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Elegir coordenadas adaptadas para evolucionar espacio-tiempos con alguria,sisgatmente genera divergencias en las ecuaciones de
evolucbn para las variables ge@tnicas. Por esta rém, los &digos de evolucin en relatividad nugrica @pidamente se hacen inestables.
Presentamos un algoritmo gaito para resolver el problema de la regulariaadjue se puede utilizar directamente en las ecuaciones de
evolucbn y que permite escoger de forma general las variables de norma. Este algoritmo es similar al introducido por Rinne y Stewart dentro
del formalismoZ4. Sin embargo, nuestro algoritmo egsrgeneral y se puede utilizar en una amplia variedad de sistemas de@voluci

DescriptoresRelatividad nurérica; espacio-tiempo égicamente sirgtrico; espacio-tiempo axialmente $trico; condiciones de regulari-
dad.

The use of coordinates adapted to evolving space times with some symmetry is often a source problems, the evolution equations for the
geometric quantities have divergences. This problem propagates very fast and makes numerical codes crash. We present a generic algorithn
for dealing with the regularization problem that can be used directly on the evolution equations, and which allows very general gauge choices.
We explicitly show the regularity of the evolution equations, we describe the corresponding numerical code, and we present several examples
clearly showing the regularity of our evolutions.

Keywords:Numerical relativity; spherically symmetric space-time; axi-symmetric space-time; regularity conditions.
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1. Introduccion ro como extender esteatodo al caso de siméraxial sin
afectar la hiperbolicidad del sistema. Por otro lado, Rinne y
La implementadn de ©digos en relatividad nuémica que  stewart [4] desarrollaron otro @vodo de regularizagn pa-
usen coordenadas adaptadas a la simme&te un espacio- (5 el caso axial, de nuevo introduciendo una nueva variable
tiempo regular dado, esta restringida por éadida de regu-  ginamica dentro del contexto de la formulaeiZ4. Presen-
laridad de las las variables geéfricas. El problema se pre- tamos un ratodo de regularizagi en el que no es necesario

senta por la presencia dgminos en las ecuaciones de evolu-introducir variables diamicas adicionales, ni una descompo-
cion que van coma/r cerca del origen en el caso de sinetr  gjcion especial de las ecuaciones de Einstein.

eskrica, 01/p cerca al eje de siméé, en el caso axial. Sin

embargo, la regularidad de los coeficientestninos, que lo- . . e .
Sec. 2 discutimos cuales son las condiciones necesarias para

calmente deben ser planos, garantiza [a candelaiacta de ue los coeficientes @tricos y de curvatura exirseca sean
estos érminos asegurando soluciones bien comportadas. & ) 05y L
egulares. Primero consideramos el casérsi y mostra-

ta canceladin exacta, sin embargo, correcta para solucionergnOS cualesérminos se deben reqularizar. Dess@xtende
analticas, no se tiene para soluciones rauitas debido a los 9 ' P

errores de truncamiento y redondeo. Lasiinosl /£, donde mos esta descripn al caso de espacio-tiempos con sifgetr

& representa la coordenada radial o axialsegl caso, no se a?<|al. Enla Sec. 3 discutimos la descompasiaie las ecua-
cancelan y la soludn diverge en un tiempo finito ciones de Einstein que vamos a usar para las evoluciones, y

: icionalmente presentamos algunos ejemplosémnigcos de
Generalmente, para solucionar este problema, al men%estro nétodo dFt)a regularizagn Iginalmejnte F():oncluimos en
para simefia esérica, se utiliza la normpolar/radial [1,2] 9 ' '

donde se elige la coordenada radialle tal manera que el la Sec. 4.

area propia de las esferas deonstante sea siempie 2,

el vector de corrimiento es nulo y el lapso es obligado a sa-

tisfacer cierta ecuagn diferencial en. Muchas alternativas, 2. Condiciones de Regularidad

por otra parte, han tratado de solucionar este mismo proble-

ma para el caso de simitraxial. La mayda ha conducido a Para mostrar las condiciones necesarias que deben cumplir
evoluciones inestables. Recientemente, Alcubierre y Gonzdes coeficientes geogtricos para ser regulares en cualquier
lez [3] presentaron un algoritmo dgamco de regularizadn  punto del espacio tiempo, ésil emplear una descomposi-
para diferentes formulaciones hipélicas en el caso esfi-  cion espeffica de las ecuaciones de Einstein. Por simplici-
co que se basa en la introdu@cide una variable auxiliar que dad, y sin jgrdida de generalidad, usaremos la formdaci
absorbe losérminos probleraticos. Sin embargo, no es cla- Arnowit-Deser- Misner (ADM) [5,6].

