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We consider the motion of a particle described by an action that is a functional of the one-dimensional metric of the worldline and
first Frenet-Serret [FS] curvature. The metric and the curvature along with the orthogonal [FS] basis which connect them to the embed
functions defining the worldline are introduced as auxiliary variables by adding appropiate constraints. The conserved stress tensor asso
with the theory is established in terms of the constraints.

Keywords:Relativistic particle.

Se considera el movimiento de una peuta descrita por una aéri que es una funcional de lzétnica uni-dimensional de l&lea de mundo

y su primera curvatura de Frenet-Serret [FS]. Litnioa y la curvatura junto con la base ortonormal FS que las conecta con las funciones d
inmersbn que definen ldmea de mundo se introducen como variables auxiligiadiando constricciones adecuadas. El tensor de esfuerzos
conservado asociado a la teose establece earminos de las constricciones.

Descriptores:Paricula relativista.

PACS: 03.30.+p; 04.20.-q; 11.25.-w

1. Introduction this non-linearity introduced by Guven [5] in the study of bio-
logical membrane geometry, which involves the introduction
The relativistic particle still is one of the most interesting dy- oy auxiliary fields, not just the induced metric as had already
namical systems to investigate if one wishes to try to underpeen done [3,6,7].
stand aspects of physics at a fundamental level. Among the The purpose of this paper is to introduce the aplication
many reasons for this, itis pointed out that relativistic particlegf the Guven's technique to the study of the relativistic par-
theory has many features that have higher-dimensional angeles. The paper is divided as follows: In Sec. 2 some as-
logues in the relativistic realm while, at the same time, it is 8yacts of the worldline geometry are considered, both intrinsic
prototype of general relativity [1]. The notion of a relativistic anq extrinsic. The basic notions of [FS] geometry are intro-
pont-like particle, is an idealization that has guided the develyced. The respective connections are defined along with
opment of reparametrization invariant theories, in particularihe covariant derivative under worldline reparameterizations
string theory and its membrane descendants. The massiygq the covariant derivative under frame normal rotations. In
relativistic particle, with an action proportional to the lenght gec. 3 the general form of the action studied is presented,
of its worldline, represents the simplest global geometricathe constraints are introduced into a total action. Later in this
quantity invariant under reparametrizations. A natural extenzection we show the results for the variations of each vari-
sion is to consider higher order geometrical models for partiab|e, and find the relations between the Lagrange multipliers
cles, described by an action that dependes on the curvature ptroduced. The conserved stress tensor associated to the the:
the worldline [2]. These models can be constructed by meangyy is determined. In Sec. 4 two examples are shown, one for
of the geometrical scalars associated with the parametrizatiope free particle model, and the second for the linear correc-

of the worldline. While systems depending on the first andijon, |n Sec. 5 the case pfbranes is considered. Concluding
second [FS] curvature were intensively studied as toy modremarks are presented in Sec. 6.

els for higher dimensional relativistic systems such as rigid )

strings [3, 4], it has turned out that these systems possess ig- Worldline geometry

teresting features in their own right; the free particle is theThe geometry of interest is a time-like curve embedded in
one dimensional analogue for the Nambu-Goto action, théinkosky space (the signature used is the one with only one

action: minus sign). Although this treatment can be extended to
curves inmersed in a background different than Minkowsky.
S = /dﬁﬁkz, (1)  The worldline can be described by the parametrizarion:
= XH(€) wheref is an arbitrary parameter on the world-
is the one dimentional analogue to the Polyakov action. line and X * are the position functions or embedding.

The geometrical model describing relativistic particles is ~ Now let us consider some aspects on the intrinsic geom-
well known, but it will tipically involve derivatives higher etry. The one-dimentional induced metric:
than first and inherit a level of non-linearity. There is, how- oo .
ever, a useful stratagem to lower the effective order or to tame v = XX, = X X )
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where the tangent vector is: 3. The actions

p o dx# . o
XM = @ (3)  In this paper we apply the method to an invariant under
reparametrization action.

By the way if one uses proper time as the parameter,—1.
2.1. Frenet-Serret equations S[X] = /dﬁx/ —L(y,K"). (15)

The unidimensional versions of the Gauss-Weingarten equa-

tions are the [FS] equatiohs The approach here will be to do the variations on each of

Xr=TX" - Kint, (4) the 'independent auxiliary variables. To do this. cons'istently
4 . . we introduce as constraints the structural relationships con-
= kX Wl (5)  necting the auxiliary variables. The constraints introducing

. . the auxiliary variables are:
From these equations we can easily see that the one-

dimentional affine connection is:

y—X-X=0, (16)
r=+"1X.X. (6) L
K'—X-Vn' =0, (17)
In the description of the extrinsic geometry the normal .
frame is not fixed. To define any normal vecidfwe only X-VX=0, (18)
ask that: X .n' =0, (19)
nt-nl = 5z]7 (7) ni . nj _ 61’]’ =0. (20)

ni- X =0, 8

o ) . Now the corresponding Lagrange multipliers are intro-
where normal indices are raised and lowered with the Krogyced into a new total action to implement the constraints:

necker delta. The covariant derivative under worldline repa-
rameterizations is defined by:

d
i

where the one-dimensional affine connectiomanishes un-

St = Srly, K',n', X, X, f, \i, i, Ay Al (21)

