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We investigate refined algebraic quantisation of the constrained Hamiltonian system known as the Ashtekar-Horowitz model. We study
versions of this model which are defined on a two-torus and on a cylinder, respectively. The dimension of the physical Hilbert space dep:
on the topological structure of the model. In particular, we see that for the compact version of the model the representation of the phys
observable algebra is irreducible for generic potentials but decomposes into irreducible subrepresentations for certain special potentials
superselection sectors are related to singularities in the reduced phase space and to the rate of divergence in the formal group ave
integral. For both versions, there is no tunnelling into the classically forbidden region of the unreduced configuration space.
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En este aftulo se investiga la cuantizéei algebraica refinada del sistema Hamiltoniano con constricciones conocido como el model
de Ashtekar-Horowitz. Se estudian dos versiones de dicho modelo, las cualedefnidas en un toro de dos dimensiones y en un
cilindro, respectivamente. La dimedsidel espacio de Hilberidico depende de la estructura tdmgita del modelo. En particular, se
encuentra que en la vedsi compacta del modelo la represenbadielalgebra de los observablésitos es irreducible para ciertos potenciales
gerericos pero se descompone en sub-representaciones irreducibles para ciertos potenciales especiales. Los sectores densegferselecci
relacionados tanto con las singularidades en el espacio fase reducidomascon el grado de divergencia en las integrales al promediar
sobre el grupo. En ambas versiones, no hay tunelamiento en las regiones del espacio no reducido de éorpiginiaalas @dsicamente.

Descriptores:Promedio sobre el grupo; sistemas con constricciones; sectores de supénselecci
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1. Introduction precisely-defined algebrd,,, of physical observables. We
wish to study this algebra and in particular ask whether its
We study quantisation of the constrained Hamiltonian systemepresentation contains superselection sectors in the sense
known as the Ashtekar-Horowitz model originally introduced th a1 if Hpnys IS invariant undetﬁobs and if the representa-
in Ref. 1to model the situation occurring in general relativity tion of this algebra decomposes the physical Hilbert space
in which certain parts of the unreduced configuration spacéig a direct sum of subspaces, each of them carrying an irre-
are not in the projection of the constraint hypersurface. Inyciple representation of the algebra of observables, then any
particular, the Hamiltonian constraint matrix element of an operator in the algebra of observables
1 1 between states belonging to different subspaces necessarily
H:= ) (W“bﬂab - 2(”3)2> —/det(q) PR~0,  vanishes. Each of the subspaces just mentioned qualify as
Hilbert spaces on their own.
is a complicated function of the configuration variables that
depends quadratically on the moment4(t, =), and we have A major piece of technical input in refined algebraic
that the constraint surface in the phase space only projectpiantisation is the rigging map, which maps a dense subspace
down to certain subsets of the configuration space [1]. Thesef suitably well-behaved states in the unconstrained Hilbert
subsets of the configuration space thus play no part in thepace to distributional states that solve the constraints [3, 4].
classical theory, but they could give rise to tunnelling effectsin Boulware’s version, the integral of matrix elements over
in Dirac-style quantisations [2]. The quantisation discussedhe gauge group does not converge in absolute value, which
in Ref. 1 indeed displayed such effects, containing physicatomplicates attempts to define a rigging map by group aver-
states that have support in the classically forbidden region odiging. However, the formal group averaging expression nev-
the configuration space. ertheless suggests a rigging map candidate on which the di-
We shall investigate the Ashtekar-Horowitz systemvergences are renormalised. We show that this candidate is a
within the refined algebraic quantisation programme [3, 4genuine rigging map and the resulting representatiodgf
and references therein]. We analyse two different versionss irreducible. In this case the represent(:ltiouéir;;{)S decom-
of the model that are defined on a two-torus (Boulware’s verposes into superselection sectors, labelled by the degrees of
sion [5]) and on a cylinder, respectively. The main new issualivergence in the formal rigging map candidate, and the re-
of interest for us is that the quantum theory obtained withinpresentation within each superselection sector is irreducible.
the refined algebraic quantisation programme entails, in botBuperselection sectors exist precisely when some vectors in
versions, not just a physical Hilbert spakfn,s but also a  H,uys are supported on the part of the unreduced configura-
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tion space that is associated with singular parts of the reduces' x R = {(y,p.)}. Note that orbits generated by the con-
phase space. A detailed discussion of Boulware’s version ddtraint C' on the constraint hypersurfadehave constany
the model can be found in Ref. 6. andp,.

