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Schrödinger’s Born-Infeld representation, the non Abelian case
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We propose a non-Abelian Born-Infeld theory based on an Abelian theory by Erwin Schrödinger that, as he showed, is equivalent to Born-
Infeld theory. Its construction does not require at any stage the square root structure that characterizes the Dirac-Born-Infeld (DBI) action.
Various non-Abelian generalizations are possible. We focus our attention, in this work, in one of them. For it, it is shown that Instantons
solutions exist.Our formalism could be of interest in connection with string theory and possible extensions of well known physical results in
the usual Born-Infeld Abelian case.
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Se propone una teorı́a no-Abeliana de Born-Infeld basada en una teorı́a Abeliana de Erwin Schrödinger que, comóel lo ha mostrado, es
equivalente a la teorı́a propuesta por Born e Infeld. Su construcción no requiere en ninguna etapa de la estructura de raı́z cuadrada que
caracteriza la acción Dirac-Born-Infeld (DBI). Varias generalizaciones no Abelianas son posibles; nos centramos en este trabajo en una de
ellas. Para esto, se muestra que las soluciones de Instantones existen. Nuestro formalismo puede ser de interés en conexión con teoŕıa de
cuerdas y posibles extensiones de resultados fı́sicos bien conocidos en el caso de Born-Infeld Abeliano usual.

Descriptores: Born-Infeld; no-Abeliano.

PACS: 11.15.-q; 11.90.+t

Seventy years ago Erwin Schrödinger wrote a paper entitled
Contributions to Born’s New Theory of the Electomagnetic
Field [1]. As is known and he himself pointed out the classi-
cal (Dirac-Born-Infeld,DBI) Born’s theory [2–6] can be con-
structed by means of the two vectorsB andE, the magnetic
induction and the electric field-strength respectively. The par-
tial derivatives of the Lagrangian with respect to the compo-
nents ofB andE define a second pair of vectors correspond-
ingly H, the magnetic field and− D, the electric displace-
ment. It was already shown by Born that one can choose four
different ways to write a Lagrange function in terms of one
of the magnetic vectors with one of the electric vectors. For
each of these theories, the Lagrangians have essentially the
same structure.

Schr̈odinger proposed a theory whose structure is entirely
different from the above mentioned. He used two complex
combinations ofB, E, H andD as independent variables

Ω = B− iD , Σ = E + iH, (1)

and constructed a Lagrangian in such a way that the com-
plex conjugate of one of these variables is identical with the
partial derivative of the Lagrangian with respect to the other
one. This he called the condition of conjugateness. The La-
grangian is

L =
Ω2 −Σ2

Ω ·Σ . (2)

In this Lagrangian the square root structure typical of the
Dirac-Born-Infeld action has disappeared. The Lagrangian
results are rational and homogeneous of the zeroth degree.

Schr̈odinger showed that the classical treatment of the La-
grangian (2) is entirely equivalent to Born’s theory (DBI), this

will be shown below. He then writesconsequently it cannot
provide us with any new insight, which could not, virtually,
be derived from Born’s original treatment as well. He recog-
nized that for practical calculations, however, the imaginary
vectors structure will be hard to handle with. Quoting, once
more Schr̈odinger:yet for certain theoretical considerations
of a general kind I am inclined to consider the present treat-
ment as the standard form on account of its extremal sim-
plicity, the Lagrangian being simply theratio of the two in-
variants, whereas in Maxwell’s theory it was equal to one of
them.

In this work we will present a generalization of
Schr̈odinger’s Lagrangian (2) to a non-Abelian gauge the-
ory. The complexification of the fields will provide us with
a direct clue to find the non-Abelian framework based on
the Abelian Schr̈odinger’s representation. As in the stan-
dard Yang-Mills theories, this theory admits instantons so-
lutions. This work, however, is also partially motivated by
the fact that in the framework of string theory, the possi-
bility to define a non-Abelian generalization of the standard
Dirac-Born-Infeld bosonic and/or supersymmetric actions [7]
has been extensively explored beginning in 1990 [8]. If this
theory could be constructed, it should represent the world-
volume U(N) gauge theory that arises when one has N coin-
cident type II Dp branes. The symmetrized trace prescription
proposed by Tseytlin [9] seems to be correct up to terms of
the orderF 4, but if fails at higher orders [10]. Also in the
supersymmetric setup certain terms cannot be expressed in
terms of symmetrized traces [11]. Lacking a general rule to
construct the non-Abelian Born-Infeld theory, our formula-
tion represents different alternatives to be explored in future
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works, as it has been the case with previous proposals and
also in connection with the generalization of classical results
in the standard Born-Infeld Abelian theory.

