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Geometrical thick branes in 5D Weyl gravity
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In our proposal the Riemannian structure of the 5D space-time is replaced by a Weyl integrable one, which allows for variations in the length
of vectors during parallel transport. The conformal technique is used to find a solution that respects 4D Poincaré invariance. This solution
represents a set of thick branes that do not respectZ2 symmetry and generalises, in this way, the Randall-Sundrum solution. In our set-up the
non symmetric branes are constructed from the scalar field and we have no need of introducing them by hand as delta functions in the action
(as in the Randall-Sundrum case). We examine the fluctuations of the metric around the background solution. The equation for the transverse
traceless modes of the fluctuations that decouple from the scalar field supports a naturally massless and normalizable 4D graviton. Thus, our
model reproduces conventional 4D gravity. The spectrum of the Kaluza-Klein modes turns out to be continuous (as in the Randall-Sundrum
case).
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En el presente trabajo, la estructura Riemanniana del espacio-tiempo en 5D es reemplazada por una variedad integrable de Weyl que permite
variaciones en la longitud de vectores durante el transporte paralelo de los mismos. A continuación se utiliza la t́ecnica conforme para hallar
una solucíon que preserva la invariancia de Poincaré. Dicha solucíon representa una familia de membranas anchas que violan la simetrı́aZ2

y generalizan el modelo Randall–Sundrum. En este modelo, las membranas anchas son construidas a partir del campo escalar, evitando, de
este modo, la introducción de las membranas delgadas (funciones delta) en la acción, como en el caso Randall–Sundrum. Posteriormente
se estudian las fluctuaciones de la métrica en torno a la solución cĺasica. La ecuación de los modos transversos de traza nula de dichas
fluctuaciones, mismas que se desacoplan de las del campo escalar, permiten la existencia de un gravitón en 4D naturalmente normalizable y
sin masa. De este modo, nuestro modelo reproduce la gravedad convencional en 4D. El espectro de modos masivos de Kaluza-Klein resulta
ser continuo como en el caso Randall–Sundrum.

Descriptores:Localizacíon de la gravedad en 4D; membranas anchas; variedades de Weyl en 5D.
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1. Introduction

During last years it has shown an increasing interest in space
times with large extra dimensions since in these models grav-
ity propagates in all dimensions while matter is confined to
a 4D submanifold (a 3–brane) with no contradiction with re-
cent gravitational experiments [1, 2]. In the framework of
brane scenarios in 5D space time it has been shown a path to-
wards the solution of some relevant problems of high–energy
physics. In particular, it was discovered that in such brane
scenarios 4D gravity can be realized consistently and it is fea-
sible to live in4+1 non–compact dimensions in perfect com-
patibility with experimental gravity [3,4]. Since then, several
generalizations of these scenarios have been constructed with
the aid of thick branes [5-9].

In this frame, we begin by studying a 5D Weyl gravity
model in which branes arise naturally without introducing
them by hand in the action of the theory. We implement
the conformal technique to obtain a classical solution that
respects 4D Poincaré invariance and represents a localized
function with no reflectionZ2–symmetry. By looking at the
energy density of the scalar field of this solution we interpret
the field configuration as a set of nonZ2–symmetric thick
branes. We investigate as well the behaviour of the curvature
scalar and make an analysis of the fluctuations of the met-

ric around the classical background solution in order to know
whether 4D gravity can be described in our setup. We found
that this is the case since the quantum mechanical problem
with a potential well which vanishes asymptotically for the
transverse traceless sector of the fluctuations of the metric
yields a continuum spectrum of KK–states with a zero mode
that corresponds to the normalizable, stable 4D graviton.

