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A gauge invariant scalar metric fluctuations formalism from a Noncompact Kaluza-Klein (NKK) theory of gravity is presented in this talk
notes. In this analysis we recover the well-known resultδρ/ρ ' 2Φ obtained typically in the standard 4D semiclassical approach to inflation
and also the spectrum of these fluctuations become dependent of the fifth (space-like) coordinate. This fact allows to establish an interval of
values for the wave number associated with the fifth dimension.
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En estas notas se presenta un formalismo recientemente introducido por los presentes autores para describir fluctuaciones escalares de la
métrica invariantes de norma en el contexto de una teorı́a de Kaluza-Klein no-compacta penta-dimensional. En este análisis se recupera
uno de los resultados obtenidos tı́picamente bajo un tratamiento 4D semiclásico de inflacíon para las fluctuaciones en la densidad de energı́a
δρ/ρ ' 2Φ. Algo a resaltar es que el espectro para estas fluctuaciones es dependiente de la quinta coordenada. Este hecho nos permite
establecer cotas para el número de onda asociado a la quinta dimensión.

Descriptores: Fluctuaciones escalares de la métrica; vaćıo aparente 5D; ecuaciones de Einstein linearizadas; quinta dimensión no-compacta.
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1. Introduction

These talk notes are based on our recent work [1]. The goal
is to study gauge invariant scalar metric fluctuations from
a NKK theory of gravity in a de Sitter expansion. As we
know the inflationary theory of the universe provides a phys-
ical mechanism to generate primordial energy density fluc-
tuations. This is studied in the framework of the relativis-
tic theory of cosmological perturbations. The theory of lin-
earized gravitational perturbations in an expanding universe
is used to describe the process of structure formation in the
early universe [2] and it is indispensable to relate inflation-
ary scenarios with observational evidences mainly with the
Cosmic Microwave Background (CMB) anisotropies. In the
most widely accepted inflationary scenarios the dynamics is
described by a quantum scalar fieldϕ named inflaton that
is splitted into a homogeneous and an inhomogeneous com-
ponents. Usually the homogeneous one is interpreted as a
classical field that drives the expansion, while the second one
is responsible of the quantum fluctuations that originate the
primordial energy density fluctuations [3].

On the other hand, physical theories in more than
four dimensions have played an important role in modern
physics including cosmology. The idea of extra dimensions
in physics was proposed firstly by Gunnar Nordström in

1914 [4] and subsequently by Kaluza in 1921 [5] and Klein
in 1926 [6]. They attempted to unify gravity with electro-
magnetism by introducing an extra dimension. Since then,
the possible existence of extra dimensions got strong moti-
vation and many interesting attempts to incorporate gravity
and gauge interactions in an unique scheme have been made.
Currently one of the theories with more impact in cosmology
is the brane world scenario. In such framework the question
about how large could extra dimensions be without getting
into conflict with observational evidences, has a lot relevance.
However for many researchers a more interesting question is
how could this extra dimensions manifest themselves. Ac-
cording to brane world scenario matter should be localized
onto an hypersurface (the brane) embedded in a higher di-
mensional space-time (the bulk) [7]. The main motivation of
these models comes from string theories and their extension
M-theory, which have suggested another approach to com-
pactify extra dimensions. The proposal of great interest in
cosmology is that our universe may be such a brane-like ob-
ject where the standard model of particles is confined on a
brane and only gravity and other exotic matter as some scalar
fields (like the dilaton) can propagate in the bulk [8].

Another theory of great relevance and on which the
present work is based is the Space-Time-Matter theory or
Induced Matter theory. This theory can be thought as a non-
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compact Kaluza-Klein theory due to the fifth dimension is ex-
tended. In the 90’s Paul Wesson, J. Ponce de Leon and collab-
orators, based in the Campbell-Magaard’s theorem, showed
that it is possible to interpret most properties of matter in
4D as a result of the 5D Riemannian geometry. This for-
malism allows dependence on the fifth coordinate and does
not make assumptions about the topology of the fifth dimen-
sion. In other words, they proposed that 4D field equations
with sources can be locally embedded in 5D field equations
without sources [9]. The Campbell-Magaard’s theorem es-
tablishes that any analytic N-dimensional Riemannian mani-
fold can be locally embedded in a (N+1)-dimensional Ricci-
flat manifold. In the cosmological context there is a class of
5D cosmological models which are reduced to the usual 4D
ones by taking a foliation on the extra coordinate. These ideas
will be implemented to develop the new formalism presented
in this notes.

