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In our proposal the Riemannian structure of the 5D space-time is replaced by a Weyl integrable one, which allows for variations in the ler
of vectors during parallel transport. The conformal technique is used to find a solution that respects 4C&Romdance. This solution
represents a set of thick branes that do not respesymmetry and generalises, in this way, the Randall-Sundrum solution. In our set-up the
non symmetric branes are constructed from the scalar field and we have no need of introducing them by hand as delta functions in the a
(as in the Randall-Sundrum case). We examine the fluctuations of the metric around the background solution. The equation for the trans'
traceless modes of the fluctuations that decouple from the scalar field supports a naturally massless and normalizable 4D graviton. Thu
model reproduces conventional 4D gravity. The spectrum of the Kaluza-Klein modes turns out to be continuous (as in the Randall-Sund
case).

Keywords:Localization of 4D gravity; thick branes; 5D Weyl manifold.

En el presente trabajo, la estructura Riemanniana del espacio-tiempo en 5D es reemplazada por una variedad integrable de Weyl que
variaciones en la longitud de vectores durante el transporte paralelo de los mismos. A cantiseatiliza la&cnica conforme para hallar

una soluddn que preserva la invariancia de Poiricdbicha soludn representa una familia de membranas anchas que violan laiaifietr

y generalizan el modelo Randall-Sundrum. En este modelo, las membranas anchas son construidas a partir del campo escalar, evitar
este modo, la introdudn de las membranas delgadas (funciones delta) en laraa@mo en el caso Randall-Sundrum. Posteriormente
se estudian las fluctuaciones de létrica en torno a la soluan clasica. La ecuadh de los modos transversos de traza nula de dichas
fluctuaciones, mismas que se desacoplan de las del campo escalar, permiten la existencia déruemrYinaturalmente normalizable y

sin masa. De este modo, nuestro modelo reproduce la gravedad convencional en 4D. El espectro de modos masivos de Kaluza-Klein r
ser continuo como en el caso Randall-Sundrum.

Descriptores:Localizacbn de la gravedad en 4D; membranas anchas; variedades de Weyl en 5D.

PACS: 11.25.Mj; 11.27.+d; 11.10.Kk; 04.50.+h

1. Introduction ric around the classical background solution in order to know
whether 4D gravity can be described in our setup. We found

During last years it has shown an increasing interest in spaagat this is the case since the quantum mechanical problem

times with large extra dimensions since in these models grawvith a potential well which vanishes asymptotically for the

ity propagates in all dimensions while matter is confined totransverse traceless sector of the fluctuations of the metric

a 4D submanifold (a 3—brane) with no contradiction with re-yields a continuum spectrum of KK—states with a zero mode

cent gravitational experiments [1, 2]. In the framework of that corresponds to the normalizable, stable 4D graviton.

brane scenarios in 5D space time it has been shown a path to-

ward_s the soluuqn of some releyant problems qf hlgh—energ&l The model

physics. In particular, it was discovered that in such brane

scenarios 4D gravity can be realized consistently and it is feg-gt s start by considering a pure geometrical Weyl action in

sible to live in4+1 non—compact dimensions in perfect com- five dimensions. This non-Riemannian generalization of the
patibility with experimental gravity [3,4]. Since then, several k3|uza—Klein theory is given by

generalizations of these scenarios have been constructed with .

the aid of thick branes [5-9]. . _ SW = / z |g|e%‘”[R+3§(Vw)2 FEUWYL (1)
In this frame, we begin by studying a 5D Weyl! gravity 167Gs

model in which branes arise naturally without introducing

them by hand in the action of the theory. We implementwhere M is a Weyl manifold specified by the pair

the conformal technique to obtain a classical solution thatg,,x,w), ga n being the metric and a Weyl scalar func-

respects 4D Poincéarinvariance and represents a localizedtion. The Weylian Ricci tensor reads

function with no reflectiornZ,—symmetry. By looking at the A A R P 0

energy density of the scalar field of this solution we interpret Bun =Tyna —Tamn +TunTpo = Tl 'Re,

the field configuration as a set of ndfy—symmetric thick \yhere

branes. We investigate as well the behaviour of the curvature 1

scalar and make an analysis of the fluctuations of the met- cmvuv = {ﬁN} ) (W,Mfsff + w,N51(\j4 - gMNW"C)

