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We consider the motion of a particle described by an action that is a functional of the one-dimensional metric of the worldline and its
first Frenet-Serret [FS] curvature. The metric and the curvature along with the orthogonal [FS] basis which connect them to the embedding
functions defining the worldline are introduced as auxiliary variables by adding appropiate constraints. The conserved stress tensor associated
with the theory is established in terms of the constraints.

Keywords:Relativistic particle.

Se considera el movimiento de una partı́cula descrita por una acción que es una funcional de la métrica uni-dimensional de la lı́nea de mundo
y su primera curvatura de Frenet-Serret [FS]. La métrica y la curvatura junto con la base ortonormal FS que las conecta con las funciones de
inmersíon que definen la lı́nea de mundo se introducen como variables auxiliares añadiendo constricciones adecuadas. El tensor de esfuerzos
conservado asociado a la teorı́a se establece en términos de las constricciones.

Descriptores:Part́ıcula relativista.

PACS: 03.30.+p; 04.20.-q; 11.25.-w

1. Introduction

The relativistic particle still is one of the most interesting dy-
namical systems to investigate if one wishes to try to under-
stand aspects of physics at a fundamental level. Among the
many reasons for this, it is pointed out that relativistic particle
theory has many features that have higher-dimensional ana-
logues in the relativistic realm while, at the same time, it is a
prototype of general relativity [1]. The notion of a relativistic
pont-like particle, is an idealization that has guided the devel-
opment of reparametrization invariant theories, in particular,
string theory and its membrane descendants. The massive
relativistic particle, with an action proportional to the lenght
of its worldline, represents the simplest global geometrical
quantity invariant under reparametrizations. A natural exten-
sion is to consider higher order geometrical models for parti-
cles, described by an action that dependes on the curvature of
the worldline [2]. These models can be constructed by means
of the geometrical scalars associated with the parametrization
of the worldline. While systems depending on the first and
second [FS] curvature were intensively studied as toy mod-
els for higher dimensional relativistic systems such as rigid
strings [3, 4], it has turned out that these systems possess in-
teresting features in their own right; the free particle is the
one dimensional analogue for the Nambu-Goto action, the
action:

S =
∫

dξ
√−γk2, (1)

is the one dimentional analogue to the Polyakov action.
The geometrical model describing relativistic particles is

well known, but it will tipically involve derivatives higher
than first and inherit a level of non-linearity. There is, how-
ever, a useful stratagem to lower the effective order or to tame

this non-linearity introduced by Guven [5] in the study of bio-
logical membrane geometry, which involves the introduction
of auxiliary fields, not just the induced metric as had already
been done [3,6,7].

The purpose of this paper is to introduce the aplication
of the Guven’s technique to the study of the relativistic par-
ticles. The paper is divided as follows: In Sec. 2 some as-
pects of the worldline geometry are considered, both intrinsic
and extrinsic. The basic notions of [FS] geometry are intro-
duced. The respective connections are defined along with
the covariant derivative under worldline reparameterizations
and the covariant derivative under frame normal rotations. In
Sec. 3 the general form of the action studied is presented,
the constraints are introduced into a total action. Later in this
section we show the results for the variations of each vari-
able, and find the relations between the Lagrange multipliers
introduced. The conserved stress tensor associated to the the-
ory is determined. In Sec. 4 two examples are shown, one for
the free particle model, and the second for the linear correc-
tion. In Sec. 5 the case ofp-branes is considered. Concluding
remarks are presented in Sec. 6.

2. Worldline geometry
The geometry of interest is a time-like curve embedded in
Minkosky space (the signature used is the one with only one
minus sign). Although this treatment can be extended to
curves inmersed in a background different than Minkowsky.
The worldline can be described by the parametrizarion:
xµ = Xµ(ξ) whereξ is an arbitrary parameter on the world-
line andXµ are the position functions or embedding.

Now let us consider some aspects on the intrinsic geom-
etry. The one-dimentional induced metric:

γ = ẊµẊνηµν = Ẋ · Ẋ, (2)
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where the tangent vector is:

Ẋµ =
dXµ

dξ
. (3)

By the way if one uses proper time as the parameter,γ = −1.

