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Regularización de ćodigos en simetŕıa esf́erica y axial en relatividad numérica
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Elegir coordenadas adaptadas para evolucionar espacio-tiempos con alguna simetrı́a, usualmente genera divergencias en las ecuaciones de
evolucíon para las variables geométricas. Por esta razón, los ćodigos de evolución en relatividad nuḿerica ŕapidamente se hacen inestables.
Presentamos un algoritmo genérico para resolver el problema de la regularización que se puede utilizar directamente en las ecuaciones de
evolucíon y que permite escoger de forma general las variables de norma. Este algoritmo es similar al introducido por Rinne y Stewart dentro
del formalismoZ4. Sin embargo, nuestro algoritmo es más general y se puede utilizar en una amplia variedad de sistemas de evolución.

Descriptores:Relatividad nuḿerica; espacio-tiempo esféricamente siḿetrico; espacio-tiempo axialmente simétrico; condiciones de regulari-
dad.

The use of coordinates adapted to evolving space times with some symmetry is often a source problems, the evolution equations for the
geometric quantities have divergences. This problem propagates very fast and makes numerical codes crash. We present a generic algorithm
for dealing with the regularization problem that can be used directly on the evolution equations, and which allows very general gauge choices.
We explicitly show the regularity of the evolution equations, we describe the corresponding numerical code, and we present several examples
clearly showing the regularity of our evolutions.
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1. Introducción

La implementacíon de ćodigos en relatividad nuḿerica que
usen coordenadas adaptadas a la simetrı́a de un espacio-
tiempo regular dado, esta restringida por la pérdida de regu-
laridad de las las variables geométricas. El problema se pre-
senta por la presencia de términos en las ecuaciones de evolu-
ción que van como1/r cerca del origen en el caso de simetrı́a
esf́erica, o1/ρ cerca al eje de simetrı́a, en el caso axial. Sin
embargo, la regularidad de los coeficientes métricos, que lo-
calmente deben ser planos, garantiza la cancelación exacta de
estos t́erminos asegurando soluciones bien comportadas. Es-
ta cancelacíon exacta, sin embargo, correcta para soluciones
anaĺıticas, no se tiene para soluciones numéricas debido a los
errores de truncamiento y redondeo. Los términos1/ξ, donde
ξ representa la coordenada radial o axial según el caso, no se
cancelan y la solución diverge en un tiempo finito.

Generalmente, para solucionar este problema, al menos
para simetŕıa esf́erica, se utiliza la normapolar/radial [1,2]
donde se elige la coordenada radialr de tal manera que el
área propia de las esferas der constante sea siempre4π r2,
el vector de corrimiento es nulo y el lapso es obligado a sa-
tisfacer cierta ecuación diferencial enr. Muchas alternativas,
por otra parte, han tratado de solucionar este mismo proble-
ma para el caso de simetrı́a axial. La mayoŕıa ha conducido a
evoluciones inestables. Recientemente, Alcubierre y Gonza-
lez [3] presentaron un algoritmo genérico de regularización
para diferentes formulaciones hiperbólicas en el caso esféri-
co que se basa en la introducción de una variable auxiliar que
absorbe los t́erminos probleḿaticos. Sin embargo, no es cla-

ro como extender este método al caso de simetrı́a axial sin
afectar la hiperbolicidad del sistema. Por otro lado, Rinne y
Stewart [4] desarrollaron otro ḿetodo de regularización pa-
ra el caso axial, de nuevo introduciendo una nueva variable
dinámica dentro del contexto de la formulación Z4. Presen-
tamos un ḿetodo de regularización en el que no es necesario
introducir variables dińamicas adicionales, ni una descompo-
sición especial de las ecuaciones de Einstein.

Este art́ıculo esta organizado de la siguiente manera: en la
Sec. 2 discutimos cuales son las condiciones necesarias para
que los coeficientes ḿetricos y de curvatura extrı́nseca sean
regulares. Primero consideramos el caso esférico y mostra-
mos cuales t́erminos se deben regularizar. Después extende-
mos esta descripción al caso de espacio-tiempos con simetrı́a
axial. En la Sec. 3 discutimos la descomposición de las ecua-
ciones de Einstein que vamos a usar para las evoluciones, y
adicionalmente presentamos algunos ejemplos numéricos de
nuestro ḿetodo de regularización. Finalmente, concluimos en
la Sec. 4.