2. Formalism

We consider the action

I = −
∫

d4x dψ

√∣∣∣∣
(5)ḡ
(5)ḡ0

∣∣∣∣
[

(5)R̄

16πG
+(5) L(ϕ,ϕ,A)

]
, (1)

for a scalar fieldϕ, which is minimally coupled to gravity.
Since we are aimed to describe a manifold in apparent vac-
uum the Lagrangian densityL in (1) should be only kinetic
in origin

(5)L(ϕ,ϕ,A) =
1
2
gABϕ,Aϕ,B , (2)

whereA,B can take the values 0,1,2,3,4 and the perturbed
line elementdS2 = gABdxAdxB is given by

dS2 = ψ2 (1 + 2Φ) dN2 − ψ2 (1− 2Ψ) e2Ndr2

− (1−Q) dψ2. (3)

Here, the fieldsΦ, Ψ andQ are functions of the coordinates
[N,~r(x, y, z), ψ], whereN , x, y, z are dimensionless and
the fifth coordinateψ has spatial units. Note that(5)R̄ in
the action (1) is the Ricci scalar evaluated on the background
metric

(
dS2

)
b

= ḡABdxAdxB . In our case we consider the
background canonical metric

(
dS2

)
b

= ψ2dN2 − ψ2e2Ndr2 − dψ2, (4)

which is 3D spatially isotropic, homogeneous and flat [10].
Moreover, the metric (4) is globally flat (i.e.,̄RA

BCD = 0)
and describes an apparent vacuumḠAB = 0. The energy-
momentum tensor is given by

TAB = ϕ,Aϕ,B − 1
2
gABϕ,Cϕ,C , (5)

which is obviously symmetric. Hence, using the fact that
the metric (3) is also symmetric we obtain thatΨ = Φ and

Q = 2Φ. Thus, the line element (3) now becomes

dS2 = ψ2 (1 + 2Φ) dN2 − ψ2 (1− 2Φ) e2Ndr2

− (1− 2Φ) dψ2, (6)

where the fieldΦ(N,~r, ψ) is the scalar metric perturba-
tion of the background 5D metric (4). For the metric (6),
|(5)ḡ| = ψ8e6N is the absolute value of the determinant
for the background metric (4) and|(5)ḡ0| = ψ8

0e6N0 is
a dimensionalization constant, whereψ0 and N0 are con-
stants. Besides,G = M−2

p is the gravitational constant and
Mp = 1.2 1019 GeV is the Planckian mass. In this work we
considerN0 = 0, therefore

∣∣(5)ḡ0

∣∣ = ψ8
0 . Here, the index

“0” denotes the value at the end of inflation.

On the other hand, the contravariant metric tensor, after a
Φ-first order approximation, is given by

gNN =
(1− 2Φ)

ψ2
,

gij = −e−2N (1 + 2Φ)
ψ2

,

gψψ = −(1 + 2Φ), (7)

which can be written asgAB = ḡAB + δgAB , beingḡAB the
contravariant background metric tensor andδgAB their cor-
responding fluctuations. The dynamics forϕ andΦ are well
described by the Lagrange and Einstein equations, which we
shall study in the following subsections.

2.1. 5D Dynamics

The Lagrange equations for the fieldsϕ andΦ are respecti-
vely given by

∂2ϕ

∂N2
+ 3

∂ϕ

∂N
− e−2N∇2

rϕ− ψ

(
ψ

∂2ϕ

∂ψ2
+ 4

∂ϕ

∂ψ

)

− 2Φ
[

∂2ϕ

∂N2
+ 3

∂ϕ

∂N
− e−2N∇2

rϕ + ψ

(
ψ

∂2ϕ

∂ψ2
+ 4

∂ϕ

∂ψ

)]

− 2
(

∂ϕ

∂N

∂Φ
∂N

+ ψ2 ∂Φ
∂ψ

∂ϕ

∂ψ

)
= 0, (8)

(
∂ϕ

∂N

)2

+ e−2N (∇ϕ)2 + ψ2

(
∂ϕ

∂ψ

)2

= 0. (9)

Now, we can make the semi classical approximation
ϕ(N,~r, ψ) = ϕb(N,ψ)+δϕ(N,~r, ψ), such thatϕb is the so-
lution of eq. (8) in absence of the metric fluctuations [i.e.,for
Φ = δϕ = 0] andδϕ represents the quantum fluctuations of
the inflaton fieldϕ. Hence, the Lagrange equations forϕb
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andδϕ are

∂2ϕb

∂N2
+ 3

∂ϕb

∂N
− ψ

[
ψ

∂2ϕb

∂ψ2
+ 4

∂ϕb

∂ψ

]
= 0, (10)

