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M.J. Reyes-Ibarra y L.A. Urẽna-López
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Las observaciones de las anisotropı́as de la Radiación de Fondo Ćosmico se han convertido en una herramienta fundamental en cosmologı́a.
Aqúı presentamos brevemente el formalismo necesario para entender la evolución de las anisotropı́as, y ćomo su espectro de potencias nos
permite conocer la evolución y composicíon del universo.

Descriptores:Cosmoloǵıa; radiacíon del fondo ćosmico; perturbaciones cosmológicas.

Observations on the anisotropies of the Cosmic Microwave Background have become a fundamental tool in Cosmology. We present a brief
description of the mathematical formulae that is necessary to understand the evolution of the anisotropies, and how their power spectrum
gives us information about the evolution and composition of the universe.
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1. Introducción

Uno de los pilares téoricos fundamentales de la Cosmologı́a
es el llamadoPrincipio Cosmoĺogico (PC), el cual establece
que el universo eshomoǵeneo e isotŕopico a grandes esca-
las [1-4]. Aún cuando el PC es una hipótesis de trabajo muy
sencillo que nos permite entender la expansión del universo,
ésteúltimo contiene estructuras bien formadas, como gala-
xias, ćumulos de galaxias, etc., que rompen la isotropı́a re-
querida por el PC en las escalas correspondientes.

El Modelo Est́andar Cosmológico (MEC) [5-7] est́a basa-
do en el PC, y también en la Teoŕıa de la Relatividad General
(RG) de Einstein, que es aún nuestra teorı́a fundamental de
la gravitacíon. El MEC establece que la materia en el univer-
so era dominada inicialmente por partı́culas relativistas que
formaban un plasma muy denso y caliente. Una vez que el
universo se enfrió, las interacciones entre los fotones y otras
part́ıculas dejaron de ocurrir, y a partir de ese momento (que
se conoce como láepoca de recombinación, aprox. 300 mil
años despúes del Big Bang) los fotones comenzaron a mover-
se libremente.

Sonéstos fotones los que forman lo que conocemos como
la Radiacíon del Fondo Ćosmico (RFC). La RFC fue detec-
tada por primera vez en el año de 1965 por Arno Penzias
y Robert Wilsoni. El sat́elite COBE, ya en la decáda de los
años 1990, se utiliźo para determinar que el espectro de la
RFC correspond́ıa al de un cuerpo negro con una temperatu-
ra actual de aprox.T0 = 2.75± 0.015 K [8].

El mismo sat́elite COBE permitío tambíen detectar pe-
quẽnasanisotroṕıasδT en la RFC, las cuales son del orden de
δT/T0 ' 10−5. Una consecuencia de esto es que el universo
teńıa en sus inicios un alto grado de isotropı́a, lo cual apoya
nuestra hiṕotesis del PC[1,3]. Posteriormente, más medicio-
nes de las anisotropı́as de la RFC fueron llevadas a cabo [8],
siendo las ḿas recientes y precisas las del satélite WMAP[9].

Las anisotroṕıas de la RFC se han convertido en una
herramienta fundamental para la cosmologı́a moderna. La
raźon estriba en que los fotones de la RFC, al propagarse
libremente en el espaciotiempo del universo, contienen infor-
macíon importante del mismo desde laépoca de recombina-
ción hasta nuestros dı́as; una historia de casi 14 mil millones
de ãnos.

Algunas caracterı́sticas del universo que se pueden infe-
rir de las anisotroṕıas son su geometrı́a espacial, su conteni-
do material, su velocidad de expansión, etc. Otra forma de
decirlo, ḿas precisa, es que se pueden obtener los valores
de los llamadosparámetros cosmológicos. Algunos deéstos
paŕametros se listan a continuación

Constante de Hubble,H0;

Temperatura de la RCF,T0RCF ;

Paŕametro de densidad de materia,Ω0m;

Paŕametro de densidad de bariones,Ω0b;

Paŕametro de densidad de materia oscura,Ω0DM ;

Paŕametro de densidad de constante cosmológica
(enerǵıa oscura),Ω0Λ;

Paŕametro de densidad de curvatura,Ω0k.

Una lista exhaustiva de los parámetros cosmológicos pue-
de consultarse en [8,10], aunque hay autores que sugieren
que el ńumero de paŕametros relevantes es realmente pe-
quẽno [11].

En este artı́culo nuestra intención es presentar el forma-
lismo mateḿatico utilizado para el estudio de las anisotropı́as
de la RFC, para mostrar también la manera en que cierta in-
formacíon est́a contenida en ellas.