2. The model

Let us start by considering a pure geometrical Weyl action in
five dimensions. This non–Riemannian generalization of the
Kaluza–Klein theory is given by

SW
5 =

∫

MW
5

d5x
√
|g|

16πG5
e

3
2 ω[R + 3ξ̃(∇ω)2 + 6U(ω)], (1)

where MW
5 is a Weyl manifold specified by the pair

(gMN , ω), gMN being the metric andω a Weyl scalar func-
tion. The Weylian Ricci tensor reads

RMN = ΓA
MN,A − ΓA

AM,N + ΓP
MNΓQ

PQ − ΓP
MQΓQ

NP ,
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1
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M − gMNω,C
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are the affine connections onMW
5 , { C

MN} are the Christof-
fel symbols andM, N = 0, 1, 2, 3, 5; the constant̃ξ is an
arbitrary coupling parameter, andU(ω) is a self–interaction
potential for the scalar fieldω. This action is of pure geomet-
rical nature since the scalar fieldω enters in the definition of
the affine connections of the Weyl manifold and, thus, cannot
be discarded in principle from our consideration. Apart from
the self–interaction potential, the action (1) is invariant under
Weyl rescalings

g′MN → Ω−2gMN , ω′ → ω + ln Ω2,

ξ̃′ → ξ̃/(1 + ∂ω lnΩ2)2, (2)

whereΩ2 is a smooth function onMW
5 . It follows from

these relations that the potential must undergo the transfor-
mationU ′ → Ω2U in order to keep such an invariance. Thus,
U(w) = λeω, whereλ is a constant parameter, is the form of
the potential which preserves the scale invariance of the Weyl
manifold (1). When this invariance is broken, the Weyl scalar
field is transformed into a degree of freedom which models
the thick branes.

In order to find the solutions of the theory with 4D
Poincaŕe invariance we consider the following ansatz for the
line element

ds2
5 = e2A(y)ηmndxmdxn + dy2, (3)

wheree2A(y) is the warp factor,m, n = 0, 1, 2, 3 andy is the
extra coordinate.

The 5D stress–energy tensor is given by its 4D and pure
5D components

Tmn =
1

8πG5
e2A[3A′′ + 6(A′)2]ηmn,

T55 =
6

8πG5
(A′)2. (4)

here the comma denotes derivatives with respect to the fifth
coordinatey.

3. The solution

To find a solution we shall use the conformal technique: by
means of a conformal transformation we jump from the Weyl
frame to the Riemann one, to find solutions to our system,
then return to the Weyl frame. We perform the conformal
transformation̂gMN = eωgMN , mapping the Weylian ac-
tion (1) into the Riemannian one

SR
5 =

∫

MR
5

d5x
√
|ĝ|

16πG5
[R̂ + 3ξ(∇̂ω)2 + 6Û(ω)], (5)

whereξ = ξ̃ − 1, Û(ω) = e−ωU(ω) and all hatted magni-
tudes and operators are defined in the Riemann frame. In
this frame we have a theory which describes 5D gravity

minimally coupled to a scalar field which possesses a self–
interaction potential. After this transformation, the line ele-
ment (3) yields the Riemannian metric

d̂s
2

5 = e2σ(y)ηnmdxndxm + eω(y)dy2, (6)

where2σ = 2A + ω. Further, by following [8] we introduce
the new variablesX = ω′ andY = 2A′ and get the following
pair of coupled field equations from the action (5)

X ′ + 2Y X − 3
2
X2 =

1
ξ

dÛ

dω
e−ω,

Y ′ + 2Y 2 − 3
2
XY =

(
1
ξ

dÛ

dω
+ 4Û

)
e−ω. (7)

In general, it is not trivial to fully integrate these field equa-
tions. Under some assumptions, it is straightforward to con-
struct several particular solutions to them. However, quite of-
ten such solutions lead to expressions of the dynamical vari-
ables that are too complicated for an analytical treatment in
closed form.

As pointed out in Ref. 8, this system of equations can be
easily solved if one uses the conditionX = kY , wherek is an
arbitrary constant parameter.After imposing these conditions
and settingξ = 1− k/4k, the field equation (9) simplifies to

Y ′ +
4− 3k

2
Y 2 =

4λ

1− k
. (8)

This choice accounts to having a self–interaction potential
U = λe2ω in the Weyl frame, which indeed breaks the invari-
ance of the action (1) under Weyl rescalings. It turns out that
this restriction leads to a Riemannian potential of the form
Û = λe(4kξ/1−k)ω. Thus, under these conditions, both field
equations in (7) reduce to a single differential equation

Y ′ +
4− 3k

2
Y 2 =

4λ

1− k
e( 4kξ

1−k−1)ω. (9)

