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The optical properties of exciton polaritons in one-dimensional photonic crystals are theoretically investigated. The periodic photonic struc-
ture is formed by two alternating layers, namely a local dielectric layer and a thin semiconductor one which is characterized by a nonlocal
excitonic dielectric function. We calculate reflectivity spectra for one-dimensional MgO-CuCl photonic crystals, which exhibit a rich res-
onance structure because of the optical manifestation of size-quantized excitons. We study the changes in the resonance structure as the
thickness of the thin semiconductor layer is varied. It is found that odd quantized-exciton modes are well manifest in the optical spectra
in comparison with even states. We have also investigated the effect of both homogeneous bulk damping and interface-induced broadening
upon the reflectivity resonances. The broadening due to interface disorder is calculated with the self-consistent Green’s function method.

Keywords:Exciton; semiconductor nanostructures; photonic crystals.

Se estudian téoricamente las propiedadesópticas de polaritones excitónicos en cristales fotónicos con periodicidad unidimensional. La
estructura periódica est́a formada por dos capas alternantes, a saber, una capa dieléctrica local y una capa semiconductora delgada que se
caracteriza por una función dieĺectrica no local. Calculamos espectros de reflectividad para un cristal unidimensional de MgO-CuCl el cual
exhibe una estructura de resonancias debido a la manifestación óptica de excitones cuantizados en tamaño. Estudiamos los cambios en la
estructura de resonancias conforme el espesor de la capa semiconductora delgada se varı́a. Se encontŕo que los modos impares de excitones
cuantizados se manifiestan bien en los espectrosópticos en comparación con los estados pares. Hemos investigado también el efecto que
tiene tanto el amortiguamiento de bulto homogéneo como el inhomogéneo inducido por las interfaces, sobre las resonancias de reflectividad.
El ensanchamiento debido al desorden interfacial se calcula con el método autoconsistente de la función de Green.
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1. Introduction

The quantization of excitons in different semiconductor het-
erostructures has been intensively investigated during the last
three decades (see, for example, the reviews [1, 2]). There
exist two regimes of exciton confinement: strong and weak
confinement, which depend on the relation between the ex-
citon Bohr radiusaB and the sizels of the semiconductor
medium. In the quantum well (strong confinement) regime
aB . ls, whereas in the thin-film (weak confinement) regime
aB ¿ ls. In quantum wells, the motion of the electron and
the hole are separately quantized [1,3–5], whereas in the thin-
film regime their relative motion is the same as in the bulk ex-
cept for a small distortion near film boundaries, which gives
rise to exciton-free layers of thicknessl ∼ aB . So, in the
latter case, the center-of-mass motion of the exciton is quan-
tized in an effective lengthleff = ls−2l smaller than the real

semiconductor film thicknessls [1, 2, 6–8]. In both regimes,
the exciton quantization is responsible for the appearance of
resonances in the optical spectra. In the majority of the in-
vestigations the quantum-well or thin-film interfaces are as-
sumed to be flat. However, realistic heterostructures have in-
herent roughness, which produces fluctuations in the exciton
confining potential and, therefore, a substantial increase of
both the inhomogeneous broadeningνinh and the shift∆ω
of exciton resonances [8–13]. So, in comparing theoretical
spectra with experimental results, it is necessary to take into
accountνinh and∆ω.

Among the large variety of heterostructures, the so-
called photonic crystals (PC) are of great interest at present.
The use of semiconductors as inclusions in such periodic
structures can affect their spectral and optical properties
near exciton resonance noticeably. As it is shown in the
works [2,14–18], in the case of dielectric-semiconductor PCs
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with weak exciton confinement, slightly-dispersive photonic
bands appear at the eigenfrequencies of the size-quantized
exciton states. Besides, the photonic band structure exhibits
anticrossing phenomena as a result of the coupling of the
photon-like mode with the size-quantized excitons. These
changes in the photonic band structure lead to a complicated
resonance structure of the optical spectra.

