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We use the Newtonian limit of a general scalar-tensor theory around a background field to study astrophysical effects. The gravitational
theory modifies the standard Newtonian potential by adding a Yukawa term to it, which is quantified by two theoretical parameters:λ, the
lenghtscale of the gravitational interaction and its strength,α. Within this formalism we firstly present a numerical study on the formation
of bars in isolated galaxies. We have found for positiveα that the modified gravity destabilizes the galactic discs and leads to rapid bar
formation in isolated galaxies. Values ofλ in the range≈ 8 – 14 kpc produce strongest bars in isolated models. Then, we extent this work
by considering tidal effects due to interacting galaxies. We send two spirals to collide and study the bar properties of the remnant. We
characterize the bar kinematical properties in terms of our parameters (λ, α).
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Usamos el ĺımite newtoniano de una teorı́a escalar-tensorial general alrededor de un campo del fondo para estudiar efectos astrofı́sicos. La
teoŕıa gravitacional modifica el potencial newtoniano estándar, agregandole un término de Yukawa, el cual se cuantifica por dos parámetros
teóricos: λ, la escala de longitud de la interacción gravitacional yα, su intensidad. Dentro de este formalismo primero presentamos un
estudio nuḿerico de la formacíon de barras en galaxias aisladas. Encontramos que paraα positiva la gravedad modificada desestabiliza a
los discos gaĺacticos y lleva a una rápida formacíon de la barra en galaxias aisladas. Valores deλ en el rango de≈ 8 – 14 kpc producen
barras ḿas pronunciadas en los modelos de galaxias aisladas. Después, extendemos este trabajo al considerar efectos de marea debido a
galaxias que interaccionan. Enviamos dos galaxias espirales a colisionar para estudiar las caracterı́sticas de la barra del remanente formado.
Caracterizamos las propiedades cinemáticas de la barra en términos de nuestros parámetros (λ, α).

Descriptores:Formacíon de la barra; interacción de galaxias; teorı́a escalar-tensorial.

PACS: 04.50.+h, 04.25.Nx; 98.10.+z; 98.62.Gq; 98.62.Js

1. Introduction
In recent years there have been some attempts to explain ob-
served gravitational effects that imply the existence of dark
matter (DM) and dark energy (DE). These effects go from
galactic to cosmological scales and we still do not know the
nature of DM and DE, or if they are related to each other,
or even if DM is unique or there is a set of dark multi-
components. One possibility is that scalar fields (SF) play
a role in the modified dynamics. Particularly, SF are often
applied in cosmology to accomplish the Universe’s acceler-
ated expansion, inferred from Supernovae Ia redshifts, CMB
Doppler peaks measurements, large-scale structure surveys
and cosmological simulations [1–8]. For a review of all these
topics see for instance [9].

The way in which SF couple to gravity is also unknown,
simply because there is a lack of a unique fundamental theory
that explains the intricate relationship of matter and its grav-
itational background. One possibility is that SF are coupled
non-minimally to gravity, at a Lagrangian footing, as it hap-
pens when string theories are compactified to four space-time
dimensions [10]. The resulting effective theory is a scalar-
tensor theory (STT) of gravitation, that can generically be
described by arbitrary scalar functions, apart from the geo-
metrical part [11, 12]. In the past we have studied different
effects of this type of theories in cosmology [13–18], and

