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En este trabajo se presenta una descripción geoḿetrica para membranas superconductoras aplicada a ejemplos concretos. Se considera una
accíon general efectiva la cual incluye una clase general de objetos extendidos superconductores. Además de la descripción lagrangiana, se
presenta una descripción hamiltoniana inspirada en el formalismoADM de la relatividad general. Las descripciones son usadas considerando
diversas configuraciones de paredes de dominio: esfera, pared infinita, cilindro y cuerda cerrada, en distintos espacios-tiempo de trasfondo.

Descriptores:Cuerdas; membranas; objetos relativistas superconductores; defectos topológicos; rayos ćosmicos.

In this work we present a geometrical description for superconducting membranes in concise examples. A general effective action is consi-
dered, which includes a general class of extended superconducting objects. Besides the Lagrangian description, a Hamiltonian description
based on theADM fashion of general relativity is considered. Both descriptions are used considering different domain walls configurations:
sphere, infinite wall, cylinder and closed string, in several spacetime backgrounds.
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1. Introducción

Actualmente las membranas superconductoras han sido uti-
lizadas en la modelación de defectos topológicos, los cuales
son objetos que surgen en los primeros instantes del univer-
so [1]. El t́ermino superconductor hace referencia a corrientes
permanentes sobre la membrana, que son responsables, junto
con la tensíon superficial, de la estabilidad de la configura-
ción. Aqúı se presentan diversas configuraciones de membra-
nas superconductoras.

2. Preliminares mateḿaticos

En esta parte se consideran algunos antecedentes matemáti-
cos relativos al encajamiento de la hoja de mundo y las for-
mulaciones lagrangiana y hamiltoniana de membranas super-
conductoras.

2.1. Matemáticas del encajamiento de la hoja de mundo

Se presentan algunos aspectos de las matemáticas de la
hoja de mundo de acuerdo a [2, 3]. Consideremos una va-
riedadm temporaloide (encajamiento), de dimensión D + 1
inmersa en una variedad de trasfondoM de dimensíonN . La
variedadM tiene una ḿetricagµν , conµ, ν = 0, . . . , N − 1.
Lasxµ son coordenadas del espacio-tiempo. LosN vectores

∂µ :=
∂

∂xµ
, (1)

son base del espacio tangenteTp(M) aM en el puntop.
El encajamiento dem enM es

xµ = χµ(ξa), (2)

cona = 0, . . . , D, ξa las coordenadas enm y χµ las funcio-
nes encajadas. LosD + 1 vectores base del espacio tangente
Tp(m) am son

ea := eµ
a∂µ = χµ

,a∂µ, (3)

coneµ
a los vectores tangentes am asociados aχµ

eµ
a = χµ

,a =
∂χµ

∂ξa
, (4)

y el elemento de lı́nea del espacio-tiempo es

ds2 = gµνdxµdxν = gµνχµ
,aχν

,bdξadξb. (5)

La métrica inducida sobrem es

γab = gµνχµ
,aχν

,b = g(ea, eb), (6)

la cual nos da la geometrı́a intŕınseca dem. La ex-
trı́nseca es dada porN − (D + 1) vectores normalesni

(i = 1, . . . , N − (D + 1)), ortogonales y unitarios

g(ea, ni) = 0, g(ni, nj) = δij , (7)

conδij la delta de Kronecker. Con el formalismoADM para
relatividad general [4,5], se considera una foliación de la hoja
de mundo{m, γab} en hipersuperficies espacialoidesΣt de
dimensíonD, definidas por el valor cons-tante de una función
escalart.

La hipersuperficieΣt es descrita por el encajamiento de
Σt enm

ξa = Xa(uA), (8)

dondeA = 1, ..., D, ξa son coordenadas locales enm, uA

son coordenadas locales enΣt y Xa son las funciones de en-
cajamiento. Los vectores tangentes aΣt son

εa
A = Xa

′A =
∂Xa

∂uA
. (9)
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El encajamiento, por composición de funciones, deΣt en
M es

xµ = Xµ(ua) = χµ(ξa(uA)). (10)

Por definicíon, losD vectores base deTp(Σt), el espacio tan-
gente a cada punto deΣt son

εA := εa
Aeµ

a∂µ. (11)

Aśı, la métrica inducida sobreΣt es

hAB = γabε
a
Aεb

B = gµνεµ
Aεν

B , (12)

la normalηa temporaloide, unitaria aΣt est́a definida por

γabη
aεb

A = 0, γabη
aηb = −1. (13)

Denotamos por∇µ, ∇a y DA a las derivadas covarian-
tes compatibles congµν , γab y hAB , respectivamente.