Un breve sumario del artı́culo se da a continuación. En
la Sec. 2 se presentan las ecuaciones fundamentales que
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nos permiten seguir la evolución de las anisotropı́as de la
RFC, que son la ecuación de Boltzmann y la ecuación de las
geod́esicas nulas en un espaciotiempo homogéneo e isotŕopi-
co linealmenteperturbado. En la Sec. 3, se muestra cómo
a su vez las perturbaciones del espaciotiempo evolucionan
seǵun las ecuaciones de la RG. Porúltimo, en la Sec. 3 se
discute brevemente cómo se obtiene el espectro de potencias
de las anisotroṕıas. Tambíen presentaremos diversos ejem-
plos nuḿericos de la solución de las ecuaciones de evolución
que se obtienen con los paquetes públicos CMBFAST [12] y
CMBEASY [13].

2. La Ecuacíon de Boltzmann

La principal cantidad para describir las anisotropı́as de la
RFC es lafunción de distribucíon f(t,x,p) de los fotones.
La anisotroṕıa en la temperatura del gas de fotones se define
como (para esta sección ver las Refs. 7 y 14; y las referencias
que alĺı se mencionan)

4Θ(t,x) ≡
[∫

f(t,x,p)d3p

]
− 1 = 4

δT

T
, (1)

donde la integración se hace en el espacio de momentosp. De
esta manera, es solamente necesario conocer la evolución de
la función de distribucíon, la cual est́a dada por la conocida
ecuacíon de Boltzmann

df

dt
= C[f ] . (2)

La parte derecha de la ecuación, C[f ], contiene todos los
términos posibles de colisión y la parte izquierda los términos
sin colisíon.

En esta sección estamos interesados principalmente en la
descripcíon de la propagación libre de fotones (i.e. a tiem-
pos posteriores a láepoca de recombinación), por lo que nos
limitaremos al caso en queC[f ] = 0. Esto es formalmente
equivalente a decir que el número de fotones en un elemento
del espacio fase no cambia con el tiempo.

La función de distribucíon de los fotonesf , depende de
la 4-posicíon xµ y el 4-momentopµii, de modo que la parte
izquierda de la Ec. (2) se puede expresar de la forma

df

dt
=

∂f

∂xµ

dxµ

dt
+

∂f

∂pµ

dpµ

dt

=
∂f

∂t
+

∂f

∂xi

dxi

dt
+

∂f

∂|p|
d|p|
dt

+
∂f

∂p̂i

dp̂i

dt
, (3)

dondep2 = pipi, y p̂i es el vector unitario de dirección de
los fotones.

La solucíon de la ecuación anterior no es trivial debido a
que los fotones viajan a través de una ḿetrica perturbada. La
métrica homoǵenea e isotŕopica perturbada que tomaremos
tiene la forma

g00(t,x) = −(1 + 2Ψ),

g0i(t,x) = 0,

gij(t,x) = a2(t)δij [(1 + 2Φ)], (4)

que corresponde a la llamadanorma Newtonianapara pertur-
baciones escalares lineales [15].

De esta manera el espaciotiempo perturbado queda ca-
racterizado por el factor de escalaa(t), y las funciones esca-
laresΨ(xµ) y Φ(xµ). La funcíonΨ corresponde al potencial
Newtoniano, y la funcíonΦ es la perturbación de la curvatura
espacial. Ambas funciones son llamadaspotenciales gravita-
cionales.

La ecuacíon de geod́esicas nulas, que determina la evolu-
ción del 4-momento de los fotones, es

dpµ

dt
= gµν

(
1
2

∂gαβ

∂xν
− ∂gνα

∂xβ

)
pαpβ

p0
. (5)

El hecho de que los fotones son partı́culas sin masa im-
plica quep2 ≡ pµpµ = 0, y entonces

−(1 + 2Ψ)(p0)2 + |p|2 = 0

(ver la ḿetrica (4)). La componente temporal del 4-momento
viene dada en primera aproximación como

p0 =
|p|√

1 + 2Ψ
' |p|(1−Ψ) . (6)

Esta ecuación es la generalización de la expresión relativis-
ta E = |p| para una ḿetrica de FRW perturbada. De igual
manera es posible ver que el vector dirección viene dado por

p̂i ' a(t)
pi

|p| (1 + Φ) . (7)

Por otro lado, de la ecuación (5) obtenemos las siguientes
dos ecuaciones,

1
|p|

dp0

dt
= −

(
∂Ψ
∂t

+
ȧ

a
(1−Ψ) +

∂Φ
∂t

+ 2
p̂i

a

∂Ψ
∂xi

)
, (8)

1
|p|

d|p|
dt

=
1
|p|

dp0

dt
(1 + Ψ) +

∂Ψ
∂t

+
∂Ψ
∂xi

dxi

dt

= −
(

ȧ

a
+

∂Φ
∂t

+
p̂i

a

∂Ψ
∂xi

)
. (9)