∂2δϕ

∂N2
+3

∂δϕ

∂N
−e−2N∇2

rδϕ−ψ

[
4
∂δϕ

∂ψ
+ψ

∂2δϕ

∂ψ2

]
−2

∂ϕb

∂N

× ∂Φ
∂N

−2ψ2

[
∂ϕb

∂ψ

∂Φ
∂ψ

+
(

∂2ϕb

∂ψ2
+

4
ψ

∂ϕb

∂ψ

)
Φ

]
=0. (11)

Note that forΦ = δϕ = 0, the eq. (9) transforms in

(
∂ϕb

∂N

)2

+ ψ2

(
∂ϕb

∂ψ

)2

= 0, (12)

which will be useful later.
Considering the linearized field equations

δGAB = −8πGδTAB , after some algebra we reduce them to
the form

∂2Φ
∂N2

+ 3
∂Φ
∂N

− e−2N∇2
rΦ− 2ψ2 ∂2Φ

∂ψ2

+
16πG

3
Φ

[(
∂ϕb

∂N

)2

+ ψ2

(
∂ϕb

∂ψ

)2
]

= 0. (13)

From Eq. (12), the Eq. (13) we obtain

∂2Φ
∂N2

+ 3
∂Φ
∂N

− e−2N∇2
rΦ− 2ψ2 ∂2Φ

∂ψ2
= 0, (14)

that is the equation of motion for the 5D scalar metric fluctu-
ationsΦ(N,~r, ψ).

3. Effective 4D de Sitter expansion

In this section we study the effective 4DΦ-dynamics in an
effective 4D de Sitter background expansion of the universe,
which is considered 3D (spatially) flat, isotropic and homo-
geneous.

3.1. Ponce de Leon metric

We consider the coordinate transformation [11]

t = ψ0N, R = ψ0r, ψ = ψ. (15)

Hence, the 5D background metric (4) becomes

(
dS2

)
b

=
(

ψ

ψ0

)2 [
dt2 − e2t/ψ0dR2

]
− dψ2, (16)

which is the Ponce de Leon metric [12], that describes a 3D
spatially flat, isotropic and homogeneous extended (to 5D)
Friedmann-Robertson-Walker metric in a de Sitter expansion.
Here,t is the cosmic time anddR2 = dX2+dY 2+dZ2. This
Ponce de Leon metric is a special case of the separable mod-
els studied by him, and is an example of the intensely studied
class of canonical metricsdS2 = ψ2gµνdXµdXν−dψ2 with

µ, ν = 0, 1, 2, 3 [13]. Now we can take a foliationψ = ψ0 in
the metric (16), such that the effective 4D metric results

(
dS2

)
b
→ (

ds2
)
b

= dt2 − e2t/ψ0dR2, (17)

that describes a 4D expansion of a 3D spatially flat, isotropic
and homogeneous universe that expands with a constant
Hubble parameterH = 1/ψ0 and a 4D scalar curvature
(4)R = 12H2. Hence, the effective 4D metric of (6) on hy-
persurfacesψ = 1/H, is

dS2 → ds2 = (1 + 2Φ) dt2 − (1− 2Φ) e2HtdR2. (18)

This metric describes the perturbed 4D de Sitter expansion of
the universe, whereΦ(~R, t) is gauge-invariant.

3.2. Dynamics ofΦ in an effective 4D de Sitter expan-
sion

In order to study the 4D dynamics of the gauge-invariant
scalar metric fluctuationsΦ(~R, t) in a background de Sit-
ter expansion we transform the Eq.(14) using the expres-
sions (15) with the foliationψ = ψ0 = 1/H, Eq.(14) ac-
quires the form

∂2Φ
∂t2

+ 3H
∂Φ
∂t

− e−2Ht∇2
RΦ− 2

∂2Φ
∂ψ2

∣∣∣∣
ψ=H−1

= 0, (19)

where

∂2Φ
∂ψ2

∣∣∣∣
ψ=H−1

= k2
ψ0

Φ.

To simplify the structure of this equation we pro-
pose the redefined quantum metric fluctuations
χ(~R, t) = e3Ht/2Φ(~R, t), thus Eq.(19) can be expressed
in terms ofχ as

χ̈− e−2Ht∇2
Rχ−

[
9
4
H2 + 4k2

ψ0

]
χ = 0. (20)

Furthermore the redefined fieldχ(~R, t) can be expanded as

χ =
1

(2π)3/2

∫
d3kRdkψ

[
akRkψ

ei~kR. ~RξkRkψ
(t) + cc

]

× δ(kψ − kψ0), (21)

beingakRkψ
anda†kRkψ

the annihilation and creation opera-
tors respectively, andcc denoting the complex conjugate of
the first term in brackets. These operators satisfy the commu-
tator relations[

akRkψ
, a†k′Rk′ψ

]
= δ(3)

(
~kR − ~k′R

)
δ
(
~kψ − ~k′ψ

)
,

[
akRkψ

, ak′Rk′ψ

]
=

[
a†kRkψ

, a†k′Rk′ψ

]
= 0.

