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We investigate refined algebraic quantisation of the constrained Hamiltonian system known as the Ashtekar-Horowitz model. We study two
versions of this model which are defined on a two-torus and on a cylinder, respectively. The dimension of the physical Hilbert space depends
on the topological structure of the model. In particular, we see that for the compact version of the model the representation of the physical
observable algebra is irreducible for generic potentials but decomposes into irreducible subrepresentations for certain special potentials. The
superselection sectors are related to singularities in the reduced phase space and to the rate of divergence in the formal group averaging
integral. For both versions, there is no tunnelling into the classically forbidden region of the unreduced configuration space.
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En este artı́culo se investiga la cuantización algebraica refinada del sistema Hamiltoniano con constricciones conocido como el modelo
de Ashtekar-Horowitz. Se estudian dos versiones de dicho modelo, las cuales están definidas en un toro de dos dimensiones y en un
cilindro, respectivamente. La dimensión del espacio de Hilbert fı́sico depende de la estructura topológica del modelo. En particular, se
encuentra que en la versión compacta del modelo la representación delálgebra de los observables fı́sicos es irreducible para ciertos potenciales
geńericos pero se descompone en sub-representaciones irreducibles para ciertos potenciales especiales. Los sectores de superselección est́an
relacionados tanto con las singularidades en el espacio fase reducido, ası́ como con el grado de divergencia en las integrales al promediar
sobre el grupo. En ambas versiones, no hay tunelamiento en las regiones del espacio no reducido de configuración prohibidas cĺasicamente.

Descriptores:Promedio sobre el grupo; sistemas con constricciones; sectores de superselección.
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1. Introduction

We study quantisation of the constrained Hamiltonian system
known as the Ashtekar-Horowitz model originally introduced
in Ref. 1 to model the situation occurring in general relativity
in which certain parts of the unreduced configuration space
are not in the projection of the constraint hypersurface. In
particular, the Hamiltonian constraint

H :=
−1√
det(q)

(
πabπab − 1

2
(πa

a)2
)
−

√
det(q) (3)R ≈ 0 ,

is a complicated function of the configuration variables that
depends quadratically on the momentaπab(t, x), and we have
that the constraint surface in the phase space only projects
down to certain subsets of the configuration space [1]. These
subsets of the configuration space thus play no part in the
classical theory, but they could give rise to tunnelling effects
in Dirac-style quantisations [2]. The quantisation discussed
in Ref. 1 indeed displayed such effects, containing physical
states that have support in the classically forbidden region of
the configuration space.

We shall investigate the Ashtekar-Horowitz system
within the refined algebraic quantisation programme [3, 4,
and references therein]. We analyse two different versions
of the model that are defined on a two-torus (Boulware’s ver-
sion [5]) and on a cylinder, respectively. The main new issue
of interest for us is that the quantum theory obtained within
the refined algebraic quantisation programme entails, in both
versions, not just a physical Hilbert spaceHphys but also a

precisely-defined algebrâAobs of physical observables. We
wish to study this algebra and in particular ask whether its
representation contains superselection sectors in the sense
that if Hphys is invariant underÂobs and if the representa-
tion of this algebra decomposes the physical Hilbert space
into a direct sum of subspaces, each of them carrying an irre-
ducible representation of the algebra of observables, then any
matrix element of an operator in the algebra of observables
between states belonging to different subspaces necessarily
vanishes. Each of the subspaces just mentioned qualify as
Hilbert spaces on their own.

A major piece of technical input in refined algebraic
quantisation is the rigging map, which maps a dense subspace
of suitably well-behaved states in the unconstrained Hilbert
space to distributional states that solve the constraints [3, 4].
In Boulware’s version, the integral of matrix elements over
the gauge group does not converge in absolute value, which
complicates attempts to define a rigging map by group aver-
aging. However, the formal group averaging expression nev-
ertheless suggests a rigging map candidate on which the di-
vergences are renormalised. We show that this candidate is a
genuine rigging map and the resulting representation ofÂobs

is irreducible. In this case the representation ofÂobs decom-
poses into superselection sectors, labelled by the degrees of
divergence in the formal rigging map candidate, and the re-
presentation within each superselection sector is irreducible.
Superselection sectors exist precisely when some vectors in
Hphys are supported on the part of the unreduced configura-



122 A. MOLGADO

tion space that is associated with singular parts of the reduced
phase space. A detailed discussion of Boulware’s version of
the model can be found in Ref. 6.