MY
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are the affine connections oV, {1 are the Christof- minimally coupled to a scalar field which possesses a self—
fel symbols andM, N = 0,1,2,3,5; the constanLg is an interaction potential. After this transformation, the line ele-
arbitrary coupling parameter, aif(w) is a self—interaction ment (3) yields the Riemannian metric

potential for the scalar field. This action is of pure geomet- 5

rical nature since the scalar fieldenters in the definition of dsy = €2 Wy, da™da™ + e ™ dy?, (6)

the affine connections of the Weyl manifold and, thus, cannot ) )

be discarded in principle from our consideration. Apart fromWhere2o = 24 + w. Further, by following [8] we introduce
the self-interaction potential, the action (1) is invariant undetn® new variablex’ = »”andY” = 24’ and get the following

Weyl rescalings pair of coupled field equations from the action (5)
gun = Q %gun, O s w+InQ? X’+2YX—;X2:%Z—U(“,
~ ~ w
& —¢&/(1+0,n0%2, )

3 1dU
. , Y/ +2Y? - SXY = | —— +4U | e™*. 7
where 22 is a smooth function on/}V. It follows from * 2 (5 dw " U) c 0

these relations that the potential must undergo the transfor-
mationU’ — Q2U in order to keep such an invariance. Thus, In general, it is not trivial to fully integrate these field equa-
U(w) = Ae*, where) is a constant parameter, is the form of tions. Under some assumptions, it is straightforward to con-
the potential which preserves the scale invariance of the Weyatruct several particular solutions to them. However, quite of-
manifold (1). When this invariance is broken, the Weyl scalarten such solutions lead to expressions of the dynamical vari-
field is transformed into a degree of freedom which modelgbles that are too complicated for an analytical treatment in
the thick branes. closed form.

In order to find the solutions of the theory with 4D  As pointed outin Ref. 8, this system of equations can be

Poincag invariance we consider the following ansatz for the€asily solved if one uses the conditiah= kY, wherek is an-
line element arbitrary constant parameter.After imposing these conditions

and setting = 1 — k/4k, the field equation (9) simplifies to

2 _ 2A(y) m j..n 2
dsy = e Nmndx™dz™ + dy~, 3) v 4 — 3ky2 B 4\ @®
wheree24 ) is the warp factorn, n = 0,1, 2, 3 andy is the 2 1=k
extra coordinate. This choice accounts to having a self—interaction potential
The 5D stress—energy tensor is given by its 4D and pur¢/ = \e2v in the Weyl frame, which indeed breaks the invari-
5D components ance of the action (1) under Weyl rescalings. It turns out that
this restriction leads to a Riemannian potential of the form
T = A [BA" + 6(A")*|npmn, U = \elk¢/1=F)« Thus, under these conditions, both field
8 G equations in (7) reduce to a single differential equation
6
Tss = A2 4 _ i
% = grcs ) “) y 42 23ky2 = 1‘“}@4%*1%}. 9)
here t.he comma denotes derivatives with respect to the fifth By solving (9) we find the following solution
coordinatey.
62A(y) = ks (eay + kle—ay)b7
3. The solution w—1n [k2 (e + kle—ay)kb} ’ (10)
To find a solution we shall use the conformal technique: by h
means of a conformal transformation we jump from the WeylW ere
frame to the Riemann one, to find solutions to our system, 4 — 3k 2
then return to the Weyl frame. We perform the conformal C=\V 1% 20 b= 4 _ 3k’ (11)
transformationgy,y = e“gan, Mmapping the Weylian ac- ]
tion (1) into the Riemannian one andk;, k, andks are arbitrary constants.