2.1. Frenet-Serret equations

The unidimensional versions of the Gauss-Weingarten equa-
tions are the [FS] equationsi:

Ẍµ = ΓẊµ −Kinµ
i , (4)

ṅµi = kiẊµ + ωijnµ
j . (5)

From these equations we can easily see that the one-
dimentional affine connection is:

Γ = γ−1Ẋ · Ẍ. (6)

In the description of the extrinsic geometry the normal
frame is not fixed. To define any normal vectornµ

i we only
ask that:

ni · nj = δij , (7)

ni · Ẋ = 0, (8)

where normal indices are raised and lowered with the Kro-
necker delta. The covariant derivative under worldline repa-
rameterizations is defined by:

∇ =
d

dξ
− Γ, (9)

where the one-dimensional affine connectionγ vanishes un-
der a proper time parametrization. The extrinsic curvature or
first [FS] curvature along theith normal is:

Ki = −ni · ∇2X = −ni · Ẍ. (10)

The point like analogue of the mean extrinsic curvature:

ki = γ−1Ki = (−γ)−1ni · ∇2X, (11)

is a scalar under reparametrizations.
From the [FS] equations we can also see that the connec-

tion associated with the freedom of rotations of the normals
is given by:

ωij = ṅi · nj , (12)

this connection is used to define the worldline covariant
derivative under normal frame rotations:

∇̃ =
d

dξ
− Γ− ω. (13)

Finally, the first [FS] curvature, the geodesic curvature:

k =
√

kiki, (14)

which is simply the modulus ofki [8].

3. The actions

In this paper we apply the method to an invariant under
reparametrization action.

S[X] =
∫

c

dξ
√−γL(γ, Ki). (15)

The approach here will be to do the variations on each of
the independent auxiliary variables. To do this consistently
we introduce as constraints the structural relationships con-
necting the auxiliary variables. The constraints introducing
the auxiliary variables are:

γ − Ẋ · Ẋ = 0, (16)

Ki − Ẋ · ∇̃ni = 0, (17)

Ẋ −∇X = 0, (18)

Ẋ · ni = 0, (19)

ni · nj − δij = 0. (20)

Now the corresponding Lagrange multipliers are intro-
duced into a new total action to implement the constraints:

ST = ST [γ, Ki, ni, Ẋ, X, f, λi, λij ,Λi, λ] (21)

= S[γ,Ki] +
∫

c

dξ
√−γf(Ẋ −∇X)

+
∫

c

dξ
√−γλi(Ẋ · ni)

+
∫

c

dξ
√−γλij(ni · nj − δij)

+
∫

c

dξ
√−γΛi(Ki − Ẋ · ∇̃ni)

+
∫

c

dξ
√−γλ(γ − Ẋ · Ẋ).

Note that the new total action is a functional of
γ, Ki, ni, Ẋ, X, f, λi, λij ,Λi, λ, and the original action is
treated as a function os the auxiliary variablesγ andKi. Now
γ, Ki, ni, Ẋ, andX are independent variables which can be
deformed independently. Note that it is not necesary to track
the deformation induced onγ andKi by a deformation in X,
because they are now independet variables.
When the variation of X is done, we get a divergence:

δST

δX
= ∇f = 0, (22)
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so that in equilibrium,f is covariantly conserved on the
worldline. This is the conserved stress tensor associated with
the theory. When the variation oṅX is done we expressf as
a linear combination of the [FS] basis:

f = (2λ + KiΛi)Ẋ − λin
i, (23)

where it is used the analogue to the Weingarten equation
∇̃ni = KiẊ. This equation itself follows from the con-
straints onKi andni. The Lagrange multiplierλi is fixed
when the variation onni is considered. For this we use the
Gauss equation∇Ẋ = −Kini which itself follows from the
Weingarten equation and the constraintẊ ·ni. Thus one has:

(∇̃Λi + λi)Ẋ + (2λij − ΛiKj)ni = 0, (24)

and:

λi = −∇̃Λi, (25)

2λij = ΛiKj . (26)

The variations ofKi andγ gives respectively:

Λi = −Li, (27)

λ =
T

2
, (28)

where:

Li =
∂L

∂Ki
, (29)

T ≡ − 2√−γ

∂(
√−γ L)

∂γ
. (30)

So that the conserved stress is:

fµ = [T − LiK
i]Ẋµ − ∇̃Linµ

i . (31)

Note thatT is only one part of the total conserved stress ten-
sor associated with the theory.

4. Relativistic particles models

In this section the framework developed is applied to obtain
the conserved stress tensor for two cases of relativistic parti-
cles of physical significance.