We also present a version of the Ashtekar-Horowitz
model defined on a cylindrical configuration space. We show
that there is a distinguished coordinate in the configuration
space in the sense that the phenomena occurring in Boul-
ware’s version do not arise when we allow this coordinate to
be non-periodic. We then find that in this version the station-
ary points of generic potentials make a vanishing contribution
to the rigging map.

In our quantisation of either system there is no tunnelling
of the kind found in Ref. 1 into the classically forbidden re-
gion of the unreduced configuration space.

The rest of the paper is as follows. Section 2 introduces
the classical aspects of the Ashtekar-Horowitz model in its
two versions. Section 3 analyses its quantisation within the
refined algebraic quantisation programme. Section 4 presents
brief concluding remarks.

2. Classical System

In this secetion we study classical aspects of the Ashtekar-
Horowitz model. The system has a four-dimensional unre-
duced phase space and a single constraint, quadratic in the
momenta. We consider two versions of the model that differ
on the configuration space we start with, for the first one we
consider a two-torus while for the second one we take a two-
dimensional cylinder. We see that the topological structure
of the reduced phase space on both versions differs if certain
stationary points are allowed.

2.1. Boulware’s version

The configuration space of the system isC := T 2 ' S1×S1.
We write the points inC as(x, y), wherex ∈ S1 andy ∈ S1,
and points in the phase spaceΓ := T ∗C as (x, y, px, py),
wherepx ∈ R andpy ∈ R. The action reads

S =
∫

dt
(
pxẋ + py ẏ − λC

)
, (1)

where the overdot denotes differentiation with respect to the
parametert andλ is a Lagrange multiplier associated with
the constraint

C := p2
x −R(y) , (2)

whereR : S1 → R is a smooth function. We assumeR to
be positive at least somewhere. We also assume thatR has at
most finitely many stationary points. We further assume that
each stationary point ofR has a nonvanishing derivative of
R of some order. To simplify the discussion of the classical
system, we assume that no zero ofR is a stationary point.

The constraint surfaceΓ is the subset ofΓ whereC = 0.
By our assumptions aboutR, Γ is the Cartesian product of
S1 × R = {(x, py)} with finitely many disjoint circles in

S1 × R = {(y, px)}. Note that orbits generated by the con-
straintC on the constraint hypersurfaceΓ have constanty
andpx.

As it was shown in Ref. 6, each connected component
of the reduced phase spaceΓred is a two-dimensional sym-
plectic manifold with certain one-dimensional singular sub-
sets, and the symplectic volume ofΓred is finite and equal
to 2π

∫
R>0

|R′(y)|/
√

R(y) dy. Further, the one-dimensional
singular subsets emerge when we allow stationary points ofR
on Γred. Thus we see that the classical singularities occur
at the stationary points ofR: this will become important on
comparison to the quantum theory.

2.2. Cylindrical version

The configuration space is given as the cylinderC := R×S1.
Points inC are labelled by(x, y), wherex ∈ R andy ∈ S1,
and points in the phase spaceΓ := T ∗C are labelled by
(x, y, px, py), wherepx and py are real-valued. Note that
the periodicity condition on thex-coordinate is eliminated as
compared to Boulware’s version. We use the canonical trans-
formation(x, px) 7→ (−pz, z) which gives the constraint

C := z2 −R(y) . (3)

We denote asC′ the space labelled by(z, y). We will
work on the same assumptions forR(y) as in section 2.1..
The constraint surfaceΓ is the Cartesian product of the
planeR2 = {(pz, py)} with finitely many disjoint circles in
R × S1 = {(z, y)}. Orbits generated by the constraintC on
Γ have constantz andy.

After gauge fixing onΓ we obtain a reduced phase space
Γred with a well defined symplectic structure inherited from
the phase spaceΓ, and the singular subsets of section 2.1. are
absent. This may be seen from the fact that we could choose
from the gauge orbits a unique point by the conditionx = 0
and consider onΓred the symplectic formΩred = dpy ∧ y.
Hence we obtain aΓred with an infinite volume and no sin-
gularities.

3. Refined algebraic quantisation

In this section we quantise the two versions of the system,
following refined algebraic quantisation as reviewed in [3,4].
We see that the quantum theories are essentially different
from each other.

3.1. RAQ of Boulware’s version

We start by fixing the structure in the auxiliary Hilbert space,
and then we construct a rigging map suggested by the group
averaging integral.