La Ec. (9) describe el cambio en el momento de los foto-
nes cuando se mueven a través de un universo perturbado. El
primer t́ermino se refiere a la pérdida de momento debido a la
expansíon de Hubble. Para entender los otros dos términos es
necesario recordar que una región muy densa tieneΦ > 0 y
Ψ < 0. Por lo tanto, el segundo término dice que un fotón en
un pozo gravitacional profundo (∂Φ/∂t > 0) pierde enerǵıa.
Esto se debe a que los fotones no pueden salir tan fácilmente
del pozo de potencial haciendo que la magnitud del corrimie-
to al rojo aumente. El tercer término dice que un fotón via-
jando en un pozo de potencial (p̂i∂Ψ/∂xi < 0) gana enerǵıa
porque es atraı́do hacia el centro. Inversamente, cuando deja
el pozo, sufre un corrimiento al rojo gravitacional.
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Porúltimo, al usar las Ecs. (8) y (9) en la Ec. (3), e inte-
grando sobre los momentos, se obtiene

Θ̇ + p̂i ∂

∂xi
(Θ + Ψ) + ˙̂pi ∂

∂p̂i
Θ + Φ̇ = 0 , (10)

donde el punto indica derivada respecto at. Esta es la ecua-
ción de Boltzmann, en ausencia de colisiones, que describe
la evolucíon de las fluctuaciones de temperaturaΘ definidas
en la Ec. (1).

3. Ecuaciones de Einstein

Para tener una solución completa de las Ecs. (8), (9) y (10),
es necesario también conocer la evolución de las perturba-
ciones de la ḿetrica (4). Tal evolucíon dependerá de manera
importante de las perturbaciones del contenido material del
universo.

La relacíon entre las cantidades métricas y la materia
est́a dada por las ecuaciones de la RG, [2,5,14]

Gµν ≡ Rµν − 1
2
gµνR = 8πGTµν . (11)

Gµν es el tensor de Einstein;Rµν es el tensor de Ricci, el
cual depende de la ḿetrica y sus derivadas;R ≡ gµνRµν es
el escalar de Ricci;G es la constante de Newton; yTµν es el
tensor de energı́a-momento.

El hecho de que el universo se considere un fluido per-
fecto, nos lleva a tomar la definición del tensor de energı́a-
momento para dicho fluido, el cual está dado por

Tµν = (ρ + P )uµuν + Pgµν , (12)

dondeρ, P y uµ son la densidad de energı́a, la presíon y la
4-velocidad del fluido, respectivamente.

Ahora bien, śolo nos interesan las ecuaciones dadas por
cantidades perturbadas. La perturbación al tensor de Ricci
viene dado en forma covariante como [1]

δRµν = (δΓλ
µλ);ν − (δΓλ

µν);λ , (13)

dondeδΓλ
µν es la perturbación de los śımbolos de Christoffel

Γλ
µν . En t́erminos de las perturbaciones de la métricaδgµν ,

ver Ecs. (4), se tiene

δRµν =
1
2
gλρ [(δgλρ);µ;ν − (δgρµ);ν;λ

−(δgρν);µ;λ + (δgµν);ρ;λ] . (14)

Otra cantidad importante es el escalar de Ricci, que se ex-
presa δR = gµνδRµν + δgµνRµν . Tomando en cuen-
ta las perturbaciones al tensor de energı́a-momento (12),
Tµν + δTµν , las ecuaciones de Einstein perturbadas son

δGµν = 8πGδTµν , (15)

donde la perturbación del tensor de Einstein es
δGµν = δRµν − (1/2)gµνδRµν − (1/2)δgµνRµν .

Porúltimo cabe mencionar que la métrica para un univer-
so perturbado, en su forma más general, contiene no sólo per-
turbaciones escalares, sino también vectoriales y tensoriales
[1,5-7,12-17]. Las primeras representan perturbaciones en la
densidad de energı́a del fluido cosmoĺogico cuando ocurrió la
última dispersíon y son laśunicas fluctuaciones con las cuales
se puede formar estructura a través de inestabilidades gravi-
tatorias. Las segundas representan perturbaciones en la velo-
cidad del fluido y decaen con la expansión del universo. Las
terceras son perturbaciones transversales, las cuales pueden
verse como ondas gravitacionales [16].

4. Anisotropı́as de la Radiacíon del Fondo
Cósmico (RCF)

El punto importante en esta sección es entender cómo se ge-
nera el espectro de potencias de la RFC, y una vez generado,
ver qúe informacíon se puede obtener deél.