2. Condiciones de Regularidad

Para mostrar las condiciones necesarias que deben cumplir
los coeficientes geoḿetricos para ser regulares en cualquier
punto del espacio tiempo, esútil emplear una descomposi-
ción espećıfica de las ecuaciones de Einstein. Por simplici-
dad, y sin ṕerdida de generalidad, usaremos la formulación
Arnowit-Deser- Misner (ADM) [5,6].
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2.1. Caso Esf́erico

Comencemos escribiendo la forma general de la métrica es-
pacial en simetrı́a esf́erica como

dl2 = γi j dxi dxj = A(t, r) dr2 + r2 B(t, r) dΩ2 , (1)

condΩ2 el elemento déangulo śolido. Hemos ya factorizado
la dependenciar2 de la parte angular de la métrica. Esto tie-
ne la ventaja de hacer explı́cita la dependencia enr de las
cantidades geoḿetricas haciendo el procedimiento de regula-
rización más sencillo.

Siguiendo a Alcubierre y Gonzalez [3], existen dos di-
ferentes tipos de condiciones de regularidad que las variables
{γi i, Dγi i,Ki i}, dondeDγi i es la derivada radial logarı́tmi-
ca, deben satisfacer enr = 0.

El primer conjunto de condiciones se impone al exigir
que las diferentes variables estén bien definidas en el origen,
implicando el siguiente comportamiento en el lı́mite cuandor
tiende a cero,

γi i ∼ γi j
0 +O(r2) ,

Ki i ∼ Ki i
0 +O(r2) ,

Dγi i ∼ O(r) , (2)

con {γi j
0,Ki j

0} funciones que son constantes enr. Esta
condicíon es simple de implementar numéricamente. Se pue-
de discretizar el espacio a través de una red finita de pun-
tos que no contenga al origen como uno de estos puntos.
Usualmente se considera que el punto inicial de la red es
r = ±∆r/2. Con esta discretización, obtenemos datos so-
bre el punto inicial exigiendo que las funciones geométricas
{γi i,Ki i, } sean funciones pares y{Di i} funciones impares
con respecto ar = 0.

Para el segundo conjunto de condiciones, que tiene más
complicaciones que el primero, escribamos las ecuaciones
ADM para, por ejemplo, la componente angular de la cur-
vatura extŕınseca en el caso en que el vector de corrimiento
es nulo,

∂tKB =− α

2A

[
B ∂rDB + B DB (Dα + DB)

− B DA DB

2
− B

r
(DA − 2Dα − 4DB)

− 2 (A−B)
r2B

]
+

αKB KA

A
, (3)

dondeDα := ∂r ln α. Y la constriccíon hamiltoniana,

∂rDB =
1

r2B
(A−B) +

KB

B

(
2KA +

AKB

B

)

+
1
r

(DA − 3DB) +
DADB

2
− 3D2

B

4
. (4)

De acuerdo con (2),{Dα, DA, DB} se aproximan al ori-
gen b́asicamente comor, por lo tanto, los t́erminos del ti-
po D{α,A,B}/r son regulares. Por otro lado, vemos que los

términos de la forma(A−B)/r2 van, en el ĺımite cuandor va
a cero, como(A0 −B0)/r2, dondeA0 y B0 son constantes.
Claramente estos términos son divergentes. Analı́ticamente,
sin embargo, se puede mostrar que esto no sucede. Existe
otra condicíon que es consecuencia del hecho que el espacio
debe permanecer localmente plano enr = 0. Esta condicíon
implica que:

A−B ∼ O(r2) , KA −KB ∼ O(r2) , (5)

por lo cual,

A0 = B0 , KA
0 = KB

0 . (6)

Para implementar nuḿericamente la condición (5) y que
el espacio sea localmente plano, exigimos que nuestros coe-
ficientes ḿetricos se puedan escribir como

A(t, r) = H(t, r) + r2 J(t, r) ,

B(t, r) = H(t, r)− r2 J(t, r) ,

KA(t, r) = KH(t, r) + r2 KJ(t, r) ,

KB(t, r) = KH(t, r)− r2 KJ(t, r) , (7)

conH, J , KH y KJ funciones ḿetricas pares, con respecto a
r = 0 y positivas. Esta descomposición garantiza que las fun-
ciones geoḿetricas sean regulares en todo punto del espacio.
Aśı, en lugar de evolucionar los coeficientes métricosA, B,
KA y KB evolucionamosH, J , KH y KJ y reconstruimos
la métrica (1) en cada paso de tiempo.