In this work we shall investigate the optical mani-
festation of size-quantized excitons in resonant dielectric-
semiconductor photonic crystals with one-dimensional pe-
riodicity, i.e. in PCs composed of alternating dielectric and
semiconductor thin films. In Sec.2, we shall calculate the
reflectivity for the dielectric-semiconductor PC with the
transfer-matrix method and a nonlocal model for the dielec-
tric function of the semiconductor layers. Results for the re-
flectivity spectra of MgO-CuCl PCs will be presented and
analyzed in Sec. 3. Here, we shall study the effect of the
semiconductor-film thickness upon the resonance structure
of the reflectivity. Besides, applying the method of the self-
consistent Green’s function, we shall calculate the inhomo-
geneous broadeningνinh and shift∆ω of exciton resonances
in thin films. The changes produced by the inherent inter-
face roughness in the reflectance spectrum for PCs are also
analyzed.

2. Theoretical formalism

2.1. Optical functions

Let us consider a one-dimensional photonic crystal formed
by N unit cells. Each cell contains a dielectric layer (D)
and a semiconductor one (S). The whole heterostructure con-
tains an additional dielectric layer D as (DS)(DS). . . (DS)D
and overlies a local substrate. The axisz is assumed to be
parallel to the growth direction, and the sample surface is at
z = −ld, whereld is the thickness of the dielectric layers D.
The interface between the heterostructure and the substrate is
located atz = NΛ, whereΛ is the width of the bilayer DS
(see Fig. 1).

FIGURE 1. Scheme of the 1D dielectric-semiconductor photonic
crystal.

Consider a monochromatic electromagnetic wave nor-
mally incident on the sample surface atz = −ld. The
electric field Ei of the incident electromagnetic wave is
oriented along they-axis. Thus, the electric field in the space
−∞ < z < −ld can be written as

Eext(z) = Eie
iqi(z+ld) + Ere

−iqi(z+ld), (1)

whereEi andEr are the amplitudes of the incident and re-
flected electromagnetic waves,qi =

√
εe(ω/c) is non-zero

(z-) component of the wave vector,εe is the permittivity of
the external medium,ω is the frequency,c is the light ve-
locity for vacuum. In writing (1), we have omitted the factor
exp(−iωt), describing the dependence of the electric field on
time t.

The electric field inside the substrate is written in the form

Esub(z) = Ete
iqt(z−NΛ) . (2)

Here,qt =
√

εs(ω/c) andεs is the permittivity of the sub-
strate.

Inside then-th local dielectric layer (Fig. 1), the electric
field can be expressed as

ED,n(z) = E+
n eiqd(z−zn+ld) + E−

n e−iqd(z−zn) ,

n = 1, 2, ..., N + 1. (3)

Here,zn = (n− 1)Λ, qd =
√

εd(ω/c), andεd is the permit-
tivity of the local dielectric layer.

Because of the normal incidence of light on the het-
erostructure, we can write the electric field in then-th semi-
conductor layer (Fig. 1) as a combination of transverse bulk
modes [19]:

ES,n(z) =
2∑

k=1

{A+
nkeiqk(z−zn) + A−nke−iqk(z−zn−ls)}

n = 1, 2, ..., N. (4)

Here,ls = Λ− ld is the thickness of the semiconductor layer,
q1, q2 denote the wave vectors of the transverse bulk exciton-
polaritons and are given by the solution of the equation

q2
z =

ω2

c2
ε(qz, ω) ,

ε(qz, ω) = ε∞ + 4πχ(qz, ω) , (5)

ε∞ is the high-frequency dielectric constant, andχ(qz, ω)
is the excitonic contribution to the dielectric susceptibility,
which is given by

χ(qz, ω) =
ω2

s/4π

ω2
T − ω2 + Dq2

z − iωγs
. (6)