This represents a solution which does not respect
d° al ~ ~ ~ Zy—symmetry { — —y) due to the presence of the constant
S5 = / 1677\{;’?[}% +3¢(Vw)* +6U(w), () parametet . If we look at the particular case whén = 1,
ME ky = 27%0 andk; = 27 we recover theZ,—symmetric solu-
. R tion previously found by [8] in the Weyl frame and by [5]- [6]
where¢ = ¢ — 1, U(w) = e “U(w) and all hatted magni- in the Riemann one:
tudes and operators are defined in the Riemann frame. In i b
this frame we have a theory which describes 5D gravity ¢ = [cosh(ay)]’,  w=bkIn[cosh(ay)]. (12)
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FIGURE 1. The shape of the warp facter*, The energy den-
sity functiony and the shape of the potential a volcano with finite
bottom, all of them reescaled.

4. Physics of the system

Let us turn to study the physics of the found solution in the
Weyl frame, we first analyze the behaviour of the warp factor,
the energy density of the scalar field, the curvature scalar of
the system as well as the metric fluctuations.

The warp factor and the scalar field depends on the val-
ues of the constants,, ko, k3, a,b. Thus, we have a family
of solutions depending on the values of the paramétgra
andk. We look for cases where the warp factor is a localized,
smooth and well behaved function which in fact models the
fifth dimension. By taking into account this fact, we have the
following cases of interest:

A) A > 0,k > 4/3 andk; > 0. In this case the do-
main of the fifth coordinate is-co < y < oo; thus, we
have a non—compact manifold in the extra dimension
It turns out that in this case the warp factor represents
smooth localized function but nat,—symmetric char-
acterized by the width parametar~ 1/a (see Fig. 1).

Itis easy to see that; measures th&;—asymmetry of
the solution through a shift along the positive axis of
the extra coordinate given by the valyg Since this

ds?2 = A9 [, + hyn (2, y)]da™dz™ + dy?.

This function shows two negative minima and a pos-
itive maximum between them and, finally, it vanishes
asymptotically fory = +c0. Itis displayed in Fig. 1.

The 5-dimensional curvature scalar reads
—16(12bl€1
(e + kye—v)2
5b
16k

Rs =

1+ (€™ — kye™ )2 (14)

We can see that this quantity is always bounded, thus,
in contrast with the singular manifold that arises in the

Riemann frame, we have a 5D manifold that is regular
in the Weyl frame.

ki > 0, A > 0andl < k < 4/3. In this case we
havea € S, b > 0 and we must replace — i« in
order to have a real warp factor. Moreover, the only
possible choice for the parameter is k&; = 1 (oth-
erwise the solution becomes complex), and we get a
Zs—symmetric function

e*AW) = k3 cosb(ay). (15)
Thus, this represents a manifold which is periodic in
the extra dimension, ser < ay < m, and we have
the same compact case that was obtained in Ref. 8.

Other cases of physical interest are contained in A)
and B). The remaining possible values of these param-
eters lead to unphysical situations in which the warp
factor and the scalar energy density are singular at cer-
tain values of the fifth dimensiopand, hence, do not
represent localized functions.

§. Fluctuations of the metric

Let us turn to study the metric fluctuatiohs,,, of the met-
ric (3) given by the perturbed line element

(16)

constant appears multiplying an exponential functionEven if one cannot avoid considering fluctuations of the
of y, its effect is quite small and, hence, the solutionscalar field when treating fluctuations of the background met-

slightly deviates from theZ,—symmetric one. How- ric, in Ref. 5 it was shown that the transverse traceless modes
ever, the physical implications of this fact are quite im- of the metric fluctuations decouples from the scalar sector

portant, namely, the 5D space time is not restricted tcnd hence, can be approached analytically. _
be an orbifold geometry, allowing for a more general By following this method, we perform the coordinate

kind of dimensional reductions when going down to transformationdw = e~“dy, which leads to a conformally
four dimensions. flat metric and to the following wave equation for the trans-

The energy density of the scalar matter is given by verse traceless modag,,, of the metric fluctuations

—6a%bks , , b 02 +3A40,, +0O"MAL  =0. (17)
wy) = 8#76‘53(6 Yt kyem )2 ( )
This equation supports a massless and normalizable 4D
% [1— i(ea’y — Ky )2 (13)  graviton given byhl, = Cy.,e™*, whereC,,, are con-
4k stant parameters and? = 0.
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In Ref. 3 it was proved useful to recast equation (17) intotraceless modes witl? < 0. In addition to this massless
Schibdinger’s equation form. In order to accomplish this, wemode, there exists a tower of higher KK modes with positive
adopt the following ansatz for the transverse traceless modes? > 0.