Our auxiliary Hilbert spaceHaux is the space of square
integrable functions onC in the inner product

(φ1, φ2)aux :=
∫

dx dy φ1(x, y)φ2(x, y) , (4)
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where the overline denotes complex conjugation. We take the
quantised version of the classical constraint (2) to be

Ĉ := − ∂2

∂x2
−R(y) . (5)

Ĉ is essentially self-adjoint onHaux and exponentiates into
the one-parameter family of unitary operators

U(t) := e−itĈ , t ∈ R . (6)

For the test spaceDaux ⊂ Haux, we choose the space of
functionsf : C → C of the form

f(x, y) =
∑

m∈Z
eimxfm(y),

where eachfm : S1 → C is smooth and only finitely many
fm are different from zero for eachf . Daux is clearly a dense
linear subspace ofHaux. If f ∈ Daux, then

(
U(t)f

)
(x, y) =

∑
m

e−it[m2−R(y)]eimxfm(y) , (7)

which shows thatU(t)f ∈ Daux. Daux is thus invariant un-
derU(t).

The above structure determines the observable algebra
Âobs as the algebra of operatorŝO on Haux such that the
domains ofÔ andÔ† includeDaux, Ô andÔ† mapDaux to
itself andÔ commutes withU(t) onDaux for all t.

Recall now that the final ingredient in refined algebraic
quantisation is to specify an antilinear rigging mapη :
Daux → D∗aux, whereD∗aux denotes the algebraic dual, topol-
ogised by pointwise convergence. The mapη must be real
and positive, states in its image must be invariant under the
dual action ofU(t), andη must intertwine with the represen-
tations ofÂobs on Daux andD∗aux in the sense that for all
O ∈ Âobs andf ∈ Daux,

η(Ôf) = Ô(ηf) . (8)

Given the rigging map, the physical Hilbert spaceHphys is
the Cauchy completion of the image ofη in the inner product

(
η(f), η(g)

)
phys

:= η(g)[f ] . (9)

To find a rigging map we consider the group averaging
proposal that seeks a rigging map as an implementation of
the formal expression

η : φ 7→
∞∫

−∞
dt φ†U(t) . (10)

In our system, however, a saddle-point estimate [7] shows
that there are states for which the absolute value of the inte-
grand on the right-hand side of (10) is asymptotically propor-
tional to |t|−1/2 as|t| → ∞, and for such states the integral
is not absolutely convergent.

Group averaging (10) suggests, however, a rigging map
candidate. Thus we define (see details in [6]) the mapηp :
Daux → D∗aux by

(
ηp(f)

)
(x, y) =

∑

mj

e−imxfm(y)∣∣R(p)(yp|m|j)
∣∣1/p

δ(y, yp|m|j) . (11)

Here we consideredyp|m|j as solutions to the equation
R(y) = m2, where the third index labels the solutions for
given m, and the first term denotes the order of the lowest
non-vanishing derivative ofR at a solution. Hence we allow
stationary points ofR among the solutions toR(y) = m2. If
f, g ∈ Daux, (11) gives

ηp(f)[g] =
∑

mj

fm(yp|m|j)gm(yp|m|j)∣∣R(p)(yp|m|j)
∣∣1/p

, (12)

From (12) it is seen that eachηp has a finite-dimensional,
nontrivial image and satisfies the rigging map axioms, with
the possible exception of the intertwining property (8). In [6]
it was shown that eachηp satisfies also the intertwining prop-
erty and hence provides a rigging map. Each of the images
of these maps provides therefore a physical Hilbert space,
denoted respectively byHp

phys, with the inner product given
by (9) and (12). As all the spaces are finite-dimensional, no
Cauchy completion is needed.

As the images of any two of the rigging maps have trivial
intersection inD∗aux, we can regard eachHp

phys as superse-
lection sectors in thetotal Hilbert space

Htot
phys :=

⊕
p

Hp
phys . (13)

As shown in Ref. 6, the representation ofÂobs on eachHp
phys

is irreducible. Further, as all the states inHtot
phys have their

support in the classically allowed region ofC, there is no tun-
nelling of the kind found in [1] into the classically forbid-
den region ofC. If the classically allowed region ofC is not
connected, there is however tunnelling between all its com-
ponents that support states inHtot

phys.