more recently we have considered the Newtonian limit of
STT and apply it to astrophysical phenomena. We have com-
puted potential-density pairs for various halo density pro-
files [19] and axisymmetric systems [20]. It was found that
rotation curves and parameters of the SF. On the other hand,
in Ref. 21 we have computed the effect of SF on the transfer
of angular momentum between protogalaxies. In the present
work, we pursue to study bars in spiral galaxies. Observa-
tions of spiral galaxies indicate that the presence of a bar is
a common feature [22]. Instabilities in isolated stellar and
gaseous discs lead to bar formation; see [23] for pioneer stud-
ies and [24,25] for a modern view. The bar formation in iso-
lated models has been widely studied both analytically and
numerically [26–33, e.g.,] and it is studied using the above
STT formalism in the first part of this paper. In the second
part, we consider in dynamical effects of non-isolated sys-
tems which are found in clusters of galaxies. In this sense,
it has been suggested that the observed bar in many spirals is
the result of the gravitational interaction between two or more
nearby galaxies. For instance, [34] has found that during the
collision of two galaxies and between the first and the second
closest approaches, the disc takes a transient bar shape. The
gravitational interaction between the two galaxies gives rise
to perturbations in the orbits of the stars that results in the
formation of the bar.
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Bar formation in stellar discs depends upon various si-
multaneous effects. In the case of collisions, the 2D-
simulations have shown that these factors are [35]: rotation
curve shape, disc-halo mass ratio, perturbation force and ge-
ometry. Additionally, simulations suffer from numerical ef-
fects such as low spatial and temporal resolution, too few
particles representing the system, and an approximate force
model. These effects were studied by us in Refs. [25, 36],
where it was shown that specific parameter choices may
change bar properties. Once numerical effects are controlled,
we may investigate all the other model parameters, which in
our case are (λ, α).

In the present paper we study the formation of bars as
a product of both instabilities of isolated galaxies and as a
result of the collision of two spirals in framework of STT.
In particular, we consider a non-minimally coupled SF in the
Newtonian limit (Sec. 2) and use the resulting modified grav-
itation force in our 3D-simulations. In this way, all colli-
sionless particles mutually interact with the modified gravi-
tational force. Then, we investigate isolated galaxies (Sec. 3)
and head-on and off-axis impacts of two disc galaxies and
the properties of tidally formed bars (Sec. 4). We finally
draw some conclusions (Sec. 5).

2. Scalar–tensor theory and its Newtonian
limit

A typical STT is given by the following Lagrangian [11,12]:

L=
√−g

16π

[
−φR+

ω(φ)
φ

(∂φ)2−V (φ)
]

+LM (gµν), (1)

from which we get the gravity and SF equations. Heregµν is
the metric,LM (gµν) is the matter Lagrangian andω(φ) and
V (φ) are arbitrary functions of the SF. Thus the gravitational
equation is

Rµν − 1
2
gµνR =

1
φ

[
8πTµν +

1
2
V gµν +

ω

φ
∂µφ ∂νφ

−1
2

ω

φ
(∂µφ)2gµν + φ;µν − gµν¤φ

]
. (2)

The SF part is described by the following equation

¤ φ +
φV ′ − 2V

3 + 2ω
=

1
3 + 2ω

[
8πT − ω′(∂φ)2

]
, (3)

where a prime (’) denotes the derivative with respect to
SF (φ).

In accordance with the Newtonian approximation, gravity
and SF are weak. Then, we expect to have small deviations of
the SF around the background field. Assuming also that the
velocities of stars and DM particles are non-relativistic, we
perform the expansion of the field equations around the back-
ground quantities〈φ〉 andηµν . Even though the expansion of
the above equations to first order is well known [37–39], we
explicitly show it in the appendix since our definition of the

background field is〈φ〉 = G−1
N (1 + α), which is non-trivial,

and this changes some constant terms in the equations. Ac-
cordingly, we obtain Eqs. (A.16) and (A.22):

1
2
∇2h00 =

GN

1 + α

[
4πρ− 1

2
∇2φ̄

]
, (4)

∇2φ̄−m2φ̄ = −8παρ, (5)

whereρ is matter density of DM or stars stemming from the
energy-momentum tensor,GN is the Newtonian gravitational
constant andα ≡ 1/(3 + 2ω) is a constant, in whichω
is the Brans–Dicke parameter [11], here defined in theories
that include scalar potentials. Equations (4) and (5) represent
the Newtonian limit of a set of STT with arbitrary potentials
(V (φ)) and functionsω(φ) that are Taylor expanded around
some value. The resulting equations are thus distinguished
by the constantsα andm.