Here,ωT stands for the transverse resonance frequency,ωs

is a measure of the oscillator strength,γs is the exciton re-
laxation frequency, andD = ~ωT /M is the parameter de-
scribing the spatial dispersion (M denotes the total mass of
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the exciton). The Eq. (5) for the wave vectorqz has four so-
lutions, namely

q1,2 =
{

1
2

[
Γ2

B + ε∞
ω2

c2

±
([

Γ2
B − ε∞

ω2

c2

]2

+
4ω2

sω2M

~ωT c2

)1/2







1/2

, (7)

q3,4 =− q1,2, (8)

whereq1 andq2 are the square roots with positive imaginary
part (=q1 > 0, =q2 > 0), andΓ2

B is defined as

Γ2
B =

1
D

[
ω2 − ω2

T + iωγs

]
. (9)

Acoording to Eqs. (4)-(6), the response of the semiconductor
layers is assumed to be bulk-like. Hence, the excitonic polar-
izationPn in the semiconductor layer of then-th cell can be
written as

Pn(z) =
2∑

k=1

χ(qk, ω)

× {A+
nkeiqk(z−zn) + A−nke−iqk(z−zn−ls)}. (10)

In order to calculate optical functions, we should deter-
mine the amplitudes of the electromagnetic fields inside all
the layers by applying Maxwell boundary conditions: the
continuity of the tangential components of the electric and
magnetic field at all the interfacesz = zn andz = zn + ls.
These conditions can be written as follows

ED,n(zn) = ES,n(zn) ,

E
′
D,n(zn) = E

′
S,n(zn) , (11)

ES,n(zn + ls) = ED,n+1(zn + ls) ,

E
′
S,n(zn + ls) = E

′
D,n+1(zn + ls) . (12)

The continuity of the derivatives of the electric field
in (11) and (12) follows directly from the Faraday law,
B(z) = (ic/ω)E

′
(z), in a nonmagnetic medium (H = B).

The Eq. (12) are not enough for determining the am-
plitude of the additional electromagnetic waves that are
generated in the nonlocal semiconductor. Therefore, we
should apply additional boundary conditions (ABC). In the
case of semiconductors characterized by excitons with very
small Bohr radius [19–21], it is appropriate to apply the
Pekar ABC [22]: The vanishing of the excitonic polarization
at the boundaries of the semiconductor,i.e.,

Pn(zn) = 0 , Pn(zn + ls) = 0 . (13)

Employing the expressions (3), (4) and (10) for the polari-
tonic fields and the boundary conditions (11), (12) and (13),

we obtain a relation between the amplitudesE+
n+1, E−

n+1 and
the amplitudesE+

n , E−
n :

(
E+

n+1

E−
n+1

)
= M

(
E+

n

E−
n

)
, (14)

whereM is the transfer matrix, which is straightforwardly
calculated [2]. In determining the optical properties, we also
use the boundary conditions at the sample surface (z = −ld),
and at the interface between the dielectric-semiconductor het-
erostructure and the substrate (z = NΛ):

Eext(−ld) = ED,1(−ld) ,

E
′
ext(−ld) = E

′
D,1(−ld) , (15)

ED,N+1(NΛ) = Esub(NΛ) ,

E
′
D,N+1(NΛ) = E

′
sub(NΛ). (16)

The relationship between the amplitudes of the elec-
tric field in the first and last local dielectric (D) layers
is established by using (14) iteratively. Afterwards, the
reflectivity R, transmissionT and absorptionA are calcu-
lated from Eqs. (15) and (16):

R =
∣∣∣∣
Er

Ei

∣∣∣∣
2

, T =
qt

qi

∣∣∣∣
Et

Ei

∣∣∣∣
2

, A = 1−R− T. (17)

