magnetic field at all the interfaces= z, andz = 2, + L.. erostructures is generally studied by assuming that the thin-
These conditions can be written as follows film mtgrfaces are flat. However, Fhe inherent surface rough—
ness yield fluctuations in the exciton center-of-mass confin-
) ing potential and, consequently, a considerable increase in the
inhomogeneous broadening,;, as well as a shiff\w of ex-
=Fg,(zn), (11) citon resonances. Both quantities,;, and Aw, depend on

)
ED,TL (zﬂ) s
P ; I the frequency and, hence, can modify optical spectra [23,24].
sanlzn +1s) = Ep g (zn +1s) In the majority of works [20, 25-29], where the effect of the
Eg ., (zn+1s) = ED 1 zn+ 1) (12) exciton scattering by the disordered interfaces on the optical

response of thin films has been considered, models without
The continuity of the derivatives of the electric field strict derivation were employed. A Green’s function formal-
in (11) and (12) follows directly from the Faraday law, ism to calculate the inhomogeneous broadening and shift of
B(z) = (Z'C/UJ)E/(Z), in a nonmagnetic mediunt = B). exciton resonances in the thin film regime was proposed in
Ref. 12. In this subsection, we shall revise such a formal-
The Eq. (12) are not enough for determining the am4sm and apply it to one-dimensional photonic crystals with
plitude of the additional electromagnetic waves that aresemiconductor thin films. In other words, we shall calculate
generated in the nonlocal semiconductor. Therefore, wéhe contribution of the interface disorder to the relaxation fre-
should apply additional boundary conditions (ABC). In the quencyy, appearing in the resonant exciton susceptibility Eq.
case of semiconductors characterized by excitons with ver{6) of each semiconductor thin layer.
small Bohr radius [19-21], it is appropriate to apply the  Consider an excitonic film occupying the space
Pekar ABC [22]: The vanishing of the excitonic polarization {(z) < = < I, where¢(z) is a random function, represent-

at the boundaries of the semiconductar, ing the surface profile of the film. For simplicity and with-
out loss of generality, the surface roughness is assumed to
P.(z,) =0, P,(zn,+15)=0. (13)  be one-dimensional. We also suppose that the roughness is a

stationary random process characterized by the properties:
Employing the expressions (3), (4) and (10) for the polari-
tonic fields and the boundary conditions (11), (12) and (13), ({£(z)) =0, (E(x)€(x")) = CW(jz —2']), (18)
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where the angular brackets denote statistical average over thiere, the arrows over the derivatives denote the direction of
ensemble of realizations of the functigfw), ¢ is the root the operationi.e. — (—) means derivation of a function writ-
mean square of the roughness height 8i¢z|) is the cor-  ten on the left (right) o¥/ (ry).

relation function which has a typical scak of monotonous In order to calculate the exciton spectrum in the
decreaseR, is the correlation radius). Thus, one of the thin- surface-disordered thin film, we should average Eq. (23)
film surfaces is randomly rough, whereas the other one isfor the Green’s functionG. After applying the tech-
for simplicity, flat. Such a system is physically equivalent tonique proposed in [31], we get an equation for the aver-
a film with both surfaces being rough, statistically identical,age Green's functionG) within the self-consistent Born
and not intercorrelated [30]. We shall also assumethas  approximation [12, 32], which can be written as

much larger than the r.m.s. heightind the exciton Bohr ra-

diusap (R. > ¢, R. > ag), i.e. the rough surface is rather (G) =Gy + Go(V (G)V)(G), (25)
smooth. Besides, we shall consider the case when the wave-
length of the incident light is much larger tharfg;{ < 1). WhereV(rl) is an integral operator of the random scattering
The Hamiltonian for the translational motion of the potential V(r1). The solution of Eq. (25) within the polar
exciton can be expressed as approximation [32] is given by
H i V24+ E,+E! (19) 7
2M 9T (Glz—1a'y2,2)) = / e Gk 2, 2))
where, E7 is the ground-state eigenenergy for the relative e 27
motion, M = m. + my is the total exciton massy,

