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En este trabajo se presenta una desdipgeonétrica para membranas superconductoras aplicada a ejemplos concretos. Se considera
accbn general efectiva la cual incluye una clase general de objetos extendidos superconductoras.dedendescripon lagrangiana, se

presenta una descrifici hamiltoniana inspirada en el formalistA® M de la relatividad general. Las descripciones son usadas considerando
diversas configuraciones de paredes de dominio: esfera, pared infinita, cilindro y cuerda cerrada, en distintos espacios-tiempo de trasfc

Descriptores:Cuerdas; membranas; objetos relativistas superconductores; defectogimgmirayos asmicos.

In this work we present a geometrical description for superconducting membranes in concise examples. A general effective action is cc
dered, which includes a general class of extended superconducting objects. Besides the Lagrangian description, a Hamiltonian descr
based on thel D M fashion of general relativity is considered. Both descriptions are used considering different domain walls configuration
sphere, infinite wall, cylinder and closed string, in several spacetime backgrounds.
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1. Introduccion cona = 0,...,D, £ las coordenadas en y x* las funcio-

nes encajadas. Ld3 + 1 vectores base del espacio tangente
Actualmente las membranas superconductoras han sido uy%p(m) am son

lizadas en la modela@n de defectos topogicos, los cuales " p
son objetos que surgen en los primeros instantes del univer- €a = e 0p = X!oOu, ®)
so [1]. El rmino superconductor hace referencia a corriente i

[1] P gone los vectores tangentesaasociados &*

permanentes sobre la membrana, que son responsables, junto Sk
_ oX

con la tensbn superficial, de la estabilidad de la configura- el =yt = 7 (4)
cibn. Agu se presentan diversas configuraciones de membra- ’ 3
nas superconductoras. y el elemento deihea del espacio-tiempo es
ds® = guudatdz” = g, x"x5dE deb. (5)
2. Preliminares matenaticos e
La métrica inducida sobre: es
En esta parte se consideran algunos antecedentes atatem Yab = G XX = 9(€a, ep), (6)

cos relativos al encajamiento de la hoja de mundo y las for-

mulaciones lagrangiana y hamiltoniana de membranas supdft cual nos da la geomédr intinseca dem. La ex-
conductoras. trinseca es dada paWV — (D + 1) vectores normales’

(i=1,...,N — (D +1)), ortogonales y unitarios
2.1. Matematicas del encajamiento de la hoja de mundo g(eq,n’) =0, g(n',n?) =69, )

Se presentan algunos aspectos de las néieas de la cond™ la delta de Kronecker. Con el formalisrddD M para
hoja de mundo de acuerdo a [2, 3]. Consideremos una vaelatividad general [4,5], se considera una folixile la hoja
riedadm temporaloide (encajamiento), de dimémsD + 1 de mundo{m,~4} en hipersuperficies espacialoidgs de
inmersa en una variedad de trasforddale dimensin N.La  dimenson D, definidas por el valor cons-tante de una famci
variedad)/ tiene una rétricag,,,, conp, v =0,..., N — 1. escalar.

Lasz* son coordenadas del espacio-tiempo. hosectores La hipersuperficieC; es descrita por el encajamiento de
Y enm
a;t = %’ (1) ga = Xa(uA)? (8)
v dondeA = 1,..., D, £* son coordenadas locales en u*
son base del espacio tangefjg /) a M en el puntop. son coordenadas locales Epy X * son las funciones de en-
El encajamiento de: enM es cajamiento. Los vectores tangentes,ason
ox

2 = (), @) =X =g ©
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El encajamiento, por compositi de funciones, dg; en
M es
2 = XM () = X" (€ (ut)). (10)

Por definicon, losD vectores base dE,(X,), el espacio tan-
gente a cada punto de son

€A = €3eh0,. (11)
Asi, la métrica inducida sobr&; es
hap = ’YabeibeB = QWGZEE (12)

la normaln® temporaloide, unitaria &; est definida por

Yab“€% = 0, vapn™n® = —1. (13)

Denotamos poW,,, V, y D4 a las derivadas covarian-
tes compatibles co,., v, Y hap, respectivamente.