2.2. Inhomogeneous broadening

The behavior of excitons in semiconductor thin-film het-
erostructures is generally studied by assuming that the thin-
film interfaces are flat. However, the inherent surface rough-
ness yield fluctuations in the exciton center-of-mass confin-
ing potential and, consequently, a considerable increase in the
inhomogeneous broadeningνinh as well as a shift∆ω of ex-
citon resonances. Both quantities,νinh and∆ω, depend on
the frequency and, hence, can modify optical spectra [23,24].
In the majority of works [20, 25–29], where the effect of the
exciton scattering by the disordered interfaces on the optical
response of thin films has been considered, models without
strict derivation were employed. A Green’s function formal-
ism to calculate the inhomogeneous broadening and shift of
exciton resonances in the thin film regime was proposed in
Ref. 12. In this subsection, we shall revise such a formal-
ism and apply it to one-dimensional photonic crystals with
semiconductor thin films. In other words, we shall calculate
the contribution of the interface disorder to the relaxation fre-
quencyγs appearing in the resonant exciton susceptibility Eq.
(6) of each semiconductor thin layer.

Consider an excitonic film occupying the space
ξ(x) ≤ z ≤ ls, whereξ(x) is a random function, represent-
ing the surface profile of the film. For simplicity and with-
out loss of generality, the surface roughness is assumed to
be one-dimensional. We also suppose that the roughness is a
stationary random process characterized by the properties:

〈ξ(x)〉 = 0 , 〈ξ(x)ξ(x′)〉 = ζ2W (|x− x′|) , (18)
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where the angular brackets denote statistical average over the
ensemble of realizations of the functionξ(x), ζ is the root
mean square of the roughness height andW (|x|) is the cor-
relation function which has a typical scaleRc of monotonous
decrease (Rc is the correlation radius). Thus, one of the thin-
film surfaces is randomly rough, whereas the other one is,
for simplicity, flat. Such a system is physically equivalent to
a film with both surfaces being rough, statistically identical,
and not intercorrelated [30]. We shall also assume thatRc is
much larger than the r.m.s. heightζ and the exciton Bohr ra-
diusaB (Rc À ζ, Rc À aB), i.e. the rough surface is rather
smooth. Besides, we shall consider the case when the wave-
length of the incident light is much larger thanζ (qiζ ¿ 1).

The Hamiltonian for the translational motion of the1s
exciton can be expressed as

Ĥ = − ~2

2M
∇2 + Eg + Er

1 , (19)

where,Er
1 is the ground-state eigenenergy for the relative

motion, M = me + mh is the total exciton mass,me

and mh are, respectively, the effective electron and hole
masses, andEg is the energy gap between valence and con-
duction bands. The spectrum for the exciton in a surface-
disordered film can be calculated from the retarded Green’s
functionG(r, r′), which satisfies the equation

[E + i~ν0 − Ĥ]G(r, r′) = δ(r− r′) . (20)

with “no escape” boundary conditions:

G(z = ξ(x)) = 0 , G(z = ls) = 0 . (21)

In Eq. (20), E stands for the total exciton energy,~ν0 is
the homogeneous bulk damping, andr = (x, z) is a two-
dimensional vector, indicating the exciton center-of-mass co-
ordinates. For the case of a rough surface, which is suf-
ficiently smooth, we can expand Eq. (21) up to first order
in ξ(x). We get an approximate boundary condition:

G(z = 0) + ξ(x)
∂G

∂z

∣∣∣∣
z=0

= 0, (22)

Now, applying the Green’s theorem, we can establish a
relationship between the Green’s functionG, perturbed by
the surface disorder, and the Green’s functionG0 for the ideal
thin film with ξ(x) = 0. This relationship has the form of a
Dyson-type integral equation:

G(r, r′) = G0(r, r′)

+

∞∫

−∞
dx1G0(r, r1)V (r1)G(r1, r′) , (23)

where the kernelV (r1) is the exciton center-of-mass scatter-
ing potential and, in the linear approximation inξ, has the
form

V (r1) ≡
←
∂

∂z1

∣∣∣∣∣
z1=0

~2

2M
ξ(x1)

~∂

∂z1

∣∣∣∣∣
z1=0

. (24)

Here, the arrows over the derivatives denote the direction of
the operation,i.e.← (→) means derivation of a function writ-
ten on the left (right) ofV (r1).