At this stage we only show one consistent and rela-
tively straightforward way to generalize Schrödinger’s clas-
sical representation of the DBI action to non-Abelian gauge
field theories and analyze some of its above mentioned phys-
ical properties. It will be, as in the Abelian case, the ra-
tio of two invariants and does not have the usual form of a
square root [12]. The formal structure is simple and provides
us with a different starting point to investigate another non-
Abelian generalization of the Dirac-Born-Infeld action. We
will make a brief comment on other possible ways to gener-
alize Schr̈odinger’s construction.

We will begin by reviewing the main aspects of
Schr̈odinger’s proposal. His Lagrangian is then written in
terms of the usual tensorial formulation in Electrodynamics.
Next we present our non-Abelian proposal, for which, as in
the Abelian case the corresponding condition of conjugate-
ness will allow us to identify complex fields and reduce them
to the number of the usual physical fields of the correspond-
ing non-Abelian gauge theory. As in the usual gauge the-
ories, the proposed action would have instantons solutions.
We conclude with a few remarks.

As already mentioned in the Introduction, Schrödinger’s
proposal begins by postulating the Lagrangian (2) (the sin-
gular caseΩ · Σ = 0 is discussed in Ref. 1). The complex
combinations (1) are considered as independent variables but
such that their complex conjugates denoted by∗ fulfill

Ω∗ =
∂L
∂Σ

= − 2Σ
Ω ·Σ − Ω2 −Σ2

(Ω ·Σ)2
Ω, (3)

Σ∗ =
∂L
∂Ω

=
2Ω

Ω ·Σ − Ω2 −Σ2

(Ω ·Σ)2
Σ,

this he called the condition of conjugateness.
Schr̈odinger then remarks that to get the field-equations

corresponding to (2) one should not pay attention to the rela-
tion (1), but actually considerΩ andΣ as fundamental vari-
ables. He then, assumes (as in Born’s theory and, as well
known, in Maxwell’s theory) that the six complex vectorΩ
andΣ is the four-dimensional curl of a potential four-vector,
and consequently only its four components are to be varied
independently. This is equivalent to assume that the field
equations are

∇×Σ +
∂Ω
∂t

= 0, ∇ ·Ω = 0. (4)

Then, using the conjugateness condition one can obtain by
variation in the usual way

∇×Σ∗ +
∂Ω∗

∂t
= 0, ∇ ·Ω∗ = 0. (5)

It is also shown, using (3), thatL becomes purely imaginary
and is also equal to

L = −Ω∗2 −Σ∗2

Ω∗ ·Σ∗ . (6)

The stress energy momentum tensor is calculated and it
is proved that there always exists a Lorentz frame in which
all the four composing three vectors are parallel in a certain
world point. Further simplification is obtained by making use
of the fact that the six components ofΩ andΣ can be multi-
plied by a factoreiγ , γ real. It is called theγ -transformation.
It does not interfere with the conjugateness condition, for
in (3) the right-hand sides take the factore−iγ . The numer-
ical values of the Lagrangian (2) remain unmodified as well
as those of the stress-energy-momentum tensor components.
The application to (4) and (5) withγ = const. produces an-
other solution, though with the same energy, momentum and
stress densities as before in every world point.