Este arfculo esta organizado de la siguiente manera: en la
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2.1. Caso Edfrico terminos de la forméA— B) /r? van, en elimite cuando- va
acero, comdA® — B%)/r?, dondeA® y B son constantes.
Claramente esto£tminos son divergentes. Afitidamente,

sin embargo, se puede mostrar que esto no sucede. Existe
otra condicbn que es consecuencia del hecho que el espacio
di? =~ jdx' da? = A(t,r)dr® + r* B(t,r)dQ*, (1) debe permanecer localmente plana-ea 0. Esta condidn
implica que:

Comencemos escribiendo la forma general deé#rica es-
pacial en simeta estrica como

cond? el elemento déngulo $lido. Hemos ya factorizado
la dependencia? de la parte angular de lagtrica. Esto tie- A—-B~O(r?), Ka—Kp~0O(r?), (5)
ne la ventaja de hacer exglta la dependencia ende las
cantidades geoatricas haciendo el procedimiento de regula- 0 0 0 0
rizacion mas sencillo. A"=B", Ki =Kp . (6)
Siguiendo a Alcubierre y Gonzalez [3], existen dos di-  para implementar nuemicamente la condién (5) y que
ferentes tipos de condiciones de regularidad que las Variabl@ espacio sea localmente p|an0, exigimos que nuestros coe-
{~ii, Dyii, Ki i}, dondeD~; ; es la derivada radial logémi- - ficientes nétricos se puedan escribir como
ca, deben satisfacer en= 0. 9
El primer conjunto de condiciones se impone al exigir A(t,r)= H(t,r)+r=J(t,r),

por lo cual,

que las diferentes variables @stbien definidas en el origen, B(t,r) = H(t,r) —r? J(t,r),
implicando el siguiente comportamiento eniglite cuando: )
tiende a cero, Ka(t,r) = Ku(t,r) +7r° K;(t,7),

Yii ~ 0+ 02 Kp(t,r) = Kpu(t,r) —r? K;(t,r), @)

- 0 2 conH, J, Ky y K; funciones ngtricas pares, con respecto a
Ky ~ Ky +O(T)7 L L. . .
r = 0y positivas. Esta descompogiaigarantiza que las fun-
Dry;i ~O(r), (2)  ciones georatricas sean regulares en todo punto del espacio.

Asi, en lugar de evolucionar los coeficientegtritos A, B,
K4y Kp evolucionamodd, J, Ky y K; y reconstruimos
la métrica (1) en cada paso de tiempo.

Antes de discutir el caso axial, @ésl mencionar un de-

Usualmente se considera que el punto inicial de la red et%llle acerca de las ecuaciones de evaingara los nuevos
aque el p Coeficientes. Veamos, por ejemplo, la ecbadie evoludn
r = +Ar/2. Con esta discretizamn, obtenemos datos so-

con {v;,°, K;;°} funciones que son constantes enEsta
condicbn es simple de implementar néncamente. Se pue-
de discretizar el espacio a téw de una red finita de pun-

S L . L paraK;:
bre el punto inicial exigiendo que las funciones gétmoas 5 ) )
{~is, K5, } sean funciones pares{yD, ;} funciones impares 0Ky — H?(a Dy +2H Do) | 3H”a Dy
con respecto a = 0. ' 4A2 B2y3 8A2 B2 r2
Para e! segundo conju'nto de condiciones, que tieﬁ@ m H?®(a D%y + 2 H D%a)
complicaciones que el primero, escribamos las ecuaciones - 4A2 B2 2