In order to calculate the exciton spectrum in the
surface-disordered thin film, we should average Eq. (23)
for the Green’s functionG. After applying the tech-
nique proposed in [31], we get an equation for the aver-
age Green’s function〈G〉 within the self-consistent Born
approximation [12,32], which can be written as

〈G〉 = G0 + G0〈 V̂ 〈G〉 V̂ 〉〈G〉 , (25)

whereV̂ (r1) is an integral operator of the random scattering
potentialV (r1). The solution of Eq. (25) within the polar
approximation [32] is given by

〈G(x− x′; z, z′)〉 =

∞∫

−∞

dkx

2π
〈G(kx; z, z′)〉

× exp[ikx(x− x′)] , (26)

where

〈G(kx; z, z′)〉 =
G0(kx; z, z′)

1− kz cot(kzls) K(kx)
. (27)

Here,kz is the transverse component of the wave vectork
and is defined by the expression:

kz(kx) =
[
2M

~2
[~ω − ~ωT + i~ν0]− k2

x

]1/2

, (28)

where~ω = E, andωT = (Eg + Er
1)/~ is the1s exciton

resonance frequency. Due to the self-consistency of our ap-
proach, the quantityK should be calculated from an integral
equation that follows straightforwardly from Eq. (25). Such
an equation has the form

K(kx) =
∫ ∞

−∞

dk′x
2π

W(kx − k′x)4K(k′x) k′z , (29)

where

4K(k′x) =
ζ2 cot(k′zls)

1− k′z cot(k′zls) K(k′x)
, (30)

and W(kx) is the Fourier transform of the correlator
W (|x|) (18).

In the case of an ideal thin film (ξ = 0),

〈G(kx; z, z′)〉 = G0(kx; z, z′)

and, hence, exciton resonances appear at frequencies satis-
fying the relationkz(ωn)ls = nπ (n = 1, 2, ...). How-
ever, as it follows from Eq. (27), such resonances will be
broadened and shifted by the exciton center-of-mass scatter-
ing from the thin-film rough surface. In order to determine
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the inhomogeneous broadeningνinh, as well as the shift∆ω
of the exciton resonances, we should find the poles of the
function〈G(kx; z, z′)〉, i.e. we have to solve the equation

tan(kzls) = kzK(kx) . (31)

At valueskzls ≈ nπ, Eq. (31) can be rewritten as

k2
z −

2
ls

k2
zK(kx)−

(
nπ

ls

)2

= 0 . (32)

Using (28), the equation for the poles of the function
〈G(kx; z, z′)〉 acquires the form

~ω − ~ωT − ~2

2M

(
nπ

ls

)2

− ~
2k2

x

2M
+ i~ν0 − ~2

Mls
k2

zK(kx) = 0 . (33)

Hence, the imaginary and real parts of the last term in the left-
hand side of Eq. (33) determine the inhomogeneous broaden-
ing νinh and the shift∆ω of exciton resonances:

νinh(ω) = − ~
Mls

=[k2
z K(kx)] , (34)

4ω(ω) =
~

Mls
<[k2

z K(kx)] . (35)

According to the formulas (34) and (35), the surface-
induced broadeningνinh(ω) and shift∆ω(ω) of exciton res-
onances depend on the statistical parameters of the surface
disorder, the exciton characteristics and the average thickness
of the film ls. So, the effect of surface roughness becomes
more important as the thicknessls decreases. Besides, the
frequency dependence ofνinh and∆ω is determined by the
ratio of the variation scales1/Rc and

√
2M(ν0 + νinh)/~

of the functionsW(kx) (29) and4K(kx) (30), respectively.
In calculating optical functions, we shall neglect the rel-

atively small energy associated with light scattered in direc-
tions different from those of reflection and transmission [33]
becauseqiζ ¿ 1. Within this approximation the average
reflectivity R and transmissivityT can be calculated from
boundary conditions for the exciton-polariton fields, satisfy-
ing Maxwell equations with the ensemble-averaged excitonic
polarization