Antes de discutir el caso axial, esútil mencionar un de-
talle acerca de las ecuaciones de evolución para los nuevos
coeficientes. Veamos, por ejemplo, la ecuación de evolucíon
paraKJ :

∂tKJ =
H3 (α DH + 2H Dα)

4A2 B2 r3
+

3H2 α DH
2

8A2 B2 r2

− H3 (α D2
H + 2 H D2α)

4A2 B2 r2

+ F(H,J,KH ,KJ) , (8)

dondeDα y DH son derivadas radiales,D2α y D2
H son se-

gundas derivadas radiales yF(H, J,KH ,KJ) son los deḿas
términos regulares de la ecuación (8). Por simple inspección
vemos que, de acuerdo al comportamiento de las funciones
geoḿetricas (2), el primer término de (8) va como1/r3 cerca
del origen, el segundo término va como1+O(r2) y el tercer
termino va como1/r2. Sin embargo, si combinamos los dos
términos irregulares para formar una sola derivada,

∂tKJ = − α H3

4A2 B2 r
∂r

(
DH

r

)
− H4

2A2 B2 r
∂r

(
Dα

r

)

+
3H2 α DH

2

8A2 B2 r2
+ F(H, J,KH, KJ) (9)

la ecuacíon resultante es regular en todo punto del espacio.
Veamos por ejemplo el primer término. NuḿericamenteDH

va comor+O(r2) cerca al origen,DH/r va como1+O(r2)
y finalmente, la derivada radial hace que este término se apro-
xime comoO(r). Claramente este término es regular.
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2.2. Caso Axial

Para el caso axial, de nuevo es importante especificar el com-
portamiento de los coeficientes métricos y las componen-
tes de la curvatura extrı́nseca cuando se están acercando al
eje, definido porρ = 0. Est́a claro que todas las funciones
geoḿetricas tienen que ser uniformes con respecto al eje,
puesto que la ḿetrica debe ser localmente plana. Es decir,
estas funciones deben comportarse como1 + h(z) ρ2 cerca
del eje de simetrı́a. Por otro lado, se puede mostrar que cual-
quier tensor siḿetricoMαβ en coordenadas(t, ρ, z, φ) tiene
la forma [4]

gαβ =




gtt ρ gtρ gtz ρ2 gtφ

ρ gtρ g̃ρρ gρz ρ3 gρφ

gtz gρz gzz ρ2gzφ

ρ2 gtφ ρ3 gρφ ρ2 gzφ g̃φφ


 , (10)

dondeg̃ρρ = gρρ + ρ2ĝρρ y g̃φφ = gρρ − ρ2ĝρρ. Es claro
quegtt, gtρ, · · · , gφφ son funciones det, z y ρ y adeḿas son
funciones pares.

Usando las anteriores condiciones, podemos escribir la
forma general de la ḿetrica espacial como

dl2 = γi j dxi dxj = Adρ2 + B dz2 + ρ2 T dφ2

+2 ρ C dρ dz + 2 C1 ρ3 dρ dφ + 2 ρ2 C2 dz dφ , (11)

donde, usando (10),A = H+ρ2 J y T = H−ρ2 J . La forma
general de la curvatura extrı́nsecaKij , en analoǵıa con (11),
es

Kij =




K̃A ρKC ρ3 KC1

ρKC KB ρ2 KC2

ρ3 KC1 ρ2 KC2 ρ2 K̃T


 , (12)

dondeKA = KH + ρ2 KJ y KT = KH − ρ2 KJ .
Esta forma de descomponer tanto la métrica como la cur-

vatura extŕınseca hace de nuevo que las ecuaciones de evolu-
ción ADM sean regulares. Algunas de estas ecuaciones, para
el caso sin rotación, son:

∂tKB =− B2 H3 α DB

2 ρ T 2 (AB − ρ2 C2)2
+ FB ,

∂tKC =− H3 B

4 ρ T 2 (AB − ρ2 C2)2
(H α DB

+ 2 B α DH + 2 B H Dα) + FC ,

∂tKJ =− B H4

4 ρ T 2 (AB − ρ2 C2)2

[
α ∂ρ

(
DB

ρ

)

+ 2 B ∂ρ

(
Dα

ρ

)
+

2 B DH Dα

ρH

]
+ FJ , (13)

dondeFKB,KC,KJ son t́erminos regulares. Bajo simple ins-
peccíon, despúes de juntar t́erminos aparentemente irre-
gulares en una sola derivada, como en el caso de (8), vemos
que todas las ecuaciones son regulares.