A consequence of (3) is

Ω∗ ·Σ + Σ∗ ·Ω = 0. (7)

Making use of the above mentioned Lorentz transformation
one can make all components vanish except, say,Ω1 andΣ1

and chooseγ so as to makeΩ1 real. Through the relation (7)
one can write

Ω1(Σ1 + Σ∗1) = 0, (8)

Σ1 results imaginary and can be put as

Σ1 = iAΩ1, (9)

whereA is a real constant. By substitution in (3) it is easily
seen that the only allowed expressions forΩ1 andΣ1 are

Ω1 =
√

1−A2

A
, Σ1 = i

√
1−A2, (10)

A takes values from−1 to +1 and the positive sign of the
square root should be taken. This is called the “standard
field”. It is purely magnetic field with permeabilityA−1, a
purely electric field with dielectric constantA−1 can be ob-
tained by aγ− transformation. This standard field does not
require then a furtherγ-transformation, but only a Lorentz
transformation would be necessary to obtain the most gen-
eral field. The Lagrangian for the standard case results then
in

L = −i
1 + A2

A
. (11)

The identity with Born’s theory (DBI) is not fully per-
formed in Schr̈odinger’s work, it is mentioned that the con-
dition of conjugateness (3) is equivalent to relations (12) (see
below). This can easily be corroborated. The rest of the pro-
cedure is, according with the footnote in page 472, as follows;
he refers us to Born-Infeld paper [5] and makes two correc-
tions to misprints, there

H =
∂L

∂B
=

B−GE√
1 + F −G2

, (12)

D = −∂L

∂E
=

E + GB√
1 + F −G2

,
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with

L =
√

1 + F −G2−1, F = B2−E2, G = B ·E. (13)

One then chooses a frame withB||E. Consequently
H||D||B||E. By inserting (13) into (12) one gets

H = AB, E = AD, (14)

with

A =

√
1−E2

1 + B2
, (15)

A results to be the dielectric constant and also the permeabil-
ity. ExpressingB2 in terms ofE2 from (15) one gets

B2 + D2 =
1−A2

A2
, (16)

and, of course

H2 + E2 = 1−A2. (17)

These last two equations reduce to Eqs. (10) whenD andE
are abolished by aγ-transformation.

To obtain Schr̈odinger’s Lagrangian in tensorial notation
we write explicitly the dual tensor of the electromagnetic
field-strength

F̃µν =
1
2
εµνγδFγδ =




0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0


 ,

and

Gµν =




0 −D1 −D2 −D3

D1 0 −H3 H2

D2 H3 0 −H1

D3 −H2 H1 0


 ,

whereGµν corresponds to Maxwell Electrodynamics. For
a non-linear electrodynamics in general it is calculated by
means of

Gµν = 2
∂L

∂Fµν
=

∂L

∂I1
2Fµν − ∂L

∂I2
F̃µν , (18)

whereL is the Lagrangian of interest and

I1 =
1
2
FµνFµν , I2 = −1

4
Fµν F̃µν , (19)

are the two Lorentz invariants (13). Equation (18) provides
the constitutive equations of a theory depending ofI1 and
I2 [13].

We define now

Φµν ≡ F̃µν − iGµν , (20)

which results in terms ofΩ andΣ in

Φµν =




0 −Ω1 −Ω2 −Ω3

Ω1 0 Σ3 −Σ2

Ω2 −Σ3 0 Σ1

Ω3 Σ2 −Σ1 0


 .

The Lagrangian (2) can now be written as

IL =
1
2ΦµνΦµν

1
4ΦµνΦ̃µν

≡ II 1

II 2
. (21)

Now, in analogy with (18), theG field tensor corresponding
to the Lagrangian (21) results in the following:

Gαβ = − 1
Ω ·Σ




0 −2Ω1 + LΣ1 −2Ω2 + LΣ2 −2Ω3 + LΣ3

2Ω1 − LΣ1 0 2Σ3 + LΩ3 −2Σ2 − LΩ2

2Ω2 − LΣ2 −2Σ3 − LΩ3 0 2Σ1 + LΩ1

2Ω3 − LΣ3 2Σ2 + LΩ2 −2Σ1 − LΩ1 0


 , (22)

whereL is the Lagrangian defined in Eq.(2).
By demanding

(Φ̃αβ)∗ = Gαβ , (23)

one gets exactly the condition of conjugateness (3). So we
have really rewritten Shrödinger’s proposal and the same con-
clusions follow from this tensorial notation.