P (x, z, ω) = −2|M |2
∫

dx′

×
∫

dz′〈G(|x− x′|; z, z′)〉E(x′, z′, ω), (36)

whereM is a measure of the interband transition dipole den-
sity, and the average Green function〈G(|x − x′|; z, z′)〉 is
given by Eqs. (26) and (27). Hence, for normal incidence
of light the formulae (34) and (35) should be evaluated at
kx = 0 [8–13]. Nevertheless, these formulae can also be

used within the framework of the formalism developed in pre-
vious section for calculating optical spectra. Indeed, since
the frequency dependence of the inhomogeneous broaden-
ing νinh(ω) and shift∆ω(ω) is quantitatively correct in the
neighborhood of the size-quantized exciton resonances and
exciton effects on optical spectra are negligible far from res-
onances, we can use them as a frequency-dependent constant
damping and a resonance shift in the exciton susceptibility.
So, comparing the left-hand side of Eq. (33) with the denom-
inator of the resonant exciton susceptibility (6), it follows that
the inhomogeneous broadeningνinh is related with the con-
stant dampingγs as

γs = 2(ν0 + νinh), (37)

and, moreover, the exciton resonance is shifted by the quan-
tity

∆ωT = 2∆ω. (38)

3. Results

3.1. Effect of semiconductor-layer thickness

The theory developed in the previous section is valid for
semiconductors with very small exciton Bohr radiusaB . An
example of such a kind of semiconductor is CuCl, which pos-
sesses a large binding energy (∼ 190 meV) and a Bohr radius
aB ∼ 7Å. Therefore, the thin-film regime can be observed up
to a rather small thickness,ls, of the order of a few nanome-
ters. As it is known [19–21, 25, 26], the presence of ultra-
narrow exciton-free layers in CuCl thin-film heterostructures
can be neglected in interpreting their optical spectra.

Now, let us calculate the reflectivity of 1D dielectric-
semiconductor PCs, having a unit cell with CuCl (S layer)
and MgO (D layer) inclusions. The CuCl parameters used
are [17]: the exciton massM = 2.5m0 (m0 is the free elec-
tron mass),~ωT = 3.2022eV,~ωL = 3.2079eV for the trans-
verse and longitudinal exciton frequencies, respectively, and
a high frequency permittivityε∞ = 5.0. The permittivity for
MgO used isεd = 3.1. The thickness of the semiconductor
layer for each sample is, correspondingly,ls = 105Å (Fig. 2),
130Å (Fig. 3), 165Å (Fig. 4) and the lattice constant is
Λ = 813Å. In the calculation we have consideredN = 200
unit cells and a very small dampingγs = 0.001meV. The
medium outside the dielectric-semiconductor PC is assumed
to be vacuum.

The panels (c) in Figs. 2, 3 and 4 exhibit the reflectivity
spectra for the dielectric-semiconductor PCs near the exciton
resonance frequency. In order to interpret them, we show the
dispersion curves (panels “a”) for the transverse bulk exciton-
polariton modes, which are calculated from Eq. (7), and the
bulk photonic dispersion for the PC in the narrow frequency
range of the exciton resonance (panels “b”). The latter bulk
dispersion is obtained by the standard way [2]. That is, we
model the real finite heterostructure with a large number of
cells (N À 1) as an infinite periodic one.

Rev. Mex. F́ıs. S54 (2) (2008) 87–94
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FIGURE 2. a) Dispersion curves for the transverse exciton-
polariton modes in CuCl. The curve labeled withk = 1 (k = 2)
corresponds to the exciton-like (photon-like) mode. Polariton dis-
persion (b) and reflectivity spectrum (c) for a MgO-CuCl 1D pho-
tonic crystal, which were calculated with a CuCl-layer thickness
ls = 105Å and a lattice constantΛ = 813Å. The points in
panel (a) indicate the eigenfrequencies of the quantized excitons
with q1ls = nπ, n = 1, 2, ...