In the above expansion we have set the cosmological con-
stant equal to zero since within galactic scales its influence is
negligible. This is because the average density in a galaxy is
much larger than a cosmological constant that is compatible
with observations. Thus, we only consider the influence of
luminous and dark matter. These matter components gravi-
tate in accordance with the modified–Newtonian theory de-
termined by Eqs. (4) and (5). The latter is a Klein-Gordon
equation which contains an effective massm term, whose
Compton wavelength (λ = h/mc) implies a length scale for
the modified dynamics. We shall assume this scale to be of
the order of tens of kilo-parsecs, which corresponds to a very
small mass,m ∼ 10−26 eV.

Note that Eq. (4) can be cast as a Poisson equation for
ψ ≡ (1/2)(h00 + φ̄/〈φ〉),

∇2ψ = 4πGN ρ/(1 + α) , (6)

Thus, the modified Newtonian potential is now given by

ΦN ≡ 1
2
h00 = ψ − 1

2
φ̄

〈φ〉 . (7)

Particular solutions, the so-called potential–density
pairs [40], were recently found for the NFW’s and Dehnen’s
density profiles [19] and for axisymmetric systems [20].
For point masses (of non-SF nature) the solution is well
known [39,41] and here is adapted to our definition of the
background field,〈φ〉 = G−1

N (1 + α):

φ̄ = 2αuλ , ΦN = −u− αuλ , (8)

where

u =
GN

(1 + α)

∑
s

ms

|r− rs| , (9)

uλ =
GN

(1 + α)

∑
s

ms

|r− rs|e
−|r−rs|/λ , (10)

with ms being a source mass. The potentialu is the Newto-
nian part anduλ is the SF modification which is of Yukawa
type. The total gravitational force on a particle of massmi is

F = −mi∇ΦN = mia. (11)
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Thus, gravitating particles, that in our simulations are stars
or DM particles, will feel the influence of Newtonian gravity
(u) plus a SF force due to the termuλ.

The gravitational potential of a single particle arising
from the above formalism is:

ΦN =
GNms

(1 + α) r
(1 + αe−r/λ) , (12)

For local scales,r ¿ λ, deviations from the Newtonian the-
ory are exponentially suppressed, and forr À λ the New-
tonian constant diminishes (augments) toGN/(1 + α) for
positive (negative)α. This means that equation (12) fulfills
all local tests of the Newtonian dynamics, and it is only con-
strained by experiments or tests on scales larger than -or of
the order of-λ, which in our case is of the order of galactic
scales. By contrast, if one defines〈φ〉 ≡ 1/GN , then the ef-
fective Newtonian constant is modified at scalesr < λ, and
stringent, local constraints applies, demandingα to be less
than10−10 [41]. This latter approach will not be considered
here.

Recently, the effect of STT has been investigated in dif-
ferent cosmological scenarios in which variations of the New-
tonian constant are constrained from a phenomenological
point of view. For instance, [42] studied the influence of
varying GN on the Doppler peaks of the CMBR, and con-
cluded that their parameter (ξ = G/GN ) can be in the in-
terval 0.75 ≤ ξ ≤ 1.74 to be within the error bars of the
CMBR measurements. In our notation this translates into
−0.43 ≤ α ≤ 0.33. However, this range forα has to be
taken as a rough estimation, since these authors have only
considered a variation ofGN , and not a full perturbation
study within STT. The latter has been done by Ref. 43, who
found some allowed deviations from the Newtonian dynam-
ics, that translated into our parameter isα = 0.04; how-
ever, a comparison with observations in not made. On the
other hand, a structure formation analysis has been done in
Ref. 44, in which deviations of the matter power spectrum
are studied by adding a Yukawa potential to the Newtonian.
They found some allowed dynamics, that turns out to con-
strain our parameter to be within−1.0 ≤ α ≤ 0.5; but again
a self-consistent perturbation study in general STT is miss-
ing. Thus, the above three estimates can be taken as order-of-
magnitude constraints for our models. Note that even when
it is not theoretically justified to take negative values forα,
phenomenology admits them. In this work, however, we only
consider positive values ofα.