3.2. RAQ of the cylindrical version

We consider the auxiliary Hilbert spaceHaux := L2(C′) as
the space of square integrable functions onC′ within the in-
ner product adapted from (4) to our case, and we take the
quantised version of the classical constraint (3) to be

Ĉ := z2 −R(y) , (14)

which is essentially self-adjoint inHaux. We exponentiate
the constraint to obtain a one-parameter unitary representa-
tion as in (6). We setDaux ⊂ Haux as the space of smooth
rapidly decreasing functions inHaux. The action of the uni-
tary operatorU(t) on statesφ ∈ Daux reads

(U(t)φ) (z, y) := e−it(z2−R(y))φ(z, y) ∈ Daux . (15)
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As discussed before in Sec. 3.1, the algebra of observables
Âobs is completely determined by the above structure.

The next step is to specify a rigging map
η : Daux → D∗aux. The mapη is defined by its properties
as described in Refs. 3 and 4 and can be obtained systemat-
ically from expression (10). As in Sec. 3.1, a saddle-point
estimate shows that the integral (10) is not absolutely con-
vergent for states inDaux. However, we use (10) to formally
write for R(y) > 0 a would-be rigging mapη as

(η(f)) (z, y) =
1
2

∑

j=±

f(z, y)
|z| δ(z, zj(y)) , (16)

wherezj(y) labels the two solutions of the quadratic equation
z2
j −R(y) = 0.

From (16), the action ofη(f) ∈ D∗aux on a stateg ∈ Daux

is given by

η(f)[g] = π
∑

j

∫

R(y)>0

dy
f(zj , y) g(zj , y)

|zj | . (17)

As the zeroes ofR are by assumption not critical points and
the functionsf, g ∈ Daux are continuous, an elementary
analysis shows that the integral in (17) is convergent in abso-
lute value and hence well defined. We then define the physi-
cal inner product as in relation (9). From (17) it is clear that
η is real and positive, and solves the constraints. To show
that η intertwines with the algebra of observableŝAobs we
can follow similar developments as those presented in [6].
The mapη is thus a genuine rigging map, and the physical
Hilbert spaceHphys is the Cauchy completion of the image
of η equipped with the inner product (9) obtained by (17).
Note thatHphys is infinite-dimensional contrary to the results
obtained in the Sec. 3.1.

As in Sec. 3.1, all the states inHphys have their support
in the classically allowed region ofC′, there is no tunnelling
into the classically forbidden region ofC′.

4. Discussion

We have studied refined algebraic quantisation of two differ-
ent versions of the Ashtekar-Horowitz model.

In Boulware’s version [6, 8], although the system did
not allow a rigging map to be defined in terms of an abso-
lutely convergent integral of matrix elements over the gauge

group, the formal group averaging expressions nevertheless
suggested a rigging map candidate that is renormalised to
consider formally divergent terms due to the vanishing of the
derivatives of the functionR(y). We showed that for generic
potential functions this candidate is indeed a rigging map and
the divergences in this rigging map appear to be related to the
rate of divergence in the formal group averaging integral. The
resulting representation of the observable algebraÂobs on the
physical Hilbert spaceHtot

phys decomposed into superselection
sectors. The dimension ofHtot

phys was finite. The system ex-
hibits a striking connection between the singular subsets in
the reduced phase spaceΓred and the superselection sectors
in the quantum theory. Because of the periodicity of the co-
ordinatex on the unreduced configuration spaceC ' T 2, the
conjugate momentumpx gets quantised in integer values. For
generic potentials, these integer values entirely miss the sin-
gular, measure zero subsets ofΓred, and in this case the quan-
tum theory has no superselection sectors. However, when the
potential is such that one or more of the quantised values of
px hit some of the singular subsets ofΓred, superselection
sectors arise in the quantum theory.

Although the compactness ofC simplified some aspects
of the analysis, the compactness is as such not essential: The
results remain qualitatively similar if they-direction is un-
wrapped to the real axis, provided the range ofy in whichR
takes positive values remains bounded. What is essential is
the periodicity in thex-direction. As seen in Sec. 2.1, it is the
x-periodicity that in the classical theory renders the volume
of Γred finite and creates the singular subsets; in the quantum
theory, it is the associated discreteness ofpx that makes the
physical Hilbert space finite-dimensional and allows the iso-
lated stationary points of the potential to make nonzero con-
tributions to the rigging map. However, as seen in Sec. 2.2,
if x takes values inR, these phenomena do not arise. The
reduced phase space has then infinite volume and no clas-
sical singularities. The physical Hilbert space is infinite-
dimensional, and the stationary points ofR make a vanishing
contribution to the rigging map.
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