ADM para, por ejemplo, la componente angular de la cur-

vatura extinseca en el caso en que el vector de corrimiento +F(H, J, Kn, Ky), ®)
es nulo, dondeDa y Dy son derivadas radialeB?a 'y D?j; son se-
o gundas derivadas radiales”( H, J, Ky, K ;) son los deras
0:Kp = — 24 [B 0rDp + B Dp (Dy + Dp) terminos regulares de la ecuaei(8). Por simple inspeaan
vemos que, de acuerdo al comportamiento de las funciones
_ BDaDp E(D — 9D, — 4Dp) geongtricas (2), el primer@rmino de (8) va como/r* cerca
2 rA ¢ B del origen, el segund@tmino va comd + O(r?) y el tercer
2(A - B) aKgKa termino va comd /2. Sin embargo, si combinamos los dos
2B } Vs (3)  terminos irregulares para formar una sola derivada,
— P~ H H Oéf[3 DH H4 Da
dondeD,, : 8T11n a.Yla cons;:;oon hamllt(j:zna, O, KJ = B O, ( . ) YRR O, ( . )
arDB—r2B(AB)+B<2KA+ B) 3H20ZDH2
1 - o SAZ 2,2 +F(H,J,KH,KJ) 9)
+ = (D4s —3Dp) + DaDp _ 3Dp ) (4) la ecuaddn resultante es regular en todo punto del espacio.
r 2 4 Veamos por ejemplo el primegtmino. NunéricamenteD g

De acuerdo con (2){D,,Da,Dgp} se aproximan al ori- vacomor+O(r?) cercaal origenD /r va comol +O(r?)
gen kasicamente come, por lo tanto, los&rminos del ti- y finalmente, la derivada radial hace que estetno se apro-
po Dy, 4,5}/7 Son regulares. Por otro lado, vemos que losxime comoO(r). Claramente est&tmino es regular.
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2.2. Caso Axial 3. Ecuaciones de Evoluén y Ejemplos

Numeéricos
Para el caso axial, de nuevo es importante especificar el com-
portamiento de los coeficientesétricos y las componen- Este nétodo de regularizadh es general y se puede aplicar
tes de la curvatura extrseca cuando se a@stacercando al a una amplia variedad de sistemas de evoludPara mostrar
eje, definido pop = 0. Est claro que todas las funciones esta generalidad describiremos a continbiacin sistema de
geongtricas tienen que ser uniformes con respecto al ejecuaciones hipediico, es decir, que mateticamente esta

puesto que la &trica debe ser localmente plana. Es decirpien puesto[10], y uno no hipestico que se usan en las
estas funciones deben comportarse cdmeh(z) p? cerca  evoluciones nur@ricas.

del eje de simeta. Por otro lado, se puede mostrar que cual-

quier tensor siratrico M,z en coordenadag, p, z, ¢) tiene
la forma [4]

it P~9tp Gtz P; Jto
_ P Gtp YGpp 9pz P 9pg 10
Jab Gtz gpz 9zz p2gz¢ ’ ( )
PP Gt PG P°Gz6 oo

dondeg,, = gpp + P2Gpp Y Goo = Gpp — P20pp- ES claro
qQuegst, Gip, - - - » Yoo SON funciones de, z y p y adends son
funciones pares.

El primer sistema de ecuaciones, no hifdidn, es ADM
en vado,

dyij

dtj = — QCMKij 5 (14)
dK;;

o =i+ CRy = 2Ky K'y + K Kij) . (15)

donded/dt = 0/0t — L representa la derivada temporal
total, M;; = S;; + vi; (p — S) /2 es la proyecdin del ten-
sor momento-enefd, p = nq 1 T%, Si; = Yiavis TP,

S = S%,y K es la traza de la curvatura exiseca. Como

Usando las anteriores condiciones, podemos escribir lacuacbn de evoludn del lapso tomamos la conocida fami-

forma general de la gtrica espacial como
dI? = v; jdz' dz? = Adp? + Bdz* + p* T d¢?
+2pCdpdz+2Cy p>dpde+2p* Codzdp, (11)

donde, usando (10 = H+p> JyT = H—p? J.Laforma
general de la curvatura ekisecals;;, en analoga con (11),
es

KA  pKC pPKCy
Kij=| pKC KB p*KCy |, (12
pchl p2KCQ p2KT

dondeKA=KH +p? KJyKT = KH — p> KJ.
Esta forma de descomponer tanto latrica como la cur-

lia de ecuaciones Bonna-Maso,

ga:—a2f(oz)K—|—Egoz.

