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Schrodinger’s Born-Infeld representation, the non Abelian case
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We propose a non-Abelian Born-Infeld theory based on an Abelian theory by Erwiidbeer that, as he showed, is equivalent to Born-
Infeld theory. Its construction does not require at any stage the square root structure that characterizes the Dirac-Born-Infeld (DBI) ac
Various non-Abelian generalizations are possible. We focus our attention, in this work, in one of them. For it, it is shown that Instantc
solutions exist.Our formalism could be of interest in connection with string theory and possible extensions of well known physical results
the usual Born-Infeld Abelian case.
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Se propone una telar no-Abeliana de Born-Infeld basada en unaitedbeliana de Erwin Schdinger que, comeél lo ha mostrado, es
equivalente a la teta propuesta por Born e Infeld. Su constri@gccho requiere en ninguna etapa de la estructura idectedrada que
caracteriza la acon Dirac-Born-Infeld (DBI). Varias generalizaciones no Abelianas son posibles; nos centramos en este trabajo en una
ellas. Para esto, se muestra que las soluciones de Instantones existen. Nuestro formalismo puede ésretecoteskin con teoia de
cuerdas y posibles extensiones de resultaidisol bien conocidos en el caso de Born-Infeld Abeliano usual.

Descriptores: Born-Infeld; no-Abeliano.

PACS: 11.15.-¢; 11.90.+t

Seventy years ago Erwin Sduinger wrote a paper entitled will be shown below. He then writesonsequently it cannot
Contributions to Born’s New Theory of the Electomagnetic provide us with any new insight, which could not, virtually,
Field [1]. As is known and he himself pointed out the classi-be derived from Born’s original treatment as wele recog-
cal (Dirac-Born-Infeld,DBI) Born’s theory [2—6] can be con- nized that for practical calculations, however, the imaginary
structed by means of the two vectdsandE, the magnetic  vectors structure will be hard to handle with. Quoting, once
induction and the electric field-strength respectively. The parmore Schddinger:yet for certain theoretical considerations
tial derivatives of the Lagrangian with respect to the compo-of a general kind | am inclined to consider the present treat-
nents ofB andE define a second pair of vectors correspond-ment as the standard form on account of its extremal sim-
ingly H, the magnetic field and- D, the electric displace- plicity, the Lagrangian being simply thetio of the two in-
ment. It was already shown by Born that one can choose fourariants, whereas in Maxwell’s theory it was equal to one of
different ways to write a Lagrange function in terms of onethem
of the magnetic vectors with one of the electric vectors. For ) ) o
each of these theories, the Lagrangians have essentially the N this work we will present a generalization of
same structure. Schiddinger’s Lagrangian (2) to a non-Abelian gauge the-
Schivdinger proposed a theory whose structure is entirelPrY- The complegiﬁcation of the fie_lds will provide us with
different from the above mentioned. He used two complex@ direct clue to find the non-Abelian framework based on

combinations oB, E, H andD as independent variables the Abelian Schidinger's representation. As in the stan-
dard Yang-Mills theories, this theory admits instantons so-

Q=B-iD,X=E+iH, (1) lutions. This work, however, is also partially motivated by

the fact that in the framework of string theory, the possi-

and constructed a Lagrangian in such a way that the conbility to define a non-Abelian generalization of the standard
plex conjugate of one of these variables is identical with theDirac-Born-Infeld bosonic and/or supersymmetric actions [7]
partial derivative of the Lagrangian with respect to the othethas been extensively explored beginning in 1990 [8]. If this
one. This he called the condition of conjugateness. The Latheory could be constructed, it should represent the world-

grangian is , , volume U(N) gauge theory that arises when one has N coin-
r— 0" -Xx @ cident type Il Dp branes. The symmetrized trace prescription
Q.- proposed by Tseytlin [9] seems to be correct up to terms of

In this Lagrangian the square root structure typical of thethe orderF*, but if fails at higher orders [10]. Also in the
Dirac-Born-Infeld action has disappeared. The Lagrangiasupersymmetric setup certain terms cannot be expressed in
results are rational and homogeneous of the zeroth degree.terms of symmetrized traces [11]. Lacking a general rule to
Schiddinger showed that the classical treatment of the Laconstruct the non-Abelian Born-Infeld theory, our formula-
grangian (2) is entirely equivalent to Born’s theory (DBI), this tion represents different alternatives to be explored in future
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works, as it has been the case with previous proposals and The stress energy momentum tensor is calculated and it
also in connection with the generalization of classical result$s proved that there always exists a Lorentz frame in which
in the standard Born-Infeld Abelian theory. all the four composing three vectors are parallel in a certain
At this stage we only show one consistent and relaworld point. Further simplification is obtained by making use
tively straightforward way to generalize Séldinger’s clas- of the fact that the six components@fand3 can be multi-
sical representation of the DBI action to non-Abelian gaugeplied by a factoe?”?, - real. Itis called they -transformation.
field theories and analyze some of its above mentioned phys$t does not interfere with the conjugateness condition, for
ical properties. It will be, as in the Abelian case, the ra-in (3) the right-hand sides take the factor’”. The numer-
tio of two invariants and does not have the usual form of acal values of the Lagrangian (2) remain unmodified as well
square root [12]. The formal structure is simple and providess those of the stress-energy-momentum tensor components.
us with a different starting point to investigate another non-The application to (4) and (5) with = const. produces an-
Abelian generalization of the Dirac-Born-Infeld action. We other solution, though with the same energy, momentum and
will make a brief comment on other possible ways to generstress densities as before in every world point.

