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A gauge invariant scalar metric fluctuations formalism from a Noncompact Kaluza-Klein (NKK) theory of gravity is presented in this tal
notes. In this analysis we recover the well-known regpftp ~ 2® obtained typically in the standard 4D semiclassical approach to inflation
and also the spectrum of these fluctuations become dependent of the fifth (space-like) coordinate. This fact allows to establish an inten
values for the wave number associated with the fifth dimension.
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En estas notas se presenta un formalismo recientemente introducido por los presentes autores para describir fluctuaciones escalare
meétrica invariantes de norma en el contexto de unddete Kaluza-Klein no-compacta penta-dimensional. En esibsinse recupera

uno de los resultados obtenid@gsitamente bajo un tratamiento 4D seragito de infladin para las fluctuaciones en la densidad de éaerg
op/p ~ 2®. Algo a resaltar es que el espectro para estas fluctuaciones es dependiente de la quinta coordenada. Este hecho nos p
establecer cotas para dlmero de onda asociado a la quinta diménsi

Descriptores: Fluctuaciones escalares de latnica; vago aparente 5D; ecuaciones de Einstein linearizadas; quinta ditnersicompacta.

PACS: 04.20.Jb; 11.10Kk; 98.80.Cq; 01.30.Cc

1. Introduction 1914 [4] and subsequently by Kaluza in 1921 [5] and Klein
in 1926 [6]. They attempted to unify gravity with electro-
These talk notes are based on our recent work [1]. The goathagnetism by introducing an extra dimension. Since then,
is to study gauge invariant scalar metric fluctuations fromthe possible existence of extra dimensions got strong moti-
a NKK theory of gravity in a de Sitter expansion. As we vation and many interesting attempts to incorporate gravity
know the inflationary theory of the universe provides a phys-and gauge interactions in an unique scheme have been made
ical mechanism to generate primordial energy density flucCurrently one of the theories with more impact in cosmology
tuations. This is studied in the framework of the relativis-is the brane world scenario. In such framework the question
tic theory of cosmological perturbations. The theory of lin- about how large could extra dimensions be without getting
earized gravitational perturbations in an expanding universé&to conflict with observational evidences, has a lot relevance.
is used to describe the process of structure formation in thelowever for many researchers a more interesting question is
early universe [2] and it is indispensable to relate inflation-how could this extra dimensions manifest themselves. Ac-
ary scenarios with observational evidences mainly with thecording to brane world scenario matter should be localized
Cosmic Microwave Background (CMB) anisotropies. In theonto an hypersurface (the brane) embedded in a higher di-
most widely accepted inflationary scenarios the dynamics isnensional space-time (the bulk) [7]. The main motivation of
described by a quantum scalar fieldnamed inflaton that these models comes from string theories and their extension
is splitted into a homogeneous and an inhomogeneous conM-theory, which have suggested another approach to com-
ponents. Usually the homogeneous one is interpreted aspctify extra dimensions. The proposal of great interest in
classical field that drives the expansion, while the second oneosmology is that our universe may be such a brane-like ob-
is responsible of the quantum fluctuations that originate thg¢ect where the standard model of particles is confined on a
primordial energy density fluctuations [3]. brane and only gravity and other exotic matter as some scalar
On the other hand, physical theories in more thanfields (like the dilaton) can propagate in the bulk [8].

four dimensions have played an important role in modern Another theory of great relevance and on which the
physics including cosmology. The idea of extra dimensiongpresent work is based is the Space-Time-Matter theory or
in physics was proposed firstly by Gunnar Nordstrin Induced Matter theory. This theory can be thought as a non-
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compact Kaluza-Klein theory due to the fifth dimension is ex-QQ = 2®. Thus, the line element (3) now becomes
tended. Inthe 90’s Paul Wesson, J. Ponce de Leon and collab-
orators, based in the Campbell-Magaard’s theorem, showed 2 2 2 2 IN 5 2

. . X ' ) dss = 14+29)dN* — 1—-2®)e“Vd
that it is possible to interpret most properties of matter in v"(1+29) v Jerhdr
4D as a result of the 5D Riemannian geometry. This for- — (1 —2®)dy?, (6)
malism allows dependence on the fifth coordinate and does
npt make assumptions about the topology of the fifth dimenWhere the field® (N, 7, v) is the scalar metric perturba-
sion. In other words, they proposed that 4D field equat|on%0n of the backgrodné 5D metric (4). For the metric (6)
with sources can be locally embedded in 5D field equation (55| — 15N is the absolute valué of the determinan';
without sources [9]. The Campbell-Magaard’s theorem S50 the background metric (4) antiPgy| — ¥3edM is
tablishes that any analytic N-dimensional Riemannian manié dimensionalization constant, wherg OandN Oare con-
fold can be locally embedded in a (N+1)-dimensional Ricci- tants. Beside€; = M2 is thé gravitational gonstant and
flat manifold. In the cosmological context there is a class oi's ' P

. . » = 1.210' GeV is the Planckian mass. In this work we
5D cosmological models which are reduced to the usual 4 . (5)~ s :
ones by taking a foliation on the extra coordinate Thes:eideaconsmlerN0 =0, therefore| go] = vo. Here, the index

y 9 ’ )" denotes the value at the end of inflation.