3. Isolated galaxy simulations

We use the standard procedure to construct a galaxy model
with a Newtonian potential described in Refs. 25 and 36.
The galaxy consists of a disc, halo, and bulge and its ini-
tial condition is constructed using the Hernquist halo model
(a Dehnen’s family member withγ = 1, see Ref. 19).
To perform the 3D-simulations we used thegbsph code
(www.astro.inin.mx/mar/nagbody) modified to include the

contribution of the scalar fields as given in the preceding sec-
tion. The forces were computed with a tolerance parameter
θ = 0.75, and including the quadruple term. We use Barnes’s
model parameters and system of units [24]. The mass, length
and time scales are set to2.2 × 1011 M¯ = 1.40 kpc = 1
and 250 Myr= 1, respectively. In these units, the grav-
itational constant isGN = 1. The discs scale height is
z0 = 0.007 and the half mass radius of the galaxy is located
atR1/2 ≈ 11 kpc.

All isolated runs were performed withε = 0.015
(= 0.6 kpc) and∆t = 1/128 for N = 40 960, andε = 0.008
and∆t = 1/128 for N = 163 840, respectively. Galaxies
were evolved up tot = 12 (3 Gyrs). Results of some of
the runs are summarized in Table I, where columns are: the
model label (1), the number of particles (2), the SF strength
α (3), and SF length scaleλ (4). As a result of simulations
the following control parameters are displayed: the relative
change of components of the disc velocity dispersions, mea-
sured at time 0.5 and 3 Gyrs (5-7) [36], the disc angular mo-
mentum loss (8), the Toomre’s Q parameter (9), the Toomre’s
X parameter (10). The expressions for the last two parame-
ters can be found in Ref. 40.

FIGURE 1. Evolution of|A2| for models SFB00-SFB04 (top panel)
and for models SFC01-SFC04 (bottom panel).
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TABLE I. Numerical parameters of galaxy evolution runs.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Model N α λ γr γϕ γz
∆Ld
Ld0

× 100 Q X2

SFA00 40 960 0.0 - 0.724 0.734 1.037 4.1 2.5 2.2

SFA01 ” 0.3 1.0 1.096 0.933 1.404 6.1 3.0 2.0

SFA02 ” 0.3 0.4 1.051 0.936 1.262 4.5 2.8 2.0

SFA03 ” 0.3 0.2 2.049 1.576 1.608 8.4 3.0 1.5

SFA04 ” 0.3 0.1 1.673 1.345 1.114 7.7 2.9 1.0

SFB00 163 840 0.0 - 0.579 0.447 0.494 1.1 2.0 3.0

SFB01 ” 0.1 1.0 0.898 0.687 0.636 2.7 2.5 3.0

SFB02 ” 0.1 0.4 1.176 0.798 0.662 3.3 2.4 2.6

SFB03 ” 0.1 0.2 1.058 0.805 0.617 2.9 2.3 2.5

SFB04 ” 0.1 0.1 0.916 0.749 0.624 2.3 2.2 2.7

SFC01 ” 0.3 1.0 0.889 0.653 0.593 4.4 2.5 2.5

SFC02 ” 0.3 0.4 1.023 0.785 0.572 5.6 2.6 2.5

SFC03 ” 0.3 0.2 1.779 1.325 0.764 8.8 3.0 1.7

SFC04 ” 0.3 0.1 1.279 1.015 0.613 7.7 2.6 1.2

Table I shows, as in previous results [36], that experi-
ments made withN = 163 840 is less collisional than with
smaller number of particles (compare columns 5–7). Runs
series SFB are computed with SF strengthα = 0.1 and series
SFC withα = 0.3 and we observed that the heating of the
disc is also higher for a higher SF strength.

In Fig. 1 we show the time evolution of the amplitude of
the second harmonic,|A2|, which tells us about the appear-
ance of the bar at approximately 1.5 Gyr. The bar is stronger
for α = 0.3 thanα = 0.1, meanwhile in run SFB00 (New-
tonian) a bar appears only att ≈ 4 Gyrs. Also, the disc in
presence of SF heats stronger than in Newtonian case. This
is due to a bar that appears in all simulations with SF.