2.2. Dinamica lagrangiana

Se describ#t brevemente la damica lagrangiana para mem-
branas superconductoras [6]. La #@ecique describe la
dinamica de la membrana relativista es

= / AP AL (W), (14)

dondel = L(w) es la densidad lagrangianase# llamado

el paametro de estado, dado por
w = 'Yabﬁa(b%b(m (15)

con _
va¢ = va¢ + Aav (16)

el acoplamiento de campos (escalar y vectoriét) = e~ A,,

las proyecciones del potencial de trasfondo sobre la hoja de

mundo yy = det{v.}. La corriente electromagticaJ® y
el tensor de enefg-impulsoZ’*® son

dt , ~

J =2-—"~7"V,0, (17)
dw

ab _ d‘c acey bd ab

T = =2-9"Vey™Vag + Ly, (18)

y las ecuaciones damicas de los campos internos son satis
fechas

VoJ¢

1 dl .= _
ﬁaa (\/T’Yde'Y Vb¢> =0. (19)

Variaciones de la acgh en €rminos de la basge,, n'}
dan

V,T% = F*J,, (20)
TK!, = FlJe, (21)

donde 4 ,
Fup = eleyF,,, F! =etn'™F,,, (22)

F., = 0,A, —0,A,, es el tensor de campo electromatin
coy K, denota a la curvatura ektiseca.
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2.3. Dinamica hamiltoniana

Ahora se presenta la dimica hamiltoniana de membranas
superconductoras como en [7]. El lagrangiano, de acuerdo a
la descomposion ADM de la acddbn (14) es

LIX, X:6,0] = / dPuNVRL(w),

PP

(23)

dondeN es la funcbn Lapse (Lapso) y h = det{hap}.
Tambén, la descomposioch ADM dew est dada por

Lip— NAD g+ (+-A)? + B, (24)

1
dondeDa¢ = Da¢ + A4 denota la proyecon en la hi-
persuperficies; de la derivada covariante de norma del cam-
po escalar de la hoja de mundo £,¢ denota la derivada
de Lie a lo largo de la deformawi del campo vectoria#’,

o = h"BD,¢Dpo es la proyecéin eny, dewy N4 es la
funcion Shi ft (Desplazamiento).

Los momentos asociados son:

oL — dLl
= (5£t¢772 h(wfw)%, (25)
Pu= 5 = [-VRLW) + @ — )by,
—71'15,4(;56,’:‘ +7TA,. (26)

Las constricciones del espacio fdse= {X*, P,; ¢, 7}
gue generan la damica, son

2

s
Co = g"' T, Y, + h[L(w) + ——=]?
R T )
2 m
2w+ : 27
HEARTTE N
Ca = T,é" + 7D ag. (28)

Cy es la constricén escalar. Es la generalizaoia mem-
branas superconductoras de la constbic@scalar para una

paricula relativista parametrizada en un campo electro-

magretico externoC' 4 es la constricdin vectorial. Es univer-

sal para todas las acciones invariantes bajo parametrizaciones
de primer orden en las derivadas de las funciones encajadas.
Depende de la forma particular de la densidad lagrangiana
L(w). Se ha definido el momento &tico de la siguiente ma-
nera

Y, =P, —7A,. (29)

L es funcon arbitraria dev, los modelos ras conocidos
son

L(w) =a+ bw, (30)
conocido como modelo de Witten,
L(w) =Va+ bw, (31)
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conocido como modelo de Nielsen, 3.2. Pared infinita superconductora
L(w) = lnf, (32) La par_ed D = 2)esthenel espag:io-tiempo plano de Min-
a kowski (V = 4), cuyo elemento dénea es
conocido como modelo de Carter-Peter. Agy b son cons- ds® = —dt* + dz® + dy® + d=°. (39)
tantes.

En este caso tomamos como ansatz para nuestra membra:
na las elecciones

3. Ejemplos ¢ = f(t)+ 1@ + oy, A, = (E.2,0,0,0), (40)

Se estudign varias configuraciones de membranas superondec;, c; y E. son constantes. El significadisito de es-
conductoras utilizando las formulaciones lagrangiana y hato es que la membrana astargada, tiene una corriente cons-
miltoniana, bajo diferentes condicionésifas. tante sobre su superficie en dirgnti y otra en direcénjy
estiinmersa en un campo’eeltricoﬁz en la direcadn k. Con

el encajamiento dew en M

. o . XMt y) = (8 2,y 2(1)), (41)
Consideremos una membranaégifa sinétrica (D = 2), in- o _
mersa en un espacio-tiempo generalatisb, eséricamente  la ecuaddn por diramica lagrangiana es