. ’
and my, are, respectively, the effective electron and hole x expliky(z —a27)],  (26)

masses, and, is the energy gap between valence and con-

duction bands. The spectrum for the exciton in a surface\-"'here
disordered film can be calculated from the retarded Green’s Go(ka; 2, 2")
functionG(r, 1), which satisfies th t (Glkai2,2)) = e .@
unctionG(r, r’), which satisfies the equation 325 1= k. cot(kaly) K(ks)
; '} A I
B+ ihvg — H|G(r,x') = 6(r —1'). (20) Here, k. is the transverse component of the wave ve&tor

with “no escape” boundary conditions: and is defined by the expression:

G(z=¢&(z)) =0, G(z=15)=0. (21) oM 1/2

kz(kl) hw — hU)T + Z.hl/O] - k?ﬁ ) (28)

= |5 |
In Eq. (20), £ stands for the total exciton energyy, is h?

the homogeneous bulk damping, and= (z, z) is a two- wherelw — E, andwr — (E, + EI)/h is the Ls exciton

dimensional vector, indicating the exciton center-of-mass co- .
ordinates. For the case of a rough surface, which is suf-csonance freque_ncy. Due to the self-consistency .Of our ap-
ficiently smooth, we can expand Eq. (21) up to first Orderproach, the quantityC should be calculated from an integral

in (). We get an approximate boundary condition: equatlon_that follows straightforwardly from Eq. (25). Such
an equation has the form
oG

G(z=0) +&(x) v =0, (22) Kk /°° dk!,

=0 D= | Wk — k) DR KL, (29)
7
Now, applying the Green’s theorem, we can establish a
relationship between the Green'’s functioh perturbed by where

the surface disorder, and the Green'’s functigfor the ideal

— 00

thin film with £(z) = 0. This relationship has the form of a A(k) = ¢* cot(kls) (30)
Dyson-type integral equation: v 1— K, cot(kLls) K(KL) ’
G(r,x") = Go(r,1') and W(k,) is the Fourier transform of the correlator
o0 W(|z|) (18). _ o
n / dz1Go(r,11)V (r1)G(r1, 1) , (23) In the case of an ideal thin filng (= 0),

(G(ks;2,2")) = Go(ku; 2,2")
where the kernel (r;) is the exciton center-of-mass scatter-
ing potential and, in the linear approximationgnhas the and, hence, exciton resonances appear at frequencies satis-
form fying the relationk,(w,)ls = nr (n = 1,2,..). How-
- ever, as it follows from Eq. (27), such resonances will be
9 (24)  broadened and shifted by the exciton center-of-mass scatter-
0z ing from the thin-film rough surface. In order to determine

B2 )

V(ry) = mﬁ(l'l) 9
0

zZ1= 21:[)
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the inhomogeneous broadening, as well as the shifdw  used within the framework of the formalism developed in pre-

of the exciton resonances, we should find the poles of thgious section for calculating optical spectra. Indeed, since

function(G(k.; z, 2')), i.e. we have to solve the equation the frequency dependence of the inhomogeneous broaden-
ing v;,n(w) and shiftAw(w) is quantitatively correct in the

tan(k.ls) = k.K(ks) - (31)  neighborhood of the size-quantized exciton resonances and
exciton effects on optical spectra are negligible far from res-
Atvaluesk.ls ~ nm, Eq. (31) can be rewritten as onances, we can use them as a frequency-dependent constant
9 damping and a resonance shift in the exciton susceptibility.
k2 — 2 k2K (k) — <”7T> =0. (32)  So, comparing the left-hand side of Eq. (33) with the denom-
ls ls inator of the resonant exciton susceptibility (6), it follows that

the inhomogeneous broadening,;, is related with the con-

Using (28), the equation for the poles of the functlonStant dampingy, as

(G(ks; 2, 2')) acquires the form

Vs = 2(”0 + Vinh)7 (37)
B2 nr)? . ) .
hw — hwp — AN and, moreover, the exciton resonance is shifted by the quan-
s tity
ﬁ2k2 Awr = 2Aw. (38)
501 2K (k) =0. (33
Hence, the imaginary and real parts of the last termin the left3. Results
hand side of Eq. (33) determine the inhomogeneous broaden- _ _
ing vi,,, and the shiftAw of exciton resonances: 3.1. Effect of semiconductor-layer thickness

The theory developed in the previous section is valid for
semiconductors with very small exciton Bohr radiys. An
N example of such a kind of semiconductor is CuCl, which pos-
_ 2 sesses a large binding energy {90 meV) and a Bohr radius
Awlw) = Ml [k Klke)] (35) ap ~ TA. Therefore, the thin-film regime can be observed up