of the fluctuations”, | = e"™*e=34/2¢, . (w) and get Thus, we have obtained Weylian thick brane generaliza-
) ) tions of the RS model with no reflection symmetry imposed
[0y, — V(w) +m7]¥ =0, (18)  in which the 4D effective theory possesses an energy spec-

o trum quite similar to the spectrum of the thin wall case, in
where we have dropped the subscript@inm is the mass of - aricylar, 4D gravity turns out to be localized at a certain
the KK excitation, and the potential reads value of the fifth dimension.

3 9
V(w) = —02A + =(0,A4)°. 19 _
w)=5 10w A) (19) 6. Concluding Remarks
The shape of the potenti&i(r) for the case A) is given

. : By means of the conformal technique we obtained a 4D
by the following expression:

Poincaé invariant solution which represents a well behaved

Vv — 302Dk (Y & oy Y )02 localized function and does not respett-symmetry along
(w(y)) @bk (e + k™) the extra dimension. Thus, we have obtained a thick brane
5b i ati N o
% [1 n (€% — kye~a¥)? (20) gene.rallza}tlon of the Randgll Sundrqm quel. This flgld
16k, configuration does not restrict the 5—dimensional space time

. . : . to be an orbifold geometry. When we set the parameter
By looking at Fig. 1 we see that this potential represents7Cl — 1 our solutior?reprodzces tH&—symmetric sorl)utions

\?vrilc?: gll?cgtzgIt)eetr:/sg]:rt:\;\?vénpl)glsni}[ﬁg rz;iir?qzrt(?)lgt(\e/ﬁ%ﬁ bar_previously found in the literature in both the Riemann and the
. : ) . Weyl frame. By lookin h lar ener ngityf our
riers) and then vanishes as= +oo (a volcano potential with eyl frame. By looking at the scalar energy dengitgf ou

. field configuration, we see that it shows a thick brane with
finite bottom).

. _ _ ~ positive energy density centeredygtand accompanied by a
In the particular casé = 5/3 (henceb = —2), the co small amount of negative energy density at each side.

ordinate transformation can be successfully inverted and we Th | f the Ri ! ifold
et A(w) = —In [(a%ksw? + 4k, ) /ks] /2 which yields a e scalar curvature of the Riemannian manifold turns
9 . 3 3 out to be singular for the found solution, whereas the corre-
potential of the form . o )
sponding quantity in the Weyl integrable geometry presents a
N 3a%ks (5a2kzw? — 8k, ) regular behaviour along the whole fifth dimension.
V(r)= Y TRERUTRE (21) By studying the behaviour of the transverse traceless
(a%ksw? + 4ky) modes of the fluctuations of the metric we recast their equa-

In the Schadinger equation, the spectrum of eigenval-tions into a one dimensional Satlinger equation with a
uesm? parameterizes the spectrum of graviton masses th&tuantum mechanical potential that represents a volcano with
a 4D observer located at, sees. It turns out that for the finite bottom. We solve the Soﬂlnger equation for the mass-
Zero moden2 — 0, this equation can be solved. The 0n|y less zero rT'l(’Jdﬁ”L2 =0 Obtaining a Single bound state which
normalizable eigenfunction reads represents the lowest energy eigenfunction, allowing for the
existence of a 4—dimensional graviton with no instabilities
from transverse traceless modes with < 0. We also get a
huge tower of higher KK states with positive? > 0 that are
where ¢ is a normalization constant. This function rep- suppressed afy, turning into continuum plane wave modes
resents the lowest energy eigenfunction of thed®ahger asy approaches spatial infinity [4,5]. Since all valuesiof
equation (18) since it has no zeros. This fact allows for the exare allowed, the spectrum turns out to be continuum and gap-
istence of a 4D graviton with no instabilities from transverseless.

\I’O =q [cil(w - w0)2 + 6)\] —3/4
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