By solving (9) we find the following solution

e2A(y) = k3

(
eay + k1e

−ay
)b

,

ω = ln
[
k2

(
eay + k1e

−ay
)kb

]
, (10)

where

a =

√
4− 3k

1− k
2λ, b =

2
4− 3k

, (11)

andk1, k2 andk3 are arbitrary constants.
This represents a solution which does not respect

Z2–symmetry (y −→ −y) due to the presence of the constant
parameterk1. If we look at the particular case whenk1 = 1,
k2 = 2−kb andk3 = 2−b we recover theZ2–symmetric solu-
tion previously found by [8] in the Weyl frame and by [5]– [6]
in the Riemann one:

e2A(y) = [cosh(ay)]b , ω = bk ln [cosh(ay)] . (12)
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FIGURE 1. The shape of the warp factore2A, The energy den-
sity functionµ and the shape of the potential a volcano with finite
bottom, all of them reescaled.

4. Physics of the system

Let us turn to study the physics of the found solution in the
Weyl frame, we first analyze the behaviour of the warp factor,
the energy density of the scalar field, the curvature scalar of
the system as well as the metric fluctuations.

The warp factor and the scalar field depends on the val-
ues of the constantsk1, k2, k3, a, b. Thus, we have a family
of solutions depending on the values of the parametersk1, λ
andk. We look for cases where the warp factor is a localized,
smooth and well behaved function which in fact models the
fifth dimension. By taking into account this fact, we have the
following cases of interest:

A) λ > 0, k > 4/3 andk1 > 0. In this case the do-
main of the fifth coordinate is−∞ < y < ∞; thus, we
have a non–compact manifold in the extra dimension.
It turns out that in this case the warp factor represents a
smooth localized function but nonZ2–symmetric char-
acterized by the width parameter∆ ∼ 1/a (see Fig. 1).

It is easy to see thatk1 measures theZ2–asymmetry of
the solution through a shift along the positive axis of
the extra coordinate given by the valuey0. Since this
constant appears multiplying an exponential function
of y, its effect is quite small and, hence, the solution
slightly deviates from theZ2–symmetric one. How-
ever, the physical implications of this fact are quite im-
portant, namely, the 5D space time is not restricted to
be an orbifold geometry, allowing for a more general
kind of dimensional reductions when going down to
four dimensions.

The energy density of the scalar matter is given by

µ(y) =
−6a2bk3

8πG5
(eay + k1e

−ay)b−2

×
[
1− b

4k1
(eay − k1e

−ay)2
]

. (13)

This function shows two negative minima and a pos-
itive maximum between them and, finally, it vanishes
asymptotically fory = ±∞. It is displayed in Fig. 1.

The 5-dimensional curvature scalar reads

R5 =
−16a2bk1

(eay + k1e−ay)2

×
[
1 +

5b

16k1
(eay − k1e

−ay)2
]

. (14)

We can see that this quantity is always bounded, thus,
in contrast with the singular manifold that arises in the
Riemann frame, we have a 5D manifold that is regular
in the Weyl frame.

B) k1 > 0, λ > 0 and1 < k < 4/3. In this case we
havea ∈ =, b > 0 and we must replacea → iα in
order to have a real warp factor. Moreover, the only
possible choice for the parameterk1 is k1 = 1 (oth-
erwise the solution becomes complex), and we get a
Z2–symmetric function

e2A(y) = k3 cosb(αy). (15)

Thus, this represents a manifold which is periodic in
the extra dimension, so−π ≤ αy ≤ π, and we have
the same compact case that was obtained in Ref. 8.

Other cases of physical interest are contained in A)
and B). The remaining possible values of these param-
eters lead to unphysical situations in which the warp
factor and the scalar energy density are singular at cer-
tain values of the fifth dimensiony and, hence, do not
represent localized functions.

5. Fluctuations of the metric

Let us turn to study the metric fluctuationshmn of the met-
ric (3) given by the perturbed line element

ds2
5 = e2A(y)[ηmn + hmn(x, y)]dxmdxn + dy2. (16)

Even if one cannot avoid considering fluctuations of the
scalar field when treating fluctuations of the background met-
ric, in Ref. 5 it was shown that the transverse traceless modes
of the metric fluctuations decouples from the scalar sector
and hence, can be approached analytically.