We also present a version of the Ashtekar-Horowitz ~ As it was shown in Ref. 6, each connected component
model defined on a cylindrical configuration space. We shovof the reduced phase spaEg, is a two-dimensional sym-
that there is a distinguished coordinate in the configuratiomplectic manifold with certain one-dimensional singular sub-
space in the sense that the phenomena occurring in Bousets, and the symplectic volume Bf.q4 is finite and equal
ware’s version do not arise when we allow this coordinate tdo 2x [, |R'(y)|/+/R(y) dy. Further, the one-dimensional
be non-periodic. We then find that in this version the stationsingular subsets emerge when we allow stationary poings of
ary points of generic potentials make a vanishing contributioron I'..q4. Thus we see that the classical singularities occur
to the rigging map. at the stationary points ag: this will become important on

In our quantisation of either system there is no tunnellingcomparison to the quantum theory.
of the kind found in Ref. 1 into the classically forbidden re-
gion of the unreduced configuration space. 2.2. Cylindrical version

The rest of the paper is as follows. Section 2 introduces
the classical aspects of the Ashtekar-Horowitz model in itsThe configuration space is given as the cylindes R x S*.
two versions. Section 3 analyses its quantisation within théoints inC are labelled by, y), wherez € R andy € S,
refined algebraic quantisation programme. Section 4 preseng!d points in the phase spafe:= 7"C are labelled by
brief concluding remarks. (x,y,pz,py), Wherep, andp, are real-valued. Note that

the periodicity condition on the-coordinate is eliminated as
. compared to Boulware’s version. We use the canonical trans-
2. Classical System formation(z,p,) — (—p., ) which gives the constraint

In this secetion we study classical aspects of the Ashtekar- C =22~ R(y). )
Horowitz model. The system has a four-dimensional unre-

duced phase space and a single constraint, quadratic in thge denote ag’ the space labelled byz,y). We will
momenta. We consider two versions of the model that diffekyork on the same assumptions fB(y) as in section 2.1..

on the configuration space we start with, for the first one werhe constraint surfac& is the Cartesian product of the
consider a two-torus while for the second one we take a twop|aneR? = {(p=,p,)} with finitely many disjoint circles in

dimensional cylinder. We see that the topological structuregr x 51 — {(z,y)}. Orbits generated by the constrafiton
of the reduced phase space on both versions differs if certaifi have constant andy.

stationary points are allowed. After gauge fixing ol we obtain a reduced phase space
_ I'.eq With a well defined symplectic structure inherited from
2.1. Boulware’s version the phase spadg and the singular subsets of section 2.1. are

absent. This may be seen from the fact that we could choose
from the gauge orbits a unique point by the conditios 0

and consider ofi',.q the symplectic form,.q = dp, A y.
Hence we obtain &'..q with an infinite volume and no sin-
gularities.

The configuration space of the systenfis= 72 ~ St x S1.
We write the points i€ as(z, y), wherex € S* andy € S?,
and points in the phase spabe:= T*C as (z,y, Pz, Py):
wherep, € R andp, € R. The action reads

S = [dt pai i = AC). 1 | | -

( ! ) 3. Refined algebraic quantisation
where the overdot denotes differentiation with respect to th
parametert and \ is a Lagrange multiplier associated with
the constraint

§n this section we guantise the two versions of the system,
following refined algebraic quantisation as reviewed in [3,4].
We see that the quantum theories are essentially different

from each other.
C:=p; - R(y), 2

whereR : S — R is a smooth function. We assunfeto ~ 3-1.  RAQ of Boulware’s version
be positive at least somewhere. We also assumefiiiats at We start by fixing the structure in the auxiliary Hilbert space,

most finitely many stationary points. We further assume tha -
) . . L and then we construct a rigging map suggested by the group
each stationary point ok has a nonvanishing derivative of L
averaging integral.