2.2. Dinámica lagrangiana

Se describiŕa brevemente la dińamica lagrangiana para mem-
branas superconductoras [6]. La acción que describe la
dinámica de la membrana relativista es

S =
∫

m

dD+1ξ
√−γL(ω), (14)

dondeL = L(ω) es la densidad lagrangiana,ω seŕa llamado
el paŕametro de estado, dado por

ω = γab∇̃aφ∇̃bφ, (15)

con
∇̃aφ = ∇aφ + Aa, (16)

el acoplamiento de campos (escalar y vectorial),Aa = eµ
aAµ

las proyecciones del potencial de trasfondo sobre la hoja de
mundo yγ = det{γab}. La corriente electromagnéticaJa y
el tensor de energı́a-impulsoT ab son

Ja = 2
dL
dω

γab∇̃bφ, (17)

T ab = −2
dL
dω

γac∇̃cφγbd∇̃dφ + Lγab, (18)

y las ecuaciones dinámicas de los campos internos son satis-
fechas

∇aJa =
1√−γ

∂a

(√−γ2
dL
dω

γab∇̃bφ

)
= 0. (19)

Variaciones de la acción en t́erminos de la base{ea, ni}
dan

∇aT ab = F baJa, (20)

T abKi
ab = F i

aJa, (21)

donde
Fab = eµ

aeν
b Fµν , F i

a = eµ
aniνFµν , (22)

Fµν = ∂µAν − ∂νAµ, es el tensor de campo electromagnéti-
co yKi

ab denota a la curvatura extrı́nseca.

2.3. Dinámica hamiltoniana

Ahora se presenta la dinámica hamiltoniana de membranas
superconductoras como en [7]. El lagrangiano, de acuerdo a
la descomposiciónADM de la accíon (14) es

L[X, Ẋ; φ, φ̇] =
∫

Σt

dDuN
√

hL(ω), (23)

dondeN es la funcíon Lapse (Lapso) y h = det{hAB}.
Tambíen, la descomposiciónADM deω est́a dada por

ω = − 1
N2

[Ltφ−NAD̃Aφ + (t·A)]2 + ω̃, (24)

dondeD̃Aφ = DAφ + AA denota la proyección en la hi-
persuperficieΣt de la derivada covariante de norma del cam-
po escalar de la hoja de mundoφ, Ltφ denota la derivada
de Lie a lo largo de la deformación del campo vectorialtµ,
ω̃ = hABD̃AφD̃Bφ es la proyeccíon enΣt deω y NA es la
funciónShift (Desplazamiento).

Los momentos asociados son:

π =
δL

δLtφ
= −2

√
h(ω̃ − ω)

dL
dω

, (25)

Pµ =
δL

δẊµ
= [−

√
hL(ω) + (ω̃ − ω)

1
2 π]ηµ

−πD̃AφεA
µ + πAµ. (26)

Las constricciones del espacio faseΓ := {Xµ, Pµ; φ, π}
que generan la dińamica, son

C0 = gµνΥµΥν + h[L(ω) +
π2

2h(dL
dω )

]2

−π2[ω +
π2

4h(dL
dω )2

], (27)

CA = Υµεµ
A + πD̃Aφ. (28)

C0 es la constriccíon escalar. Es la generalización a mem-
branas superconductoras de la constricción escalar para una
part́ıcula relativista parametrizada en un campo electro-
magńetico externo.CA es la constriccíon vectorial. Es univer-
sal para todas las acciones invariantes bajo parametrizaciones
de primer orden en las derivadas de las funciones encajadas.
Depende de la forma particular de la densidad lagrangiana
L(ω). Se ha definido el momento cinético de la siguiente ma-
nera

Υµ = Pµ − πAµ. (29)

L es funcíon arbitraria deω, los modelos ḿas conocidos
son

L(ω) = a + bω, (30)

conocido como modelo de Witten,

L(ω) =
√

a + bω, (31)
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conocido como modelo de Nielsen,

L(ω) = ln
ω

a
, (32)

conocido como modelo de Carter-Peter. Aquı́ a y b son cons-
tantes.

3. Ejemplos

Se estudiaŕan varias configuraciones de membranas super-
conductoras utilizando las formulaciones lagrangiana y ha-
miltoniana, bajo diferentes condiciones fı́sicas.

3.1. Membrana esf́erica superconductora

Consideremos una membrana esférica siḿetrica (D = 2), in-
mersa en un espacio-tiempo general, estático, esf́ericamente
simétrico (N = 4), con elemento de lı́nea

ds2 = −A(r)dt2 + B(r)dr2 + C(r)dΩ2, (33)

donde las funcionesA, B y C dependen del espacio-tiempo
particular ydΩ2 = dθ2 + sin2θdϕ2.