According to the formulas (34) and (35), the surface-10 @ rather small thickness,, of the order of a few nanome-
induced broadening;,,,(w) and shiftAw(w) of exciton res-  ters. As it is known [19-21, 25, 26], the presence of ultra-
onances depend on the statistical parameters of the surfaBarrow exciton-free layers in CuCl thin-film heterostructures
disorder, the exciton characteristics and the average thickne§8n be neglected in interpreting their optical spectra.
of the film ;. So, the effect of surface roughness becomes Now, let us calculate the reflectivity of 1D dielectric-
more important as the thicknessdecreases. Besides, the semiconductor PCs, having a unit cell with CuGl layer)
frequency dependence of,, andAw is determined by the and MgO ( layer) inclusions. The CuCl parameters used
ratio of the variation scales/R. and \/QM(VO + Vinn) /R are [17]: the exciton maskl = 2.5mq (my is the free elec-
of the functions)/\}(ka:) (29) andAK(km) (30), respective]y_ tron maSS)th = 3.2022eV, hwy, = 3.2079eV for the trans-

In calculating optical functions, we shall neglect the rel- verse and longitudinal exciton frequencies, respectively, and
atively small energy associated with light scattered in direc high frequency permittivity . = 5.0. The permittivity for
tions different from those of reflection and transmission [33]MgO used isz4 = 3.1. The thickness of the semiconductor
because;¢ < 1. Within this approximation the average layer for each sample is, correspondingly= 1054 (Fig. 2),
reflectivity R and transmissivityl’ can be calculated from 1304 (Fig. 3), 1654 (Fig. 4) and the lattice constant is
boundary conditions for the exciton-polariton fields, satisfy-A = 8134. In the calculation we have considerad= 200
ing Maxwell equations with the ensemble-averaged excitoni¢!nit cells and a very small damping = 0.001meV. The

Vinh (W) = — —— S[k2 K(k,)], (34)

Ml

polarization medium outside the dielectric-semiconductor PC is assumed
to be vacuum.
P(z,2,w) = —2|M|2/dx' The panels (c) in Figs. 2, 3 and 4 exhibit the reflectivity
spectra for the dielectric-semiconductor PCs near the exciton

resonance frequency. In order to interpret them, we show the
x /dZ'<G(|I —a'f;2,2"))E(2',2',w), (36)  dispersion curves (panels “a”) for the transverse bulk exciton-
| polariton modes, which are calculated from Eq. (7), and the
where)M is a measure of the interband transition dipole den-bulk photonic dispersion for the PC in the narrow frequency
sity, and the average Green functi6f(|z — 2'|;2,2’)) is  range of the exciton resonance (panels “b"). The latter bulk
given by Egs. (26) and (27). Hence, for normal incidencedispersion is obtained by the standard way [2]. That is, we
of light the formulae (34) and (35) should be evaluated atmodel the real finite heterostructure with a large number of
k., = 0 [8-13]. Nevertheless, these formulae can also beells (V > 1) as an infinite periodic one.
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Substituting (14) into (41), the later equation can be rewritten

in the form
+ +
M(gg ):aKBA( gg ) (42)
< J
E 0o3f b 1 The dispersion law for the bulk electromagnetic modes in the
§0-2 i 1 PC is obtained by requiring that the determinant of the ma-
x 01 F 1 trix for the homogeneous algebraic system of equations (42)

08 be equal to zero:

Y
o

M —ZeEsh =0, (43)

o
o

Reflectivity
o
»

0.0
3.190 3.195 3.200 3.205 3.210 3.215 3.220 3.225 3.230

Frequency(eV)

whereZ is the unit matrix. In the calculation of bulk exciton-
polariton (panels “a”) and photonic (panels “b") dispersion
curves the exciton damping was neglected £ 0). As it
was shown in Ref. [17], because of exciton-photon coupling

corresponds to the exciton-like (photon-like) mode. Polariton dis- n the photonlc crystal, the bulk exciton-polariton dispersion
persion (b) and reflectivity spectrum (c) for a MgO-CuCl 1D pho- fpﬂllts. 'nt“O ”bands separated by S.ma” ga.ps (C(?mpare par_1e|s
tonic crystal, which were calculated with a CuCl-layer thickness & With “0”). These bands are slightly dispersive and their