R of some order. To simplify the discussion of the classical I . .
. . Our auxiliary Hilbert spacé,. is the space of square
system, we assume that no zerdrdis a stationary point. intearable functions od in the inner product
The constraint surfacg is the subset of whereC' = 0. integ uhcti : ! produ
By our assumptions abow, T is the Cartesian product of
St x R = {(z,py)} with finitely many disjoint circles in (@1, 02) qux = /dx dy ¢1(, y) P2 (2, y) , (4)

Rev. Mex. . S53(4) (2007) 121-124



GROUP AVERAGING AND THE ASHTEKAR-HOROWITZ MODEL 123

where the overline denotes complex conjugation. We take the Group averaging (10) suggests, however, a rigging map
guantised version of the classical constraint (2) to be candidate. Thus we define (see details in [6]) the map
Daux - D;ux by

N 52
Ci=———5 —R(y). (5) [ p—
81'2 e zmxfm Yy
R (np(f)) (LE, y) = Z —()1/p 5(y7 yp|7n\j) . (11)
C is essentially self-adjoint ofi,,, and exponentiates into mj ‘R(” >(?Jp|m|j )’

the one-parameter family of unitary operators . . .
P y yop Here we considered,,,,; as solutions to the equation

U(t) == e—itC L ER. ©) R(y) = m?, where the third index labels the solutions for
’ givenm, and the first term denotes the order of the lowest
For the test SPacB,ux C Haux, We choose the space of non-vanishing derivative aR at a solution. Hence we allow
functionsf : C — C of the form stationary points of: among the solutions t&(y) = m?. If
fs 9 € Daux, (11) gives

f($7y) — Z eimzfm(y)’ — |
mez n(lg) = Y Tt Unton) g

, - RO (yyp)|
where eacly,, : S — C is smooth and only finitely many mj plmlj
fm are different from zero for each Da. is clearly adense  From (12) it is seen that eaof), has a finite-dimensional,

linear subspace Gf.ux. If f € Daux, then nontrivial image and satisfies the rigging map axioms, with
o . the possible exception of the intertwining property (8). In [6]
— —it[m“—R imx
U F) (@) = Z e W™ £ (y). () itwas shown that each), satisfies also the intertwining prop-

erty and hence provides a rigging map. Each of the images

which shows that/ (t)f € D.ux. Daux is thus invariant un- of these maps provides therefore a physical Hilbert space,

derU(t). denoted respectively by, . with the inner product given
The above structure determines the observable algebRY (9) and (12). As all the spaces are finite-dimensional, no

Aops as the algebra of operato€@ on H,., such that the Cauchy completion is needed.

domains of® and Ot include Dy, O andOt mMapDauy tO As the images of any two of the rigging maps have trivial

itself and® commutes witHJ () on D, for all ¢. intersection inDj,,., we can regard each;, . as superse-
Recall now that the final ingredient in refined algebraiclection sectors in theotal Hilbert space

uantisation is to specify an antilinear rigging map :

%aux — D s wherelg;uxfgenotes the algeb?e?ic gual?'s)pol— Hiis = D My - (13)

ogised by pointwise convergence. The mamust be real P

and positive, states in its image must be invariant under th

i ionA P
dual action ofU (¢), andn must intertwine with the represen- As shown in Ref. 6, the representationy, on eact?{

phys

tations of Ayps 0N D, and D7 in the sense that for all Is irredu_cible. Further, as all the states s h._ave their
Oc Ay ar?d\f c Da“x aux support in the classically allowed region@fthere is no tun-

obs awa nelling of the kind found in [1] into the classically forbid-
n(Of) = O(nf). (8) den region of. If the classically allowed region df is not

connected, there is however tunnelling between all its com-

Given the rigging map, the physical Hilbert spakigys is  Ponents that support statesHfs. ..
the Cauchy completion of the imagepin the inner product

((£)n(9)) e = n(9) ] 9)

phys - We consider the auxiliary Hilbert spa@é... := L?(C’) as
To find a rigging map we consider the group averagingthe space of square integrable functionsConvithin the in-
proposal that seeks a rigging map as an implementation dfer product adapted from (4) to our case, and we take the