As it can be seen, a stronger SF produce stronger bars for
intermediateλ, reaching|A2| ≈ 0.3 for models SFC02 and
SFC03. We think that the enhanced heating and transfer of
the disc angular momentum in runs SFB02 and SFC03 is due
to a stronger and larger bar which in turn depends on SF pa-
rameters. The bar angular velocities neither depend onλ nor
α and have initially the valueΩp ≈ 6, which after∼ 1 Gyrs
decrease toΩp ≈ 5.7 in code units.

From Fig. 1 it is seen that SF withα = 0.3 andλ = 0.2
produces the strongest bar. This is probably due to some res-
onance of disc particle orbits with the selectedλ, which is
roughly equal to the bar’s length. The same result can be
seen in Fig. 2, where the final density contours of discs are
plotted.

FIGURE 2. Projected disc density contours att = 3Gyrs for mod-
els SFB00, SFC01-SFC04. Thick lines indicate zero level density
contours in logarithmic scale.
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FIGURE 3. Evolution of |A2| for models SFNP0-SFL10P0. Dotted lines correspond to the first galaxy (retrograde orbit) whereas solid lines
correspond to the second galaxy (prograde orbit).

4. Interacting galaxies simulations

In this section we describe 3D-simulations of collisions of
two identical galaxies, each of which are the same as the
used in study of isolated galaxies in the preceding section.
In a recent paper [36] we have shown how the numeri-
cal parameters influence the bar properties. In accordance
with this study we choose for the total number of particles
N = 163 840, the softening parameterε = 0.008 and the
time-step∆t = 1/128. This choice of parameters prevents
from an early bar formation, hence, it permits to study the
tidal effects on the bar formation.

We study the effect of the SF on tidal bar formation and
its properties, such as its amplitude and rotational velocity.
We compare the bar amplitude and its pattern speed for fixed
α, varyingλ and the impact parameter (p).

In order to maintain the same impact velocity and peri-
centric separation we have studied head-on and off-axis
impacts of galaxies launched with the initial velocities
v = |vx| = 200 km/s and the impact parameterp, whose
values are listed in Table I. The galaxies were relaxed up to
t = 0.25 Gyrs before placed on the orbits with the initial
separationR = 64 kpc. The whole collision is followed up
to t = 4 Gyrs. We consider prograde-retrograde and planar
collisions which allow us to investigate two possible direc-
tions of rotation and to check whether the bars emerge in ret-
rograde discs during the violent collision. The first galaxy

is retrograde, moves to the left and for off-axis collisions is
placed above, whereas the second galaxy is prograde, moves
to the right and is located below the first one.

TABLE II. Parameters of collisions with fixedα = 0.1

Run λ p Wiggle ? Wiggle ?

Disc 1 Disc 2

SFL01P0 0.1 0 no no

SFL01P1 - 0.4 yes no

SFL01P2 - 0.8 yes yes

SFL02P0 0.2 0 no no

SFL02P1 - 0.4 yes no

SFL02P2 - 0.8 yes yes

SFL04P0 0.4 0 no no

SFL04P1 - 0.4 yes no

SFL04P2 - 0.8 yes yes

SFL10P0 1.0 0 no no

SFL10P1 - 0.4 yes no

SFL10P2 - 0.8 no yes

SFNP0 ∞ 0 no no

SFNP1 - 0.4 yes yes

SFNP2 - 0.8 no yes
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The performed collision simulations are summarized in
Table II, where we have variedλ for a fixed value of the
Yukawa strengthα = 0.1. We use the following labeling
in model names: SF - for the scalar field, L(xx) - for the
lambda value multiplied by ten, and P(y) - for the pericentric
parameter expressed in number of disc radii. For the Newto-
nian simulations the SFN label is used. In all runs the total
energy and the total angular momentum conserve better than
1%. Movies of some collision simulations are available at
www.astro.inin.mx/ruslan/stt.