Taking advantage of the previous tensorial notation, we
propose now for non-Abelian theories the following La-
grangian

Ł =
1
2Tr(ΦαβΦαβ)
1
4Tr(ΦαβΦ̃αβ)

≡ II 1

II 2
, (24)

whereΦαβ = Φαβ,aτa, with τa the generators of the gauge
group. As in the Abelian formulation the square root, which
is so characteristic in the DBI theory and the non-Abelian
generalization in [9], has disappeared and the Lagrangian is
rational and of the zeroth degree. The procedure formally
follows in the same manner as in the foregoing Abelian case.
One can define a tensor

IGαβ,a =
∂Ł
∂ II 1

∂ II 1

∂Φαβ,a
+

∂Ł
∂ II 2

∂ II 2

∂Φαβ,a
, (25)

where
Φαβ,a ≡ F̃αβ,a − iGαβ,a, (26)

with F̃αβ,a the dual tensor to the usual field strength ten-
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sor of the corresponding non-Abelian theory andGαβ,a the
corresponding tensor to the Lagrangian defined only by the
invariant II 1 , that is the one associated with the Yang-Mills
Lagrangian under consideration andII 2 its corresponding,
so calledθ-term. This procedure allows us to find the con-
stitutive equations. They can be defined by means of the use
of the tensorIGαβ,a in (25). In order to get the appropriate
number of fields one needs to identify complex fields. This
can be done by imposing the condition of conjugateness in
this theory, in analogy with the Abelian case we demand [14]

(Φ̃αβ,a)∗ = IGαβ,a. (27)

As it was assumed by Schrödinger himself in his Abelian
proposal, we assume also here that the field strengthΦαβ,a

is constructed as usual, from a potential four-vector and con-
sequently one gets the corresponding field equations. It is
straightforward to see that, if we construct the Lagrangian
with the complex field strengths (27) it results oppositely
equal to (24). So, that Ł becomes purely imaginary as it hap-
pens in the Abelian formulation, Eqs. (2),(3),(6).

The non-Abelian theory (24) is a natural extension of
Schr̈odinger’s representation of DBI action. There is no am-
biguity in ordering the product of the matrices, we take sim-
ply the trace of the action of the non-Abelian theory under
consideration and divide it by the correspondingθ − term
which is also a trace. Being the denominator a trace, it can, by
example, easily be expanded in a series which multiplies the
trace in the numerator. Other possibilities can be considered,
before taking the trace in the denominator (and numerator).
One can take the matrix product in the numerator and find the
inverse matrix corresponding to the denominator. Having to
multiply these matrices, one must then give a prescription to
define the Lagrangian one would one to consider; the trace or

the symmetrized trace [9] can be used [15]. This procedure
is, however, not so simple as to take the ratio of the invariants
we are used to,II 1 andII 2 in the definition of Ł (24) .

The usual way to demonstrate that instantons solutions to
the field equations of non-Abelian theories exist, is to show
that solutions to the condition that the field strength is equal
to its dual (or minus its dual), correspond to a minimum of the
Yang-Mills action of interest. Consequently instantons are
solutions of the corresponding field equations [16, 17]. We
observe that whenΦαβ,a = ±Φ̃αβ,a, the Lagrangian (24) is
a constant. Then instantons solutions exist to the associated
field equations. In a forthcoming paper we will search for
an expansion of the Lagrangian (24), under the condition of
conjugateness (27) in terms of the field strengths. As men-
tioned, the complex fields are identified through the condi-
tion (27) and one gets the same number of fields as in the
corresponding standard Yang-Mills theory. This expansion
could be a first attempt towards a possible comparison with
results in string theory [10]. Also, applications considering
specific Lie groups will be considered to extend other results
that have been studied in the Abelian case, as classical solu-
tions that describe soliton configurations as well as physical
effects related to electric fields [18] approaching limiting val-
ues.
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