3.2. RAQ of the cylindrical version

the formal expression guantised version of the classical constraint (3) to be
s C =22 —R(y), (14)
N /dtcz)TU(t). (10)
e which is essentially self-adjoint ifi(,,x. We exponentiate

the constraint to obtain a one-parameter unitary representa-
In our system, however, a saddle-point estimate [7] showsion as in (6). We se€D,.x C Haux @S the space of smooth
that there are states for which the absolute value of the interapidly decreasing functions iH,.. The action of the uni-
grand on the right-hand side of (10) is asymptotically proportary operatoil/ (t) on states) € D, reads
tional to|¢| /2 as|t| — oo, and for such states the integral t
is not absolutely convergent. U)9) (z,y) := e’”(ZZ*R(y))qS(z, Y) € Daux - (15)
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As discussed before in Sec. 3.1, the algebra of observablegoup, the formal group averaging expressions nevertheless
Aobs is completely determined by the above structure. suggested a rigging map candidate that is renormalised to
The next step is to specify a rigging map consider formally divergent terms due to the vanishing of the
7 : Daux — DJ.- The mapn is defined by its properties derivatives of the functiol(y). We showed that for generic
as described in Refs. 3 and 4 and can be obtained systemgistential functions this candidate is indeed a rigging map and
ically from expression (10). As in Sec. 3.1, a saddle-pointthe divergences in this rigging map appear to be related to the
estimate shows that the integral (10) is not absolutely conrate of divergence in the formal group averaging integral. The

vergent for states if,... However, we use (10) to formally resulting representation of the observable algehya on the

write for R(y) > 0 a would-be rigging map as physical Hilbertspacéllf;;fyS decomposed into superselection
1 7y sectors. The dimension 619\ = was finite. The system ex-
n(f) (z,y) = = Z =26(2,2i(y)) , (16) hibits a striking connection between the singular subsets in
2 j==% 2] the reduced phase spafgq and the superselection sectors

wherez; () labels the two solutions of the quadratic equationin the quantum theory. Because of the periodicity of the co-

2 — R(y) = 0. ordinatex on the unreduced configuration spate: 72, the
From (16), the action of(f) € D:,, onastatg € D,,,  cOniugate momentum, gets quantised in mte_gerva!ues. For
is given by generic potentials, these integer values entirely miss the sin-
- gular, measure zero subsetd ¢f,, and in this case the quan-
n(f)lg] = Z dy F(z,9) 9(25,y) . (17)  tumtheory has no superselection sectors. However, when the
|25 potential is such that one or more of the quantised values of

I R(y)>0 - - :
pe hit some of the singular subsets Bf.q, superselection

As the zeroes oft are by assumption not critical points and sectors arise in the quantum theory.
the functionsf,g € D,. are continuous, an elementary

vsis sh hat the | lin (17) " ab Although the compactness 6fsimplified some aspects
analysis shows that the mtegr_a in (17) is convergent N abSO5¢ the analysis, the compactness is as such not essential: The
lute value and hence well defined. We then define the phys

Fesults remain qualitatively similar if thg-direction is un-
cal inner product as in relation (9). From (17) it is clear that a y hg-

X o : wrapped to the real axis, provided the range @f which R
7 is real and positive, and solves the constraints. To sho bp P 4%

h . . ith the alaebra of ob bld Wakes positive values remains bounded. What is essential is
t at? |I?tertvy|n$s V(\;'t tl € algebra 0 r? servabldsys (;N_e 6 the periodicity in thec-direction. As seenin Sec. 2.1, itis the
can follow similar developments as those presented in [ ]iv-periodicity that in the classical theory renders the volume

The mapr is thus a genuine rigging map,.and the p_hyS|caIOf I'\a finite and creates the singular subsets; in the quantum

Hilbert spacefl-{ph.yS is thg Cauchy completion Qf the image theory, it is the associated discretenesg, ofthat makes the

of 1 equipped W'.th _th_e inher prpduct (9) obtained by (17)'physical Hilbert space finite-dimensional and allows the iso-

Note_ thaﬂ.—{?hys Is infinite-dimensional contrary to the results lated stationary points of the potential to make nonzero con-

obtamgd in the Sec. 3.1. . tributions to the rigging map. However, as seen in Sec. 2.2,

. Asin Sep. 3.1, all the states Py ha\(e their SUPPOTt it takes values iR, these phenomena do not arise. The

n the classmglly aIIowgd region '0}’, there is no tunnelling reduced phase space has then infinite volume and no clas-

into the classically forbidden region 6f. sical singularities. The physical Hilbert space is infinite-
dimensional, and the stationary pointsidfnake a vanishing

4. Discussion contribution to the rigging map.

We have studied refined algebraic quantisation of two differ-
ent versions of the Ashtekar-Horowitz model.
In Boulware’s version [6, 8], although the system did AcCknowledgements
not allow a rigging map to be defined in terms of an abso-
lutely convergent integral of matrix elements over the gauge thank Jorma Louko for collaboration and discussions.
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