5 (16)

Usamos las ecuaciones ADM junto con la anterior e@raci
para el primer ejemplo nuenico de regularizadn. En la
Fig. 1 se muestra la evolum del espacio-tiempo de Min-
kowski con un lapso perturbado con una gaussiana, es decir,
evolucionamos un espacio plano en el que el avance tempo-
ral de la superficie no es uniforme, esta modulado por una
funcion gaussiana.

Para tener un sistema de ecuaciones hgdidy, siguien-
do a G. Nagyet al.[9] y a Alcubierreet al.[7], introducimos
la cantidad geoktrica

vatura extmseca hace de nuevo que las ecuaciones de evolu-

cion ADM sean regulares. Algunas de estas ecuaciones, para

el caso sin rotaéin, son:

B2H3a DB
KB=-— F
% 2 T2 (AB—p2C2)2 B
3
OHKC = A B HaDB

C 4pT? (AB— p2(C?)? (
+ 2BaDH + 2BH Da) + F¢,
B H* DB
_ ad, [ ==
4pT? (AB— p2C?)? p

D 2BDHD
+2B9, (pa) 2

pH
dondeF'x 5, k¢, ks SON €rminos regulares. Bajo simple ins-
peccbn, despés de juntar &minos aparentemente irre-

O KJ =

} + Fy, (13)

AZlrn = Fllrn - lem|ﬂat (17)
1.06-—/\\ = 1.06f
1.04f 1.04f
1.02F 1.02F
E s
0.8 .98}
0.96F 0.96]
0.af 0.94f

-10 ] g 5 1 -0 5 g 5 10
1.08f 1.06
1.04f 1.04
1.02F 1.02
S 1./\/‘_\/\ s 1
o0.8f 0.98
0.6f 0.96
0.94F ) ) ) 0.94]
Ao 5 ) % 1 10 E g 5 10

P

gulares en una sola derivada, como en el caso de (8), vem@scurA 1. Espacio-tiempo axialmente sftico regularizado:

gue todas las ecuaciones son regulares.

Evolucion del lapso.
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FIGURA 2. Espacio-tiempo Axial regularizado: Evolaci del co-
eficienteg,, en Minkowski con una perturbdm gaussiana inicial
en el lapso.
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FIGURA 3. Espacio-tiempo eéficamente sirgtrico regularizado:
Evolucion del coeficientg.,.,, en Minkowski con una perturbam
gaussiana inicial en el lapso.

como una variable independiente. Usando las Ecs. (14), (1
obtenemos la siguiente ecudeide evoludn para el vec-
tor A%

Ay =LgA 4" B, — (o K™ — 4™ 1K)

|m

—|—20tKlm Ailm —|—’)/lm Eﬁ Filmmat . (18)

5

Se puede mostrar que el conjunto de ecuaciones ADM (14),
(15) junto con (16) y (18), modificando edtlima ecuadn

con la constricén de momentos, es fuertemente hiidirb

co [8]. En las Figs. 2 y 3 se muestra la evoarcde algunos
coeficientes geogtricos para este conjunto de ecuaciones hi-
periblico.

4. Discusbn

La implementadn de @digos en relatividad nuérmica que
usen coordenadas adaptadas a la simete un espacio-
tiempo regular dado, esta restringida por &dida de re-
gularidad de las variables geétricas. Hemos mostrado que

el problema se puede reducir a la existencia de dos conjun-
tos de condiciones de regularidad tanto en el origen, en el
caso eg#rico, como en el eje, definido como= 0, para

el caso axial. En primer lugar, las condiciones de regulari-
dad que garantizan que las variable€prdiien definidas en

el origen/eje. Estas condiciones se pueden interpretar como
una serie de condiciones de sini@ten el origen/eje para
las diversas variables, y se pueden hacer cumditrhen-

te en simulaciones nugnicas. Sin embargo, tandsi existen

las condiciones de regularidad relacionadas con la candici
que el espacio-tiempo debe ser localmente plano. Hemos pre-
sentado un algoritmo gérico de regularizabn que se basa

en la descompision de las funciones gedatricas. Esta des-
coposicon nos ayuda a imponer los dos conjuntos de condi-
ciones en elimite quer tiende a cero, para el caso @sto,

0 p tendiendo a cero, para el caso axial, sin introducir varia-
bles diramicas adicionales. Hemos mostrado la eficiencia de
nuestro algoritmo para dos formulaciones de las ecuaciones
de evoluobn.
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