alize Schoédinger’s construction. A consequence of (3) is
We will begin by reviewing the main aspects of
Schiddinger’s proposal. His Lagrangian is then written in QX 4+3-Q=0. @)

terms of the usual tensorial formulation in Electrodynamics.

Next we present our non-Abelian proposal, for which, as inMaking use of the above mentioned Lorentz transformation
the Abelian case the corresponding condition of conjugateene can make all components vanish except, Sayand>:,
ness will allow us to identify complex fields and reduce themand choose so as to maké&), real. Through the relation (7)

to the number of the usual physical fields of the correspondene can write

ing non-Abelian gauge theory. As in the usual gauge the- (433 =0, (8)
ories, the proposed action would have instantons solutions.
We conclude with a few remarks. ¥, results imaginary and can be put as
As already mentioned in the Introduction, Satlinger's
proposal begins by postulating the Lagrangian (2) (the sin- ¥ = iAQy, (9)

gular case2 - 3 = 0 is discussed in Ref. 1). The complex . o o )
combinations (1) are considered as independent variables byfhereA is a real constant. By substitution in (3) it is easily

such that their complex conjugates denoteck tyifill seen that the only allowed expressionstigrand:; are
oL 22 Q-3 V1= A2
Q* = — = — — Q 3 = =1 - 2
o Q-3 (QE)Q ) () Ql— A 5 21—’&\/1 A, (10)
L_0L_ 20 -3 A takes values from-1 to +1 and the positive sign of the
e Q- (Q-x27 square root should be taken. This is called the “standard

this he called the condition of conjugateness. field”. It is purely magnetic field with permeabilitd —*, a

Schibdinger then remarks that to get the field-equationd?urely electric field with diglectric_constam—l can be ob-
corresponding to (2) one should not pay attention to the relal@ined by ay— transformation. This standard field does not
tion (1), but actually conside® andX. as fundamental vari- équire then a furthey-transformation, but only a Lorentz

ables. He then, assumes (as in Born’s theory and, as wdiiansformation would be necessary to obtain the most gen-
known, in Maxwell’s theory) that the six complex vectr eral field. The Lagrangian for the standard case results then

andX is the four-dimensional curl of a potential four-vector, " 14 A2
and consequently only its four components are to be varied L=—; Tt .
independently. This is equivalent to assume that the field A
equations are The identity with Born’s theory (DBI) is not fully per-
o0 formed in Schadinger's work, it is mentioned that the con-
VxE+—=0, V-Q=0. (4)  dition of conjugateness (3) is equivalent to relations (12) (see
ot ) .
, ) . . below). This can easily be corroborated. The rest of the pro-
Then, using the conjugateness condition one can obtain by e is, according with the footnote in page 472, as follows:

(11)

variation in the usual way he refers us to Born-Infeld paper [5] and makes two correc-
. 0QF . tions to misprints, there
VxE 4+l =0, Vo0 -0 )

Itis also sh ing (3), that b ly imagi Ho9L__B-GE 12)
IS also shown, using s ecomes purely imaginary =—=———,
and is also equal to 0B i+ F-G?

9*2_2*2 D——ai: E+GB

L= (6) T E VIiF G2
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with and
0 —-D; —D, —Djs
D 0 —Hs H
L=+1+F—-G?-1, F=B?>-E? G=B-E. (13 m 1 3 2
+ (13) G D, H; 0 -—-H |’

One then chooses a frame wifB||E. Consequently Dy —Hy H 0

H||D||B||E. By inserting (13) into (12) one gets where G*¥ corresponds to Maxwell Electrodynamics. For
a non-linear electrodynamics in general it is calculated by
H = AB, E = AD, (14) Mmeans of
oL oL oL -
. G =2 = —2Ft — — FH¥ 18
with 8Fp,u 81-1 81—2 ) ( )
[1—E? . . .
A= TIB (15)  whereL is the Lagrangian of interest and
1 -
A results to be the dielectric constant and also the permeabil- I = §F“”FW7 I, = _ZF‘”'FW’ (19)
ity. ExpressingB? in terms ofE2 from (15) one gets
are the two Lorentz invariants (13). Equation (18) provides
1— A? the constitutive equations of a theory depending/ofind
2 2 _
B°+D° = VERl (16) I, [13].
We define now
and, of course -
MY — RV G OIpY