Tomamos como ansatz para nuestra membrana las elec-
ciones

∇tφ = ḟ(t), Aµ = (−q

r
, 0, 0, 0), (34)

conf función derivable del tiempot y q una constante. Fı́si-
camente la membrana tiene una distribución superficial de
carga y est́a inmersa en un campo eléctrico ~Er de magnitud
~Er = (q/r2)êr. Con el encajamiento dem enM

χµ(t, θ, ϕ) = (t, r(t), θ, ϕ), (35)

la ecuacíon de movimiento seǵun la dińamica lagrangiana,
ecuaciones (20) y (21), es

(−2A′Bṙ2 + 2ABr̈ + AA′ + AB′ṙ2)

2(A−Bṙ2)
3
2

CL+(ω)

+
AC ′√

A−Bṙ2
L = W

q

r2
, (36)

y con la dińamica hamiltoniana, ecuaciones (27) y (28), ob-
tenemos

AC2(L+(ω))2

(E − Wq
r )2

+
B

A
ṙ2 = 1, (37)

con

L+(ω) = L(ω) +
W 2

2C2[dL
dω ]

, (38)

donde la prima indica derivadas con respecto al argumento
de las funciones yW una constante. Por supuesto, los dos
ecuaciones halladas (36) y (37) son equivalentes.

3.2. Pared infinita superconductora

La pared (D = 2) est́a en el espacio-tiempo plano de Min-
kowski (N = 4), cuyo elemento de lı́nea es

ds2 = −dt2 + dx2 + dy2 + dz2. (39)

En este caso tomamos como ansatz para nuestra membra-
na las elecciones

φ = f(t) + c1x + c2y, Aµ = (Ezz, 0, 0, 0), (40)

dondec1, c2 y Ez son constantes. El significado fı́sico de es-
to es que la membrana está cargada, tiene una corriente cons-
tante sobre su superficie en dirección ı̂ y otra en direccíon ̂ y
est́a inmersa en un campo eléctrico ~Ez en la direccíon k̂. Con
el encajamiento dem enM

χµ(t, x, y) = (t, x, y, z(t)), (41)

la ecuacíon por dińamica lagrangiana es

(L+(ω))z̈
(1− ż2)

3
2

= WEz, (42)

y por dińamica hamiltoniana

µ2

(E + WEzz)2
+ ż2 = 1, (43)

donde

L+(ω) = L(ω) +
W 2

2[dL
dω ]

. (44)

De nuevo (42) y (43) son equivalentes.

3.3. Membrana ciĺındrica superconductora

La membrana cilı́ndrica (D=2) est́a en Minkowski (N=4),
como en (39).

En este caso tomamos como ansatz para nuestra membra-
na las elecciones

φ = f(t) + c1θ + c2z, Aµ = (Err, 0, 0, 0), (45)

dondec1, c2 y Er son constantes. La membrana está cargada
y tiene una corriente constante sobre su superficie en la direc-
ción êθ y una en la dirección k̂ y est́a inmersa en un campo
eléctrico ~Er en la direccíon êr. Con el encajamiento dem
enM

χµ(t, θ, z) = (t, r(t)cosθ, r(t)sinθ, z), (46)

la ecuacíon de movimiento por dińamica lagrangiana es

(L+(ω))rr̈
(1− ṙ2)

3
2

+ (L − 2
dL
dω

c2
1

r2
)

1√
1− ṙ2

= WEr, (47)

y con la dińamica hamiltoniana

r2(L+(ω))2

(E + WErr)2
+ ṙ2 = 1, (48)

con

L+(ω) = L(ω) +
W 2

2r2[dL
dω ]

. (49)
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3.4. Cuerda cerrada superconductora

La cuerda(D = 1) est́a en Minkowski (N = 4), como
en (39).

Las condiciones fı́sicas son

∇tφ = ḟ(t), ∇θφ = c1, Aµ = (0,−Bz

2
y,

Bz

2
x, 0), (50)

dondec1 y Bz son constantes. La cuerda está cargada y tiene
una corriente constante en la dirección êθ y est́a inmersa en
un campo magńetico ~Bz en la direccíon k̂. El encajamiento
dem enM es

χµ(t, θ) = (t, r(t)cosθ, r(t)sinθ, 0), (51)

la ecuacíon de movimiento con dińamica lagrangiana es

− (L+(ω))r̈
(1− ṙ2)

3
2
− (L − 2

dL
dω

(c1 + 1
2Bzr

2)
r2

)
1

r
√

1− ṙ

= − Bz√
1− ṙ2

2
dL
dω

(c1 + 1
2Bzr

2)
r

, (52)

y con la dińamica hamiltoniana

r2(L+(ω))2

E2
+ ṙ2 = 1, (53)

conL+(ω) como en (49).

4. Conclusiones

De las formulaciones lagrangiana y hamiltoniana de mem-
branas relativistas superconductoras se hallaron las ecuacio-
nes de movimiento, a nivel clásico, para distintas configura-
ciones en diferentes condiciones fı́sicas. Es posible estudiar
estos sistemas utilizando diversos mo- delos paraL(ω) [8].
Estas configuraciones de defectos topológicos pueden usarse
para explicar la formación de rayos ćosmicos ultraenerǵeti-
cos o la formacíon de macroestructuras galácticas, seǵun la
dinámica que presenten [9].
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