Los multipolosalm de las anisotropias de la RFC están
definidas por la relación [7,14,17]

δT

T
=

∑

`m

a`mY`m(θ, ϕ) , (16)

donde los t́erminosY`m(θ, ϕ) son los arḿonicos esf́ericos.
El monopolo (̀ = 0) es la temperatura de cuerpo negro de
la RFC. El dipolo (̀ = 1) se interpreta como el resultado
del efecto Doppler causado por el movimiento relativo entre
el sistema solar y el campo de cuerpo negro de la RFC. Los
multipolos` > 2 representan la anisotropı́a intŕınseca de la
RFC.

Las anisotroṕıas de temperatura del RFC se miden en dos
puntos separados por unánguloθ, y el cuadrado de la dife-
rencia se promedia sobre el cielo, entonces

〈
(

δT

T

)2

〉 =
1
4

∑

`

(2` + 1)C`P`(cos θ), (17)

donde los t́erminosC` ≡ 〈|a`m|2〉 son conocidos como la
varianza ćosmica de losa`m, y losP` son los polinomios de
Legendre. Aśı pues, el espectro se genera al graficar los coe-
ficientes de la expresión (17).

Para entender las anisotropı́as, actualmente se cuenta con
la ayuda de ćodigos muy eficientes. El ḿas conocido de ellos
es el ćodigo CMBFAST [12], el cual genera el espectro de
potencia de las anisotropı́as de la RFC al variar parámetros
cosmoĺogicos.

Existe otro ćodigo, CMBEASY[13], con el cual también
es posible generar espectros de la RFC. Este código es un po-
co más f́acil de utilizar ya que en la ventana principal es posi-
ble introducir los paŕametros para los cuales se quiere generar
el espectro. El inconveniente del código CMBEASY es que
sólo genera espectros para modelos cosmológicos planos.
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FIGURA 1. Espectros de potencias de la RFC que se obtienen al
variar la cantidad de materia bariónica y materia oscura. La lı́nea
vertical se encuentra en el multipolo` = 220. Más detalles se dan
en el texto.

Como ejemplo, en la Fig. 1 se muestran los espectro de
potencia para un universo plano, al variar el parámetro de
densidad de bariones (Ω0b) y de materia oscura (Ω0DM ) para
un universo plano (Ω0k = 0), tal queΩ0b + Ω0DM = 0.27.
El resto de la materia está en la forma de una constante cos-
mológica (Λ) con proporcíonΩ0Λ = 0.73.

Se observa que el primer pico no se mueve, encontrándo-
se aproximadamente en el multipolo` ≈ 220, lo que indica
que se tiene trata de un universo con curvatura nulaiii. Para
los casos cuando se tiene menor contenido bariónico, la al-
tura del primer pico disminuye, debido a que la amplitud de
oscilacíon es pequẽna. La presíon disminuye y esto hace que

los fotones puedan escapar del pozo de potencial, reduciendo
la magnitud de las perturbaciones. Por el contrario, cuando el
contenido baríonico aumenta, las oscilaciones son grandes,
es ḿas dif́ıcil que salgan del pozo de potencial, y aumenta la
amplitud de las perturbaciones.

5. Conclusiones

En el ańalisis que se muestra en este artı́culo, se puede ver
que el estudio de las anisotropı́as tiene un papel muy impor-
tante en la cosmologı́a moderna debido a que proporcionan
informacíon sobre el universo desde el momento en que la
materia baríonica y la radiacíon se desacoplan hasta nuestros
dı́as. Adeḿas, con ayuda de las observaciones y los códigos
numéricos, es posible inferir sobre las caracterı́sticas que ten-
dŕıan diferentes modelos cosmológicos a diferenteśepocas
al interpretar los espectros generados de la RFC. En los si-
guientes ãnos se espera contar con información más precisa,
aśı como con evidencia de la existencia de ondas gravitacio-
nales primordiales[8]. De ser ası́, la RFC abriŕıa una nueva
ventana que nos permitirı́a mirar hasta casi el momento del
Big Bang.

Acknowledgments

MJR-I agradece la beca de maestrı́a otorgada por CO-
NACYT. Otros apoyos parciales para este trabajo son: CO-
NACYT (42748, 46195 y 47641); CONCYTEG (05-16-
K117-032); DINPO (000085) y PROMEP UGTO-CA-3.

i. Para un breve recuento del descubrimiento de la RFC, ver
Ref. 4.

ii. Tomamos como convención de unidadesc = 1, y una signatu-
ra−1, 1, 1, 1. Los ı́ndices con letras griegas pueden tomar los
valores0, 1, 2, 3, y los latinos toman los valores1, 2, 3.

iii. La posicíon del primer pico depende también de la raźon entre
la materia baríonica y la radiacíon.
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