By following this method, we perform the coordinate
transformationdw = e−Ady, which leads to a conformally
flat metric and to the following wave equation for the trans-
verse traceless modeshT

mn of the metric fluctuations

(∂2
w + 3A′∂w + ¤η)hT

mn = 0. (17)

This equation supports a massless and normalizable 4D
graviton given byhT

mn = Cmneimx, whereCmn are con-
stant parameters andm2 = 0.
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In Ref. 3 it was proved useful to recast equation (17) into
Schr̈odinger’s equation form. In order to accomplish this, we
adopt the following ansatz for the transverse traceless modes
of the fluctuationshT

mn = eimxe−3A/2Ψmn(w) and get

[∂2
w − V (w) + m2]Ψ = 0, (18)

where we have dropped the subscripts inΨ, m is the mass of
the KK excitation, and the potential reads

V (w) =
3
2
∂2

wA +
9
4
(∂wA)2. (19)

The shape of the potentialV (r) for the case A) is given
by the following expression:

V (w(y)) = 3a2bk1(eay + k1e
−ay)b−2

×
[
1 +

5b

16k1
(eay − k1e

−ay)2
]

(20)

By looking at Fig. 1 we see that this potential represents
a well with a finite negative minimum at a certain valuey0,
which is located between two positive maxima (potential bar-
riers) and then vanishes asy = ±∞ (a volcano potential with
finite bottom).

In the particular casek = 5/3 (henceb = −2), the co-
ordinate transformation can be successfully inverted and we
get A(w) = − ln

[(
a2k3w

2 + 4k1

)
/k3

]
/2 which yields a

potential of the form

V̂ (r) =
3a2k3

(
5a2k3w

2 − 8k1

)

4 (a2k3w2 + 4k1)
2 . (21)

In the Schr̈odinger equation, the spectrum of eigenval-
uesm2 parameterizes the spectrum of graviton masses that
a 4D observer located atw0 sees. It turns out that for the
zero modem2 = 0, this equation can be solved. The only
normalizable eigenfunction reads

Ψ0 = q
[
c4
1(w − w0)2 + 6λ

]−3/4
,

where q is a normalization constant. This function rep-
resents the lowest energy eigenfunction of the Schödinger
equation (18) since it has no zeros. This fact allows for the ex-
istence of a 4D graviton with no instabilities from transverse

traceless modes withm2 < 0. In addition to this massless
mode, there exists a tower of higher KK modes with positive
m2 > 0.

Thus, we have obtained Weylian thick brane generaliza-
tions of the RS model with no reflection symmetry imposed
in which the 4D effective theory possesses an energy spec-
trum quite similar to the spectrum of the thin wall case, in
particular, 4D gravity turns out to be localized at a certain
value of the fifth dimension.

6. Concluding Remarks

By means of the conformal technique we obtained a 4D
Poincaŕe invariant solution which represents a well behaved
localized function and does not respectZ2–symmetry along
the extra dimension. Thus, we have obtained a thick brane
generalization of the Randall–Sundrum model. This field
configuration does not restrict the 5–dimensional space time
to be an orbifold geometry. When we set the parameter
k1 = 1, our solution reproduces theZ2–symmetric solutions
previously found in the literature in both the Riemann and the
Weyl frame. By looking at the scalar energy densityµ of our
field configuration, we see that it shows a thick brane with
positive energy density centered aty0 and accompanied by a
small amount of negative energy density at each side.

The scalar curvature of the Riemannian manifold turns
out to be singular for the found solution, whereas the corre-
sponding quantity in the Weyl integrable geometry presents a
regular behaviour along the whole fifth dimension.

By studying the behaviour of the transverse traceless
modes of the fluctuations of the metric we recast their equa-
tions into a one dimensional Schödinger equation with a
quantum mechanical potential that represents a volcano with
finite bottom. We solve the Schödinger equation for the mass-
less zero modem2 = 0 obtaining a single bound state which
represents the lowest energy eigenfunction, allowing for the
existence of a 4–dimensional graviton with no instabilities
from transverse traceless modes withm2 < 0. We also get a
huge tower of higher KK states with positivem2 > 0 that are
suppressed aty0, turning into continuum plane wave modes
asy approaches spatial infinity [4, 5]. Since all values ofm2

are allowed, the spectrum turns out to be continuum and gap-
less.
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