I, = 1054 and a lattice constamt = 8134. The points in  €nergy values coincide with the eigenfrequencies of the size-
panel (a) indicate the eigenfrequencies of the quantized excitongjuantized exciton:

with g1ls = nm,n=1,2, ...
— o _h (nm ’ (44)
Wn = Wr oM ls )

wheren = 1,2,.... Also, there is anticrossing of such
bands and the upper (photon-like) branch of the bulk
exciton-polariton § = 2 in panels “a”). As is seen in
Figs. 2 to 4, the reflectivity is close to one in the gap near the
exciton resonance frequengy and has sharp resonances at
the frequenciess = w,, corresponding to the size-quantized
exciton states Eq. (44). It is interesting that the so-called
polariton effect (a small shift of the resonances with respect

FIGURE 2. a) Dispersion curves for the transverse exciton-
polariton modes in CuCl. The curve labeled with= 1 (k = 2)

> - . .
= to the eigenvalues,, due to the exciton-photon coupling)
8
© —_ T T
T o0 o 6 o, o, n=s ]
3.190 3.195 3.200 3.205 3.210 3.215 3.220 3.225 3.230 B . @ n=4 n=6
Frequency(eV) o [ L = ‘ T
FIGURE 3. a) Dispersion curves for the transverse exciton- & 2f n=1 k=1 k=2 ]
polariton modes in CuCl. Polariton dispersion (b) and reflectiv- o
ity spectrum (c) for a MgO-CuCl 1D photonic crystal, which were < 0.4 F
calculated with a CuCl-layer thicknegs = 130A and a lattice & 0.3
constant\ = 813A. so02F}
0.1
Then, we apply the Bloch theorem for the electric field in 0.0
the PC, 208
iKpz _—iwt ; 0.6
E(z,t) = Ex,(2)e e ) (39) 8 o4
whereK i is the Bloch wave vector anflk , (z) is a periodic E 0.2
i i i . 0.0
function with the same period as for the PC: 3190 3.195 3.200 3.205 3.210 3.215 3.220 3225 3.230
Ex,(2) = Ex, (2 + A) . (40) Frequency(eV)

JIGURE 4. a) Dispersion curves for the transverse exciton-

polariton modes in CuCl. Polariton dispersion (b) and reflectiv-

ity spectrum (c) for a MgO-CuCl 1D photonic crystal, which were

( Ef ) _ —iKsA ( Ef ) (a1) calculated with a CuCl-layer thicknegs = 1654 and a lattice
E; '

E. constantA = 813A.

Using the expression (39), we get a relation for the electri
fields (3) in the local (D) layers:
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is practically absent for the samples considered here, unlike
heterostructures containing thicker CuCl films [19-21]. In
addition, because of the small thicknésof the CuCl lay-

ers, the frequency interval between consecutive quantized-
exciton statesf{r?/(2M1?)) turns out to be of the same or-
der as the longitudinal transverse splittngr = wy — wr

(see Figs. 2 to 4). Note that the width of the lowest frequency
gap decreases as the thickngsef the semiconductor layer

is reduced (compare panels “c” of Figs. 2 to 4.) 6t '
From the inspection of Figs. 2 to 4, it is also evident 2}

that the resonances corresponding to odd quantized-excitor %9 {55 3 Te5 3200 3205 3270 3215 3220 3225 3230

states ¢ = 1,3,...) are clearly manifest, whereas the even Frequency(eV)

modes = 2’4’."') producel vgry Weak. reson_ances. Thls FIGURE 6. Reflectivity spectra for a MgO-CuCl 1D photonic
result agrees with the prediction for single films, having crystal as in Fig. 4, withy, — 0.3 meV (a), 0.6 meV(b), and
a thicknessl, much smaller than the photon wavelength v = 2(vo + vinn) (), wherevy = 0.3 meV andv;,s is taken
(wls/2me < 1) [25, 26]. from Fig. 5a.