FIGURE 3. a) Dispersion curves for the transverse exciton-
polariton modes in CuCl. Polariton dispersion (b) and reflectiv-
ity spectrum (c) for a MgO-CuCl 1D photonic crystal, which were
calculated with a CuCl-layer thicknessls = 130Å and a lattice
constantΛ = 813Å.

Then, we apply the Bloch theorem for the electric field in
the PC,

E(z, t) = EKB (z)eiKBze−iωt , (39)

whereKB is the Bloch wave vector andEKB (z) is a periodic
function with the same period as for the PC:

EKB (z) = EKB (z + Λ) . (40)

Using the expression (39), we get a relation for the electric
fields (3) in the local (D) layers:

(
E+

n

E−
n

)
= e−iKBΛ

(
E+

n+1

E−
n+1

)
. (41)

Substituting (14) into (41), the later equation can be rewritten
in the form

M
(

E+
n

E−
n

)
= eiKBΛ

(
E+

n

E−
n

)
. (42)

The dispersion law for the bulk electromagnetic modes in the
PC is obtained by requiring that the determinant of the ma-
trix for the homogeneous algebraic system of equations (42)
be equal to zero:

∣∣M−IeiKBΛ
∣∣ = 0 , (43)

whereI is the unit matrix. In the calculation of bulk exciton-
polariton (panels “a”) and photonic (panels “b”) dispersion
curves the exciton damping was neglected (γs = 0). As it
was shown in Ref. [17], because of exciton-photon coupling
in the photonic crystal, the bulk exciton-polariton dispersion
splits into bands separated by small gaps (compare panels
“a” with “b”). These bands are slightly dispersive and their
energy values coincide with the eigenfrequencies of the size-
quantized exciton:

ωn = ωT +
~

2M

(
nπ

ls

)2

, (44)

where n = 1, 2, .... Also, there is anticrossing of such
bands and the upper (photon-like) branch of the bulk
exciton-polariton (k = 2 in panels “a”). As is seen in
Figs. 2 to 4, the reflectivity is close to one in the gap near the
exciton resonance frequencyωT and has sharp resonances at
the frequenciesω = ωn corresponding to the size-quantized
exciton states Eq. (44). It is interesting that the so-called
polariton effect (a small shift of the resonances with respect
to the eigenvaluesωn due to the exciton-photon coupling)

FIGURE 4. a) Dispersion curves for the transverse exciton-
polariton modes in CuCl. Polariton dispersion (b) and reflectiv-
ity spectrum (c) for a MgO-CuCl 1D photonic crystal, which were
calculated with a CuCl-layer thicknessls = 165Å and a lattice
constantΛ = 813Å.
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is practically absent for the samples considered here, unlike
heterostructures containing thicker CuCl films [19–21]. In
addition, because of the small thicknessls of the CuCl lay-
ers, the frequency interval between consecutive quantized-
exciton states (~π2/(2Ml2s)) turns out to be of the same or-
der as the longitudinal transverse splittingωLT ≡ ωL − ωT

(see Figs. 2 to 4). Note that the width of the lowest frequency
gap decreases as the thicknessls of the semiconductor layer
is reduced (compare panels “c” of Figs. 2 to 4.)

From the inspection of Figs. 2 to 4, it is also evident
that the resonances corresponding to odd quantized-exciton
states (n = 1, 3, ...) are clearly manifest, whereas the even
modes (n = 2, 4, ...) produce very weak resonances. This
result agrees with the prediction for single films, having
a thicknessls much smaller than the photon wavelength
(ωls/2πc ¿ 1) [25,26].

3.2. Effect of damping

Now, let us analyze the effect of both homogeneous bulk
broadening and the interface disorder on reflectivity spec-
tra for one-dimensional CuCl-MgO PCs considered in the
previous subsection. Using the formalism developed in
Sec. 2.2, we have calculated the surface-induced broadening
νinh and shift∆ω (see Fig. 5) in theZ3 exciton region of a
CuCl thin film. In the calculation we have taken into account
the geometry of normal incidence of light (kx = 0) and a
Gaussian correlation function. The CuCl parameters used are
indicated in the previous subsection. We also use a thin film
thicknessls = 165 Å, a r.m.s. heightζ = 12 Å, a correlation
radiusRc = 100 Å, and a homogeneous bulk broadening
ν0 = 0.3 meV. As it is seen in Fig. 5a, the inhomogeneous
broadeningνinh exhibits relatively wide resonances at fre-
quencies close to the eigenvalues of the size-quantized exci-
ton in an ideal thin film:ωn = ωT +(~/2M)(nπ/ls)2. More-
over, at frequenciesω > ωT , the average value ofνinh(ω)
increases considerably.