V= T, (9)

=Sl K+ [ dev=r(X - V)

der a proper time parametrization. The extrinsic curvature or .
first [FS] curvature along thgh normal is: + [ &=y Ai(X )
Ki=-n'". VX =-n"-X. (10)

The point like analogue of the mean extrinsic curvature:

T _ o —lgrt -1, 2 . . ~ .
is a scalar under reparametrizations. c

From the [FS] equations we can also see that the connec- S
tion associated with the freedom of rotations of the normals + /dfv Ay — X - X).
is given by: ¢
W =n'-n, (12) Note that the new total action is a functional of

this connection is used to define the worldline covariant’: & 7" X: X, f, Ai; Aij, Ay, A, and the original action is
derivative under normal frame rotations: treated as a function os the auxiliary variabjendK*. Now
p ~v, K, n*, X, andX are independent variables which can be

v _1_4. (13) deformed independently. Note that it is not necesary to track
¢ the deformation induced onandK* by a deformation in X,

Finally, the first [FS] curvature, the geodesic curvature; because they are now independet variables.
When the variation of X is done, we get a divergence:
k= \kik;, (14)

which is simply the modulus d¥ [8]. —~ =Vf=0, (22)
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so that in equilibrium,f is covariantly conserved on the where:
worldline. This is the conserved stress tensor associated with

the theory. When the variation o¥i is done we expresg as L =—m, (33)
a linear combination of the [FS] basis: L =0, (34)
= 2\ + K'A) X — A\, 23
r=( ) (23) rom )
where it is used the analogue to the Weingarten equation v

Vn' = K'X. This equation itself follows from the con- g the conserved stress tensor is given thus by:
straints onK* andn'. The Lagrange multiplie; is fixed
when the variation om’ is considered. For this we use the s ™ (36)
Gauss equatioV X = —K"n; which its_elf f_oIIows from the - \/jp :
Weingarten equation and the constrathtn’. Thus one has:
Note that the conserved stress is proportional to the momenta,
_ . . o so that the momenta of the particle is conserved. This is what
(VA" + A")X + (2AY = A'K7)n" = 0, (24)  one should naturally expect because it is just a free particle
what is being studied.

and:
N = —VA, (25)  4.2. Linear correction
ij _ Aigcd
2T = MK (26) This action describes a relativistic massless particle with chi-
The variations of<* and~ gives respectively: larity given by the constant:
A =—L;, (27) Sy = /dg\/ffy(,m + ak), (37)
T .
A= (28) c
. where
where:
L; = aL‘, (29) L =—-m+ ak, (38)
OK' R
Li = Oé")/ilki, (39)
T = fia(i V_’YL) (30) T:771(m+ak), (40)
V= o Oy § e e
So that the conserved stress is: fr=my7 it —ay T V. (41)
=T - L;K'| X" — VL'n!. (31) If m = 0:
Note that" is only one part of the total conserved stress ten- = —ay "Wk, - n*. (42)

sor associated with the theory.

4. Relativistic particles models 5. P-branes case

In this section the framework developed is applied to obtairlt 1S Straightforward to adapt the disscusion to consider higher
the conserved stress tensor for two cases of relativistic partfC-dimensions [9], see [10] for a generalization of auxil-

cles of physical significance. iary variables for relativistic membranes for an arbitrary co-
dimension. In this section we consider the casg-bfanes.
4.1. Free particle Simmilarly the constraints introducing the auxiliary vari-

ables are given by:
The massive free relativistic particle with an action propor-

tional to the lenght of the worldline, represents the simplest eq = Vo X, (43)
global geometrical quantity invariant under reparametriza- ,
tions, and it is the one-dimensional analogue to the Nambu- €a-n' =0, (44)
Goto action for a relativistic membrane. The action describ- ni.nd = § (45)
ing this particle is given trivially by:
Ky = e, Vyn', (46)
S, = fm/dfx/fX X, (32)
- Gab = €q " €p. (47)
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In the same way that in the relativistic particle case the corre6. Concluding remarks
sponding Lagrange multipliers are introduced to implement

the constraints to the total action given by: In this paper we present the one-dimensional version of the

Sr = S[gap, Kiy] + /dg\/jgfa (a — VaX) method given in Ref.5_, anc_i_we showed that this technique
help us to avoid non-linearities, and reveals us an structure

inherent to any theory of embbeded surfaces. The novelty of

+ /dﬁx/jg[/\?(ea n') + A (n' -0t —6Y)] this method consist in treating the extrinsic curvature (first
[FS] curvature for the particle), like,,, (y for the particle)

+ /dg\/fg[A?b( L —eaVyn') as an auxiliary variable. This treatment can be also extended
to charged particles and to null-like particles, this is particles

+ A% (gap — €q - )], (48) ~ moving on the cone-light [2,9].

and when the variations for each of the independent variables
are done we get the expression for the conserved stress ten-

sor:
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