. which results in terms df2 andX in
These last two equations reduce to Egs. (10) wbeendE

are abolished by a-transformation. 0 -0 —Qy -3
To obtain Schidinger’s Lagrangian in tensorial notation U — M 0 Y3 =3

we write explicitly the dual tensor of the electromagnetic Q2 %3 0 ¥

field-strength Q3 Y2 X1 0

0 -B, -B, —Bs The Lagrangian (2) can now be written as
F,u.l/ — 1€#V’Y5Fw§ _ Bl 0 ES *EZ 7 I— %(I);u/(bwj _ 171
’ P T lowd,, 1o

By Ey -—-E 0 4 my

(21)

Now, in analogy with (18), th field tensor corresponding
| tothe Lagrangian (21) results in the following:

0 —20 + LY =205+ Ly —205+ L3
Gob _ _ 1 20, — L3 0 205 + LQy —285 — L 22)
Q-3 | 20, -L3 —2%5— £Q; 0 2% + L |7
203 — LY3 2o+ Ly =25, — L 0
where/ is the Lagrangian defined in Eq.(2).
By demanding Wheredo8 — doBer,, with 7, the generators of the gauge
R group. As in the Abelian formulation the square root, which
(®PY* =GB, (23) is so characteristic in the DBI theory and the non-Abelian

generalization in [9], has disappeared and the Lagrangian is
one gets exactly the condition of conjugateness (3). So weational and of the zeroth degree. The procedure formally
have really rewritten Skdinger’s proposal and the same con- follows in the same manner as in the foregoing Abelian case.

clusions follow from this tensorial notation. One can define a tensor
Taking advantage of the previous tensorial notation, we oL oIl oL oI,
propose now for non-Abelian theories the following La- G = — + 57 5 (25)
; Ol 0®np,q Oll; 0P 4
grangian
iT.(2*Pdng) I where
p=2 = 24 afa — pafa _ ;caba
L (@%08,) 12 N U= B G (26)

with F*A:¢ the dual tensor to the usual field strength ten-
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sor of the corresponding non-Abelian theory aiff ¢ the  the symmetrized trace [9] can be used [15]. This procedure
corresponding tensor to the Lagrangian defined only by thés, however, not so simple as to take the ratio of the invariants
invariant II, , that is the one associated with the Yang-Mills we are used td&; andl in the definition of £ (24) .
Lagrangian under consideration anfd, its corresponding, The usual way to demonstrate that instantons solutions to
so calledd-term. This procedure allows us to find the con- the field equations of non-Abelian theories exist, is to show
stitutive equations. They can be defined by means of the us@at solutions to the condition that the field strength is equal
of the tensoz*™* in (25). In order to get the appropriate to its dual (or minus its dual), correspond to a minimum of the
number of fields one needs to identify complex fields. Thisyang-Mills action of interest. Consequently instantons are
can be done by imposing the condition of conjugateness iBolutions of the corresponding field equations [16, 17]. We
this theory, in analogy with the Abelian case we demand [14bbserve that whe@*?¢ = +d%.¢  the Lagrangian (24) is
FaBavs _ paBa a constant. Then instantons solutions exist to the associated
(P e) = GPe. (27) . : ; .
field equations. In a forthcoming paper we will search for
As it was assumed by Sdbdinger himself in his Abelian an expansion of the Lagrangian (24), under the condition of
proposal, we assume also here that the field stredgth® conjugateness (27) in terms of the field strengths. As men-
is constructed as usual, from a potential four-vector and cortioned, the complex fields are identified through the condi-
sequently one gets the corresponding field equations. It ison (27) and one gets the same number of fields as in the
straightforward to see that, if we construct the Lagrangiarcorresponding standard Yang-Mills theory. This expansion
with the complex field strengths (27) it results oppositelycould be a first attempt towards a possible comparison with
equal to (24). So, that £ becomes purely imaginary as it hapresults in string theory [10]. Also, applications considering
pens in the Abelian formulation, Egs. (2),(3),(6). specific Lie groups will be considered to extend other results
The non-Abelian theory (24) is a natural extension ofthat have been studied in the Abelian case, as classical solu-
Schiddinger’s representation of DBI action. There is no am-tions that describe soliton configurations as well as physical
biguity in ordering the product of the matrices, we take sim-effects related to electric fields [18] approaching limiting val-
ply the trace of the action of the non-Abelian theory underues.
consideration and divide it by the correspondihg term
which is also a trace. Being the denominator a trace, it can, by
example, easily be expanded in a series which multiplies thé\cknowledgments
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