For all numerical experiments, we have plotted the evo-
lution of the amplitude of the second harmonic,|A2|, which
indicates the presence of a bar and corresponding pattern ve-
locity, Ω. We first consider head-on collisions. The graphics
of |A2| andΩ shown in Figs. 3 and 4, respectively, are all sim-
ilar and comparable to the Newtonian case, except for small
oscillations at the end of the run. These oscillations in-
crease with increasingλ and are also present in plots of bar
pattern speed.

Next, we discuss simulations with an impact parameter
equal to the disc’s radius,p = 16 kpc. A striking difference
between the run SFNP1 and runs SFL01P1-SFL10P1 is that
for SF models the bars in both discs have roughly the same
amplitude, independently ofλ, whereas in Newtonian case
their amplitudes differ by roughly twice, see Fig. 5. The fact
that the retrograde discs form bars indicate that the discs in

presence of SF are unstable and a short and strong enough
perturbation is sufficient to produce a bar. As in Newtonian
case, the retrograde bars are slightly faster than the prograde
ones, indicating their similarity with isolated bars. In general,
the pattern velocities of the prograde and retrograde bars for
models with SF are smaller than for the Newtonian model,
see Fig. 6.

Concerning encounters withp = 32 kpc, the curves in
Figs. 7 and 8 are similar for each case and show no much dif-
ference. The only remarkable feature is the higher peaks in
amplitudes of the prograde discs with SF in comparison with
the Newtonian case.

In general, the presence of SF with positiveα reduces the
gravitation force on scalesr > λ. In Ref. 36 we have seen
that larger values ofε for the Plummer softening produce bars
earlier. Thus, it is possible that the reduction of gravity either
due to smallε or largeλ is responsible for early formation
of long bars. With negativeα we expect to have a contrary
result,i.e., smaller bars that form later.

In addition, we have looked for morphological differ-
ences in spiral arms, such as thewiggle effect, which is the
periodic change of the direction of short arms at the end of
the bar from leading to trailing [36]. We visually search for
the presence of the wiggle in both discs, and the results are
listed in Table II.

FIGURE 4. Evolution ofΩ for models SFNP0-SFL10P0. The correspondence of curves is the same as in Fig. 3.
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FIGURE 5. Evolution of|A2| for models SFNP1-SFL10P1. The correspondence of curves is the same as in Fig. 3.

FIGURE 6. Evolution ofΩ for models SFNP1-SFL10P1. The correspondence of curves is the same as in Fig. 3.
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FIGURE 7. Evolution of|A2| for models SFNP2-SFL10P2. The correspondence of curves is the same as in Fig. 3.

FIGURE 8. Evolution ofΩ for models SFNP2-SFL10P2. The correspondence of curves is the same as in Fig. 3.
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5. Conclusions

We have used the Newtonian limit of general STT that are
compatible with local observations by the appropriate defini-
tion of the background field constant,i.e., 〈φ〉 = GN/(1+α).
Then, from large-scale experiments we set a range of possible
variations of the parameters of the modified gravitational the-
ory, parametrized by(λ, α). The general gravitational effect
is that the interaction with the SF becomes weaker (α > 0)
by a factor1/(1 + α) for r > λ in comparison with the
Newtonian case. Using the resulting modified dynamics, we
have studied isolated spirals and the collision of two equal
spiral galaxies. From our simulations with differentλ, we
have found that the inclusion of the SF changes the dynam-
ical properties of galaxies such as the bar morphology and
pattern velocity.

From the performed simulations of isolated galaxy mod-
els with differentλ, we can see that the addition of a non-
minimally coupled SF slightly modifies the equilibrium of
Newtonian model, acting as a perturbation, and diminishes
the total potential energy, since the effective gravitational
constant diminishes. This effect destabilizes the disc to form
a bar in all models withN = 163 840. Forα = 0.1, the SF
interaction scaleλ = 16 kpc produces a strongest bar, while
for α = 0.3, a strong bar forms forλ = 8 kpc. Also, for
these scales bars appear earlier. This suggests that there exists
some kind of resonance between stellar orbits and SF interac-
tion scale. The results we have found with positive values of
α imply that most of the spiral galaxies should be barred, but
this does not exactly correspond with the observational fact
that around70% of isolated galaxies are barred [45]. How-
ever, the bar found might be the result of the algorithm to
construct the initial models. Therefore, a next step is to con-
struct a stable self-consistent model in accordance with the
modified gravity. On the other hand, one could also study the
effects for negative values ofα, where the force augments for
distances bigger thanλ. A wide range of parameters should
be investigated and higher resolution have to be used in sim-
ulations in order to make predictions for particular models.