will be implemented to develop the new formalism presented ) )
in this notes. On the other hand, the contravariant metric tensor, after a

d-first order approximation, is given by

2. Formalism N (1—23)
We consider the action ¥?
. i e 2NV (1 + 20)
5)g 5) R g =
1= [dedv||GL) |6+ teen). @ v
(5)90 167TG ’ Db
g = _(1 + 2(1))’ (7)

for a scalar fieldp, which is minimally coupled to gravity.
Since we are aimed to describe a manifold in apparent vagyhich can be written ag*? = g*? + g5, beingg? the

uum the Lagrangian densit in (1) should be only kinetic  contravariant background metric tensor and'? their cor-

in origin responding fluctuations. The dynamics foand® are well
(5)5(% ©.4) = }gABLp AP B, 2 described by the Lagrange and Einstein equations, which we
’ 2 T shall study in the following subsections.

where A, B can take the values 0,1,2,3,4 and the perturbed
line elementlS? = gapdrAdz® is given by

dS? = 2 (1 +28) dN? — 2 (1 — 20) 2N dr? 2.1. 5D Dynamics

2
—(1-Q)dy”. () The Lagrange equations for the fieldsand ® are respecti-

Here, the fieldsp, ¥ andQ are functions of the coordinates vely given by

[N, 7(x,y,2),¢], where N, z, y, z are dimensionless and ) )

the fifth coordinateyy has spatial units. Note th&VR in  9°¢ 43 0p _ —ang2, _ Oy, 09
. ) o 3 T35+ e W e o ey

the action (1) is the Ricci scalar evaluated on the background N ON

o2 oY

metric (d5?), = gapdz*dz®. In our case we consider the 52 2
i i - LA P 40
background canonical metric 20 [BNQ + 38N e Vip+ (¢ 902 + 43¢
dSQ _ 2dN2 2 2Nd 2 d 2 4
(dS%), = 2N dr? — dy?, @ (0000 0000\ _, @)
ON ON oY oY

which is 3D spatially isotropic, homogeneous and flat [10].
Moreover, the metric (4) is globally flat (i.eR3., = 0) (8@0>2 eV (Vi) 4 2 <5<P>2 _0 ©)
and describes an apparent vacuGmz = 0. The energy- ON v o)
momentum tensor is given by
1 Now, we can make the semi classical approximation
Tap =¢,Ap,B — igABsD,CSD’C» (B)  @(N,7 ) = op(N, ) +5p(N, 7, ), such thatp, is the so-
lution of eq. (8) in absence of the metric fluctuations [i.e.,for
which is obviously symmetric. Hence, using the fact that® = dp = 0] anddp represents the quantum fluctuations of
the metric (3) is also symmetric we obtain that= & and  the inflaton fieldp. Hence, the Lagrange equations fay
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andoyp are w,v =0,1,2,3[13]. Now we can take a foliatioft = 1) in
the metric (16), such that the effective 4D metric results

>y 359% gy 299 _ 0 (10)
N2 ; + N Vo Ty |70 (dS?), — (ds®), = dt? — €2/ dR?, (17)

%6 o dbp 026y 0 that describes a 4D expansion of a 3D spatially flat, isotropic
+3 e NV~ |44y and homogeneous universe that expands with a constant
ON2 " ON oY o2 ON 9 p
) Hubble parametedrd = 1/1 and a 4D scalar curvature
87_ %02 {a‘pb 324_ (8 Pb +4a‘pb) @} —0. (11) (YR = 12H2. Hence, the effective 4D metric of (6) on hy-

“ N oY oY o2 Y oY persurfaceg) = 1/H, is
Note that ford = §p = 0, the eq. (9) transforms in dS? — ds* = (14 2®)dt? — (1 —2®) *HtdR?.  (18)
s s This metric describes the perturbed 4D de Sitter expansion of
(8]\7) +¢° ( o0 ) 0, (12)  the universe, wher@(R, ) is gauge-invariant.
which will be useful later. 3.2. Dynamics of® in an effective 4D de Sitter expan-
Considering  the  linearized field equations sion
0Gap = —87GHT 4, after some algebra we reduce them to . . .
the form In order to study the 4D dxnamlcs of the gauge-invariant
scalar metric fluctuation®(R,t) in a background de Sit-
82 38;1) L aNg2g 21/)2827@ ter expansion we transform the Eq.(14) using the expres-
ON? ON " o2 sions (15) with the foliation) = ¢y = 1/H, Eq.(14) ac-
e 9o\ 2 Do\ 2 quires the form
4 Pb 2 ¥b
o (220 4 () —0. (1) 20
3 (3N> v oY 1 (13) ¢ oy 9® _ e Hy2p — 2a =0, (19)
o2 ot ol PR
From Eq. (12), the Eg. (13) we obtain where
0?°® od CONw2 , 0%® 0?d 9
— = b — 20— = 14 — =k ®
ON? SaN ¢V v o2 0, (14) I P

that is the equation of motion for the 5D scalar metric fluctu-To simplify the structure of this equation we pro-
ations®(N, 7, v). pose the redefined quantum metric fluctuations
x(R,t) = e*1/2®(R,t), thus Eq.(19) can be expressed
. . . in terms ofy as
3. Effective 4D de Sitter expansion X
9