4.1. Free particle

The massive free relativistic particle with an action propor-
tional to the lenght of the worldline, represents the simplest
global geometrical quantity invariant under reparametriza-
tions, and it is the one-dimensional analogue to the Nambu-
Goto action for a relativistic membrane. The action describ-
ing this particle is given trivially by:

S1 = −m

∫

c

dξ
√
−Ẋ · Ẋ, (32)

where:

L = −m, (33)

Li = 0, (34)

T =
m

γ
, (35)

and the conserved stress tensor is given thus by:

fµ = − 1√−γ
pµ. (36)

Note that the conserved stress is proportional to the momenta,
so that the momenta of the particle is conserved. This is what
one should naturally expect because it is just a free particle
what is being studied.

4.2. Linear correction

This action describes a relativistic massless particle with chi-
larity given by the constantα:

S2 =
∫

c

dξ
√−γ(−m + αk), (37)

where

L = −m + αk, (38)

Li = αγ−1k̂i, (39)

T = γ−1(m + αk), (40)

fµ = mγ−1ẋµ − αγ−1∇̃k̂in
µi. (41)

If m = 0:

fµ = −αγ−1∇̃k̂i · nµi. (42)

5. P -branes case

It is straightforward to adapt the disscusion to consider higher
co-dimensions [9], see [10] for a generalization of auxil-
iary variables for relativistic membranes for an arbitrary co-
dimension. In this section we consider the case ofp-branes.

Simmilarly the constraints introducing the auxiliary vari-
ables are given by:

ea = ∇aX, (43)

ea · ni = 0, (44)

ni · nj = δij , (45)

Ki
ab = ea∇̃bn

i, (46)

gab = ea · eb. (47)
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In the same way that in the relativistic particle case the corre-
sponding Lagrange multipliers are introduced to implement
the constraints to the total action given by:

ST = S[gab,K
i
ab] +

∫
dξ
√−gfa · (ea −∇aX)

+
∫

dξ
√−g[λa

i (ea · ni) + λij(ni · nj − δij)]

+
∫

dξ
√−g[Λab

i (Ki
ab − ea∇̃bn

i)

+ λab(gab − ea · eb)], (48)

and when the variations for each of the independent variables
are done we get the expression for the conserved stress ten-
sor:

fa = (T ab − Sac
i Kbi

c )eb − ∇̃bS
ab
i · ni, (49)

and it is easily seen that this stress is the equivalent to the
given in the one-dimensional case

faµ −→ fp. (50)

6. Concluding remarks

In this paper we present the one-dimensional version of the
method given in Ref.5, and we showed that this technique
help us to avoid non-linearities, and reveals us an structure
inherent to any theory of embbeded surfaces. The novelty of
this method consist in treating the extrinsic curvature (first
[FS] curvature for the particle), likegab, (γ for the particle)
as an auxiliary variable. This treatment can be also extended
to charged particles and to null-like particles, this is particles
moving on the cone-light [2,9].

Acknowledgments

Warm thanks to E. Rojas for his detailed reading and criti-
cism through the whole elaboration of this paper. This work
was supported by the CONACyT grant CO1-41639

i. The Gauss-Weingarten equations appearing in theory of sur-
faces are:Daeb = γc

ab−Ki
abni, Dani = Ki

abe
b +ωij

a nj , and
describe completely the extrinsic geometry of the world sheet

1. W.F. Chagas-Filho(2004), hep-th/0403136.

2. R. Capovilla, J. Guven, and E. Rojas,Gen. Relativ. Gravit.
(2006) 1, DOI10.1007/s10714-006-0258-5.

3. A.M. Polyakov, Gauge Field sand Strings(Harwood Academic,
NewYork, 1987).

4. A.M. Polyakov,Nucl. Phys. B268(1986) 406.

5. J. Guven,J. Phys. A37 (2004) L313,math-ph/0404064.

6. D. Nelson, S. Weinberg, and T. Piran,Statistical Mechan-ics of
Membranes and Surfaces(World Scientific Publish-ing Com-
pany, Singapore, 2004).

7. F. David,Geometry and field theory of random surfaces and
membranes, in Ref. 7.

8. G. Arreaga, R. Capovilla, and J. Guven,Class. Quant. Grav.18
(2001) 5065, hep-th/0105040.

9. A. Amador, Bachelor’s Thesis, Universidad Veracruzana,
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