In the study of isolated galaxies was shown that the pres-
ence of the SF destabilizes the disc of isolated galaxies and
favors the bar formation. For collisions of two galaxies we
observe the same trend. In the off-axis collisions with the
impact parameter equal to the disc radius, the bars in both
prograde and retrograde discs have the same amplitude, in-
dependently ofλ. However, the wiggle does not appear in
the second disc, as shown in Table II. All these properties de-
pend on the pair (λ, α), which, on the other hand, can be con-
strained from observations that eventually will discriminate
among the different values of the parameters of the theory.

The results presented are only preliminary, and we de-
scribe the overall differences without giving a full interpreta-
tion. A broad range of parameters should be investigated and
higher resolution have to be used in simulations in order to
make comparisons with the observed interacting galaxies.

Acknowledgements

This work has been partially supported by CONACYT under
contracts U43534-R, 44917-F and J200.476/2004.

A The Newtonian limit of STT

We start with the field equations are given bye Eqs. (2)
and (3) and compute the Newtonian limit of the scalar-tensor
theory to first order. Accordingly, we assume that the poten-
tial oscillates around the background field

φ = 〈φ〉+ φ̄, 〈φ〉 = const. , (A.1)

and we expand the field quantities around〈φ〉 and the
Minkowski metric (gµν = ηµν + hµν) to first order, be-
ing φ̄ ¿ 〈φ〉 and hµν ¿ ηµν . We assume that the field
is quasi-stationary, such that all time derivatives can be ig-
nored: ¤φ = −∇2φ̄. Additionally, one has thatρc2 À p,
andT = T00 = ρ.

With these assumptions we can expand all terms of field
equations (2-3) and use Taylor series for the unknown func-
tionsω(φ) andV (φ) in terms of the small quantitȳφ. Let us
first consider Eq. (2). The terms on the l.h.s., after inserting
the perturbed metric and assuming the linearized harmonic
gauge, can be written as:

Rµν − 1
2
gµνR =

1
2

(
hµν − 1

2
ηµνh

),λ

,λ

, (A.2)

whereh = hµ
µ. The first term on the r.h.s. is the usual general

relativity term. The second term can be written as follows:

1
2
V gµν =

1
2
V (ηµν + hµν) . (A.3)

The third and fourth terms vanish because these are second
order terms in the expansion:

∂µφ∂νφ = ∂µφ̄∂ν φ̄. (A.4)

The last two terms can be written as

φ;µν − gµν¤φ = φ̄;µν + ηµν∇2φ̄, (A.5)

and

φ̄;µν =
(
φ̄,µ

)
;ν

= φ̄,µν − Γβ
µν φ̄,β . (A.6)

Substituting the above expansions into Eq. (2) we may write:

1
2

(
hµν−1

2
ηµνh

),λ

,λ

=−
[

1
〈φ〉−

1
〈φ〉2 φ̄

]

×
[
8πTµν−V

2
(ηµν+hµν)+φ̄;µν

+(ηµν+hµν)∇2φ̄
]

(A.7)
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If we multiply the Eq. (A.7) byηµν and take the trace, the
l.h.s. can be written as

1
2

(
ηµνhµν − 1

2
ηµνηµνh

),λ

,λ

=
1
2

(h− 2h),λ
,λ = −1

2
h,λ

,λ , (A.8)

and the r.h.s. as

−
[

1
〈φ〉 −

1
〈φ〉2 φ̄

]

×
[
8πρ− V

2
(4 + h)−∇2φ̄ + (4 + h)∇2φ̄

]
. (A.9)