Hence, the dynamics of the time dependent modesξkRkψ0
(t)

is given by

ξ̈kRkψ0
(t) +

[
k2

Re−2Ht −
(

9
4
H2 + 4k2

ψ0

)]

×ξkRkψ0
(t) = 0, (22)
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which has a general solution

ξkRkψ0
(t) = A1H(1)

µ [y(t)] + A2H(2)
µ [y(t)], (23)

whereµ=1/2
√

9 + 16k2
ψ0

/H2 andy(t)=(1/H)kRe−Ht.
Using the Bunch-Davies vacuum condition [14], we ob-

tain

ξkRkψ0
(t) = i

√
π

4H
H(2)

µ [y(t)], (24)

which are the normalized time dependent modes of the field
χ(~R, t).

3.3. Energy density fluctuations

In order to obtain the energy density fluctuations on the ef-
fective 4D FRW metric, we calculate

δρ

〈ρ〉 =
δTN

N〈
TN

N

〉
∣∣∣∣∣
t=ψ0N,R=ψ0r,ψ=1/H

, (25)

being δTNN = −(1/2)δgNNϕ,Lϕ,L linearized and where
the brackets〈...〉 denote the expectation value on the 3D hy-
persurfaceR(X,Y, Z). Using the semiclassical expansion
ϕ(~R, t) = ϕb(t) + δϕ(~R, t), after some algebra we obtain

δρ

〈ρ〉 ' 2Φ



1−

〈
(δϕ̇)2 + e−2Ht (∇Rδϕ)2 + 2V (δϕ)

〉

(ϕ̇b)
2 + 4H2 (ϕb)

2





' 2Φ, (26)

where we have considered the approximation
〈
(δϕ̇)2 + e−2Ht (∇Rδϕ)2 + 2V (δϕ)

〉

(ϕ̇b)
2 + 4H2 (ϕb)

2 ¿ 1, (27)

beingV (δϕ) = V (ϕ)− V (ϕb)

V (δϕ) = −1
2

[
gψψ

(
∂ϕ

∂ψ

)2

− ḡψψ

(
∂ϕb

∂ψ

)2
]∣∣∣∣∣

ψ=H−1

,

with

V (ϕb) = −1
2
ḡψψ

(
∂ϕb

∂ψ

)2
∣∣∣∣∣
ψ=H−1

= 2H2 (ϕb)
2
.

It is important to notate that the approximation (27) is
valid only during inflation on super Hubble scales (on the in-
frared sector), on which the inflaton field fluctuations are very

“smooth”. Finally, we can compute the amplitude ofΦ(~R, t)
for a de Sitter expansion on the infrared sector (kR ¿ eHtH)
through the expression

〈
Φ2

〉
=

e−3Ht

(2π)3

εeHtH∫

0

d3kR ξkR
ξ∗kR

, (28)

where ε ' 10−3 is a dimensionless constant. Hence the
squaredΦ-fluctuations has a power-spectrumP(kR) given
by

P(kR) ∼ k
3−

√
9+16k2

ψ0
/H2

R , (29)

which is nearly scale invariant for

k2
ψ0

ψ2
0 = k2

ψ0
/H2 ¿ 1.

In other words, the 3D power-spectrum of the gauge-invariant
metric fluctuations depends of the wave numberkψ0 related
to the fifth coordinate on the hypersurfaceψ = ψ0 ≡ H−1.
This 3D power spectrum corresponds to the spectral index

ns = 4−
√

9 + 16k2
ψ0

/H2. (30)

On the other hand it is well known from observational
data [15] thatns = 0.97 ± 0.03. This fact allows to estab-
lish that0 ≤ kψ0 < 0.15 H, which is the main result of this
paper.

4. Final Comments

In this notes, based on our recent work [1], we have stud-
ied 4D gauge-invariant metric fluctuations from a NKK the-
ory of gravity. In particular we have examined these fluctu-
ations in an effective 4D de Sitter expansion for the universe
using a first-order expansion for the metric tensor. A very
important result of this formalism is the confirmation of the
well known 4D resultδρ/ρ ' 2Φ [2], during inflation. Fur-
thermore, the spectrum of the energy fluctuations depends of
the fifth coordinate. This fact allows to establish the inter-
val kψ0 < 1.5 × 10−10 Mp, where we have used the typi-
cal inflationary valueH = 10−9 Mp. Finally, an advantage
of this formalism is that it could be extended to other infla-
tionary and cosmological models where the expansion of the
universe is governed by a single scalar field.
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