3 —2Htx72 . 2
In this section we study the effective 4B-dynamics in an X—e " VRX - [ H+ 4]{%} =0 (20)
effective 4D de Sitter background expansion of the universe,
which is considered 3D (spatially) flat, isotropic and homo- Furthermore the redefined field &, ) can be expanded as

geneous. = K e

X O(ky = Ko ), (21)

3.1. Ponce de Leon metric

We consider the coordinate transformation [11]
beingag, k., andak »,, the annihilation and creation opera-

t = N, R = vyr, W = 1. (15)  tors respectively, ande denoting the complex conjugate of
the first term in brackets. These operators satisfy the commu-
Hence, the 5D background metric (4) becomes tator relations

{almkw,a;%k;l - 5(3) (ER - E}{) ) (Ew — E,I(l)) s

which is the Ponce de Leon metric [12], that describes a 3D i ) v

spatially flat, isotropic and homogeneous extended (to 5Dr?—1ence the dynamics of the time dependent maggs,, ()
Friedmann-Robertson-Walker metric in a de Sitter expansiorlS 91Ven by

Here,t is the cosmic time andR? = dX%+dY?+dZ?. This - o _om 9

Ponce de Leon metric is a special case of the separable mod- Shnky, (1) + [k ( H™ + 4]%0)]

els studied by him, and is an example of the intensely studied

class of canonical metriesS? = v2g,,, dX*d X" —di)? with Xk, (1) = 0, (22)

2

0
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“smooth”. Finally, we can compute the amplituded®(F, ¢)
for a de Sitter expansion on the infrared seckoy & et H)
through the expression

which has a general solution
Ernky, (1) = AP (O] + AHP (1), (23)

whereu=1/2,/9 + 16k3,_/H? andy(t)=(1/H )kre™"". et H

. _ . .. ~ e—3Ht .
. Using the Bunch-Davies vacuum condition [14], we ob <q,2> _ . / Pl Ernlips (28)
tain (2m) )
. 7T
Sk, () =iy T M W), (24)
wheree ~ 1072 is a dimensionless constant. Hence the

which are the normalized time dependent modes of the fielgquared@_ﬂuctuaﬁons has a power-spectruf{ky) given

— k2 /H2
3.3. Energy density fluctuations Plkg) ~ k;; Vor1oRg, / , (29)
In order to obtain the energy density fluctuations on the efwhich is nearly scale invariant for
fective 4D FRW metric, we calculate
k2 2=k /H? < 1.
5p 5TI]\>I wowo 7/)0/

; (25)
t=1po N,R=vor,h=1/H

o) (1Y)

In other words, the 3D power-spectrum of the gauge-invariant
_ _ _ metric fluctuations depends of the wave numbgy related
beingdTxn = —(1/2)0gnnew. " linearized and where 19 the fifth coordinate on the hypersurfage= 1, = H~1.

the brackets...) denote the expectation value on the 3D hy-This 3D power spectrum corresponds to the spectral index
persurfaceR(X,Y, Z). Using the semiclassical expansion

(R, t) = ¢p(t) + (R, t), after some algebra we obtain

((8¢)° + €21 (Vrdp)” +2V (59))

5—'0 ~20<¢1— — 5
() (¢6)” +4H? (1)
~ 20, (26)
where we have considered the approximation
((50)" + €721 (T op)” + 2V (69) )
— 5 < 1, (27)
(¢6)” +4H? (1)
beingV (dp) = V() =V (#)
1 dp 2 B dpp 2
V(3p) =—= | g"¥ (> —g"v ( :
2 oY oY P
with

=2H? (p3)°.

1. oup ) 2
Vipy) = —=g"¥ <%>
Y=H-1

2 B

ne =4 —/9+16k3 /H2.

On the other hand it is well known from observational
data [15] thath, = 0.97 &+ 0.03. This fact allows to estab-
lish that0 < ky, < 0.15 H, which is the main result of this
paper.

(30)

4. Final Comments

In this notes, based on our recent work [1], we have stud-
ied 4D gauge-invariant metric fluctuations from a NKK the-
ory of gravity. In particular we have examined these fluctu-
ations in an effective 4D de Sitter expansion for the universe
using a first-order expansion for the metric tensor. A very
important result of this formalism is the confirmation of the
well known 4D resultp/p ~ 2® [2], during inflation. Fur-
thermore, the spectrum of the energy fluctuations depends of
the fifth coordinate. This fact allows to establish the inter-
val ky, < 1.5 x 10710 M,,, where we have used the typi-
cal inflationary valueZ = 102 M,,. Finally, an advantage

It is important to notate that the approximation (27) is of this formalism is that it could be extended to other infla-
valid only during inflation on super Hubble scales (on the in-tionary and cosmological models where the expansion of the
frared sector), on which the inflaton field fluctuations are veryuniverse is governed by a single scalar field.
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