3.1. Membrana esérica superconductora

simétrico (V = 4), con elemento dérea + .
LDy, (42)
ds? = —A(r)di® + B(r)dr® + C(r)dQ?,  (33) (1-22)2
y por diramica hamiltoniana
donde las funcioned, B y C dependen del espacio-tiempo 2
particular ydQ? = d6? + sin®0de?. o Ilj[/Ezz)Q + 22 =1, (43)
Tomamos como ansatz para nuestra membrana las elec-
ciones donde -
Vep = f(1), A= (—g, 0,0,0), (34) L (w) = L(w) + B[]’ (44)
dw
con f funcibn derivable del tiempoy ¢ una constante.isi- D€ nuevo (42) y (43) son equivalentes.

camente la membrana tiene una distribacsuperficial de
carga y est inmersa en un campoéekrico £, de magnitud
E, = (q/r%)é,. Con el encajamiento de en M

3.3. Membrana cilindrica superconductora

La membrana dihdrica (D=2) est en Minkowski (N=4),
, como en (39).
XH(t,0,0) = (t,7(t),0,0), (35) En este caso tomamos como ansatz para nuestra membra:

. - , L, . na las elecciones
la ecuacbn de movimiento sém la diramica lagrangiana,

ecuaciones (20) y (21), es ¢ = f(t)+c10+ 2z, Ay = (E,1,0,0,0), (45)
(—2A'Br? + 2ABF + AA' + AB'#?) dondecy, c2 y E,. son constantes. La membranaéesdrgada
o\ 3 CL (w) y tiene una corriente constante sobre su superficie en la direc-
2(A - Br?) cion éy y una en la direc@in k£ y est inmersa en un campo
AC' q eléctrico E,. en la direcadn ¢é,.. Con el encajamiento de:
==L =W=5, B6) onum
JVA-Br? r
X" (t,0,2z) = (t,r(t)cosd, r(t)sind, z), (46)
%’erC]er‘nls‘Sd'mm'ca hamiltoniana, ecuaciones (27) y (28), 0b-j3 ecyaghn de movimiento por diamica lagrangiana es
AC?*(LT(w))? B, (Lt (w))r7 dL c3 1
D _ = —p =1 =WE,, (47
con y con la diramica hamiltoniana
w?2 20 p+ 2
LT (W) = L(w) + ——, (38) (L7 (w)) 2 _
2024 FiwEpE T ol (48)
donde la prima indica derivadas con respecto al argumentgPn w2
de las funciones YV una constante. Por supuesto, los dos LT (w) = L(w) + SrdL (49)
ecuaciones halladas (36) y (37) son equivalentes. 2r2[ 5]
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3.4. Cuerda cerrada superconductora

La cuerda(D = 1) esh en Minkowski (v = 4), como
en (39).

Las condicionesi$icas son
B, B,
—y, — 50
5 Y5 @ 0), (50)
dondec; y B, son constantes. La cuerda&stargada y tiene
una corriente constante en la direc'm:iégﬁy est inmersa en
un campo maggtico B, en la direcddn k. El encajamiento
demenM es

Vi = f(t), Voo =c1, A, = (0, —

xH(t,0) = (t,r(t)cosh, r(t)sind, 0), (51)
la ecuaddbn de movimiento con damica lagrangiana es

(LF(w)) dl (1 +3B.r?) 1

;
_WE W e o
(1-172)3 ( dw r2 rv/1—7
_ B gdflatsBal) o
V1—72 dw r ’

y con la diramica hamiltoniana

r?(LF(w))?
E2
conL*(w) como en (49).

+7% =1, (53)

4. Conclusiones

De las formulaciones lagrangiana y hamiltoniana de mem-
branas relativistas superconductoras se hallaron las ecuacio-
nes de movimiento, a nivelasico, para distintas configura-
ciones en diferentes condiciondsiéas. Es posible estudiar
estos sistemas utilizando diversos mo- delos pAta) [8].

Estas configuraciones de defectos t@giaos pueden usarse
para explicar la formabn de rayos @smicos ultraenefgi-

cos o la formadn de macroestructuras gaticas, segn la
dinamica que presenten [9].
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