Reflectivity

This behavior agree with previous phenomenological
3.2. Effect of damping models [20, 27, 28] used to explain optical spectra of CuCl
thin films. The exciton resonance shiftv undergoes oscil-

Now, let us analyze the effect of both homogeneous buMations as a function of frequency (see Fig. 5b).Unlike in-

broadening and the interface disorder on reflectivity Spech_omogeneous brqadenmg, the slzt\fb. vamshe; at freqqen—
tra for one-dimensional CuCl-MgO PCs considered in thecies close to the eigenvaluggs of the size-quantized exciton.

previous subsection. Using the formalism developed irfor calculating the reflectivity spectrum of a one-dimensional

Sec. 2.2 we have calculated the surface-induced broadenifilielectric-semiconductor PC with interface disorder, we shall
vy @nd shiftAw (see Fig. 5) in theZs exciton region of a assume that the PC is composed of thin films, whose rough

CuCl thin film. In the calculation we have taken into aCCOuntinterfaces are statistically equivalent. Under these conditions,
the geometry of normal incidence of light( = 0) and a the damping constant; (37) is assumed to be the same for

Gaussian correlation function. The CuCl parameters used af’él the thin films. On the other hand, considering that the shift

indicated in the previous subsection. We also use a thin filnT"* vanishes near exgi'Fon resonances, we shall qeglect itin
thicknesd, = 165 4, a r.m.s. height — 12 4, a correlation calculating the reflectivity of MgO-CuCl PC . In Fig. 6, we

radius R. — 100 4, and a homogeneous bulk broadening present the reflectivity spectra calculated for the same PC as

o = 0.3 meV. As it is seen in Fig. 5a, the inhomogeneous'™ F19- 4 but with

broadeningy;,,;, exhibits relatively wide resonances at fre- @) v, = 0.3 meV @y = 0.15 meV, v;,,, = 0),
quencies close to the eigenvalues of the size-quantized exci- _ _ o

tonin anideal thin filmw,, = wr-+(h/2M)(nx/l5)%. More- b) s = 0.6 meV (o = 0.3 meV, vy, = 0), and
over, at frequencies > wr, the average value of;,,;, (w) C) vs = 2(vo + Vinn) (vo = 0.3 meV),

increases considerably. andv;,,, taken from Fig. 5a. Comparing the reflectivity spec-
tra in Figs. 4 and 6, it is seen that both Fabry-Perot reso-
nances, due to the finite siz&(\ + ;) of the whole het-
erostructure, and those associated with the size-quantized ex-

0.005 T T \ |. | T l T l T T

0.004 1
 o00n. 2 =12 3 4 5 8 citons in thin semiconductor layers are smoothed out as both
E 0‘002_ 1 the homogeneous bulk broadening(panels (a) and (b)) in
R 0'001_ 1 Fig. 6 and the surface-induced damping;, (panel (c)) are

increased. So, the manifestation of size-quantized excitons
in optical spectra of one-dimensional PC depends strongly
on the quality of its interfaces. It is interesting, however, that
the width of the lowest gap in the photonic dispersion, which
results from the anticrossing between the photonic and exci-
tonic modes, turns out to be slightly affected by damping.

0.000 T T T T T T T

0.002 4
0.001

0.000

Ao (eV)

-0.001 4

-0.002 +—+—"—7r———7r——r 77—
3190 3195 3.200 3.205 3.210 3.215 3.220 3.225 3.230
Frequency (eV) 4. Conclusion

FIGURE 5. Inhomogeneous broadening,;, and shiftAw of Z3 We have investigated the spectral and optical properties of
exciton resonance in a CuCl thin film. one-dimensional dielectric-semiconductor photonic crystals.
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In particular, we have studied the quantization of the excitortion was revised and applied to derive explicit expressions
center-of-mass motion in very thin films and its manifestationfor the inhomogeneous broadening and shift of exciton reso-
in reflectivity spectra for PCs. The calculation of the reflec-nances. Finally, we have compared the reflectivity spectra for

tivity is based on the use of a nonlocal dielectric function forPCs with and without interface disorder.
the semiconductor film. It was found that the decrease of the
thickness of the semiconductor films reduces the width of the
lowest frequency gap in the photonic dispersion. We havAcknowledgments
also considered PCs with interface disorder. In this case, the
inhomogeneous broadening of exciton resonances is considhis work was partially supported by CONACYT
erable and should be taken into account in calculating opticdlgrant  SEP-2004-C01-46425) and VIEP-BUAP (Grants
spectra. The formalism of the self-consistent Green’s func35/EXC-08/l and 96/EXC-09/G).
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