FIGURE 5. Inhomogeneous broadeningνinh and shift∆ω of Z3

exciton resonance in a CuCl thin film.

FIGURE 6. Reflectivity spectra for a MgO-CuCl 1D photonic
crystal as in Fig. 4, withγs = 0.3 meV (a), 0.6 meV(b), and
γs = 2(ν0 + νinh) (c), whereν0 = 0.3 meV andνinh is taken
from Fig. 5a.

This behavior agree with previous phenomenological
models [20, 27, 28] used to explain optical spectra of CuCl
thin films. The exciton resonance shift∆ω undergoes oscil-
lations as a function of frequencyω (see Fig. 5b).Unlike in-
homogeneous broadening, the shift∆ω vanishes at frequen-
cies close to the eigenvaluesωn of the size-quantized exciton.
For calculating the reflectivity spectrum of a one-dimensional
dielectric-semiconductor PC with interface disorder, we shall
assume that the PC is composed of thin films, whose rough
interfaces are statistically equivalent. Under these conditions,
the damping constantγs (37) is assumed to be the same for
all the thin films. On the other hand, considering that the shift
∆ω vanishes near exciton resonances, we shall neglect it in
calculating the reflectivity of MgO-CuCl PC . In Fig. 6, we
present the reflectivity spectra calculated for the same PC as
in Fig. 4, but with

a) γs = 0.3 meV (ν0 = 0.15 meV,νinh = 0),

b) γs = 0.6 meV (ν0 = 0.3 meV,νinh = 0), and

c) γs = 2(ν0 + νinh) (ν0 = 0.3 meV),

andνinh taken from Fig. 5a. Comparing the reflectivity spec-
tra in Figs. 4 and 6, it is seen that both Fabry-Perot reso-
nances, due to the finite size (NΛ + ld) of the whole het-
erostructure, and those associated with the size-quantized ex-
citons in thin semiconductor layers are smoothed out as both
the homogeneous bulk broadeningν0 (panels (a) and (b)) in
Fig. 6 and the surface-induced dampingνinh (panel (c)) are
increased. So, the manifestation of size-quantized excitons
in optical spectra of one-dimensional PC depends strongly
on the quality of its interfaces. It is interesting, however, that
the width of the lowest gap in the photonic dispersion, which
results from the anticrossing between the photonic and exci-
tonic modes, turns out to be slightly affected by damping.

4. Conclusion

We have investigated the spectral and optical properties of
one-dimensional dielectric-semiconductor photonic crystals.
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94 B. FLORES-DESIRENA, R. ḾARQUEZ-ISLAS, N. ATENCO-ANALCO, AND F. ṔEREZ-RODŔIGUEZ

In particular, we have studied the quantization of the exciton
center-of-mass motion in very thin films and its manifestation
in reflectivity spectra for PCs. The calculation of the reflec-
tivity is based on the use of a nonlocal dielectric function for
the semiconductor film. It was found that the decrease of the
thickness of the semiconductor films reduces the width of the
lowest frequency gap in the photonic dispersion. We have
also considered PCs with interface disorder. In this case, the
inhomogeneous broadening of exciton resonances is consid-
erable and should be taken into account in calculating optical
spectra. The formalism of the self-consistent Green’s func-

tion was revised and applied to derive explicit expressions
for the inhomogeneous broadening and shift of exciton reso-
nances. Finally, we have compared the reflectivity spectra for
PCs with and without interface disorder.
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