3. Ecuaciones de Evolucíon y Ejemplos
Numéricos

Este ḿetodo de regularización es general y se puede aplicar
a una amplia variedad de sistemas de evolución. Para mostrar
esta generalidad describiremos a continuación un sistema de
ecuaciones hiperbólico, es decir, que mateḿaticamente esta
bien puesto[10], y uno no hiperbólico que se usarán en las
evoluciones nuḿericas.

El primer sistema de ecuaciones, no hiperbólico, es ADM
en vaćıo,

dγij

dt
=− 2 α Kij , (14)

dKij

dt
=− α|i|j + α

(
3Rij − 2 Kil K

l
j + K Kij

)
, (15)

donded/dt = ∂/∂t − Lβ representa la derivada temporal
total, Mij = Sij + γij (ρ− S) /2 es la proyeccíon del ten-
sor momento-energı́a, ρ = nα nβ Tα β , Sij = γiαγjβ Tα β ,
S = Si

i, y K es la traza de la curvatura extrı́nseca. Como
ecuacíon de evolucíon del lapso tomamos la conocida fami-
lia de ecuaciones Bonna-Maso,

∂

∂t
α = −α2 f(α)K + Lβ α . (16)

Usamos las ecuaciones ADM junto con la anterior ecuación
para el primer ejemplo nuḿerico de regularización. En la
Fig. 1 se muestra la evolución del espacio-tiempo de Min-
kowski con un lapso perturbado con una gaussiana, es decir,
evolucionamos un espacio plano en el que el avance tempo-
ral de la superficie no es uniforme, esta modulado por una
función gaussiana.

Para tener un sistema de ecuaciones hiperbólico, siguien-
do a G. Nagyet al. [9] y a Alcubierreet al. [7], introducimos
la cantidad geoḿetrica

∆i
lm ≡ Γi

lm − Γi
lm|flat (17)

FIGURA 1. Espacio-tiempo axialmente simétrico regularizado:
Evolución del lapso.
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FIGURA 2. Espacio-tiempo Axial regularizado: Evolución del co-
eficientegρρ en Minkowski con una perturbación gaussiana inicial
en el lapso.

FIGURA 3. Espacio-tiempo esféricamente siḿetrico regularizado:
Evolución del coeficientegrr en Minkowski con una perturbación
gaussiana inicial en el lapso.

como una variable independiente. Usando las Ecs. (14), (15)
obtenemos la siguiente ecuación de evolucíon para el vec-
tor ∆i:

∆i
,t = Lβ ∆i + γlm βi

,lm − [
α

(
2Kim − γim trK

)]
|m

+ 2 α Klm ∆i
lm + γlm Lβ Γi

lm|flat . (18)

Se puede mostrar que el conjunto de ecuaciones ADM (14),
(15) junto con (16) y (18), modificando estaúltima ecuacíon
con la constriccíon de momentos, es fuertemente hiperbóli-
co [8]. En las Figs. 2 y 3 se muestra la evolución de algunos
coeficientes geoḿetricos para este conjunto de ecuaciones hi-
perb́olico.

4. Discusíon

La implementacíon de ćodigos en relatividad nuḿerica que
usen coordenadas adaptadas a la simetrı́a de un espacio-
tiempo regular dado, esta restringida por la pérdida de re-
gularidad de las variables geométricas. Hemos mostrado que
el problema se puede reducir a la existencia de dos conjun-
tos de condiciones de regularidad tanto en el origen, en el
caso esf́erico, como en el eje, definido comoρ = 0, para
el caso axial. En primer lugar, las condiciones de regulari-
dad que garantizan que las variables estén bien definidas en
el origen/eje. Estas condiciones se pueden interpretar como
una serie de condiciones de simetrı́a en el origen/eje para
las diversas variables, y se pueden hacer cumplir fácilmen-
te en simulaciones nuḿericas. Sin embargo, también existen
las condiciones de regularidad relacionadas con la condición
que el espacio-tiempo debe ser localmente plano. Hemos pre-
sentado un algoritmo genérico de regularización que se basa
en la descompisición de las funciones geométricas. Esta des-
coposicíon nos ayuda a imponer los dos conjuntos de condi-
ciones en el lı́mite quer tiende a cero, para el caso esférico,
o ρ tendiendo a cero, para el caso axial, sin introducir varia-
bles dińamicas adicionales. Hemos mostrado la eficiencia de
nuestro algoritmo para dos formulaciones de las ecuaciones
de evolucíon.
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