In the last equation we used the relation

φ̄ ;ν
,ν = −∇2φ̄, (A.10)

valid to first order. Now, let us rewrite the Eq. (A.2) as fol-
lows:

1
2

(
hµν − 1

2
ηµνh

),λ

,λ

=
1
2

(
h,λ

µν,λ −
1
2
ηµνh,λ

,λ

)
, (A.11)

in which we insert A.9 instead of the term−h,λ
,λ and using

Eq. (A.7) we obtain

1
2
h,λ

µν,λ −
1
2
ηµν

[
1
〈φ〉 −

1
〈φ〉2 φ̄

]

×
[
8πρ− V

2
(4 + h) + h∇2φ̄ + 3∇2φ̄

]

= −
[

1
〈φ〉 −

1
〈φ〉2 φ̄

] [
8πTµν − V

2
(ηµν + hµν)

+φ̄;µν + (ηµν + hµν)∇2φ̄
]
. (A.12)

Let µ = ν = 0. Then, the above equation becomes to first
order

1
2
h,λ

00,λ ≡ −∇2Φ

= −
[

1
〈φ〉

] [
4πρ +

V

2
− V

2
h00 +

V h

4
− 1

2
∇2φ̄

]

+

[
φ̄

〈φ〉2
] [

4πρ +
V

2

]
, (A.13)

whereΦ is modified Newtonian potential. Here we used the
fact that

1
2

(h00)
,λ
,λ =

1
2

(h00)
,0
,0 −

1
2

(h00)
,i
,i

= −1
2

(h00)
,i
,i =

1
2
∇2h00. (A.14)

Finally, expanding the potential

V = V (〈φ〉) +
∂V

∂φ̄

∣∣∣∣
〈φ〉

φ̄ + · · · , (A.15)

and discarding terms higher than first order we reach the the
expression

1
2
∇2ΦN =

1
〈φ〉

[
4πρ− 1

2
∇2φ̄

]
. (A.16)

Accordingly, particles in our galactic models experience a
force given byF = −∇ΦN . Now, consider Eq. (3). The
terms that depend onφ can be expanded to the first order:

1
3 + 2ω

=
1

3 + 2ω

∣∣∣∣
(〈φ〉)

+
∂

∂φ̄

(
1

3 + 2ω

)∣∣∣∣
〈φ〉

φ̄ + · · · (A.17)

ω
′
(φ) = ω

′
〈φ〉 + ω

′′
〈φ〉φ̄ + · · · (A.18)

Let us make the following notation:

V (〈φ〉) ≡ V〈φ〉,
∂V

∂φ̄

∣∣∣∣
〈φ〉

≡ V
′
〈φ〉. (A.19)

1
3+2ω

∣∣∣∣
(〈φ〉)

≡α〈φ〉,
∂

∂φ̄

(
1

3+2ω

)∣∣∣∣
〈φ〉
≡α

′
〈φ〉. (A.20)

Substituting Eqs. (A.15), (A.17-A.20) into Eq. (3) and keep-
ing only the terms up to the first order, we obtain:

−∇2φ̄ + α2
〈φ〉

[
α−1
〈φ〉

(
〈φ〉V ′′

〈φ〉 − V
′
〈φ〉

)

−2ω
′
〈φ〉

(
〈φ〉V ′

〈φ〉 − 2V〈φ〉
)

+ 16πρω
′
〈φ〉

]
φ̄

= α〈φ〉
[
8πρ + 2V〈φ〉 − 〈φ〉V

′
〈φ〉

]
. (A.21)

The constant in the second term of the l.h.s. represents an -
squared- effective mass term of the theory that we will denote
asm2. Last two terms in the r.h.s. represent a cosmological
constant that we will set to zero, since the mean density of
the galaxy is much greater than this term. Accordingly, we
finally have:

−∇2φ̄ + m2φ̄ = 8πα〈φ〉ρ . (A.22)

This equation together with Eq. (A.16) represent the Newto-
nian limit of general STT that can be expanded around the
background quantities〈φ〉 andηµν .
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