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Towards an inflationary scenario in noncommutative quantum cosmology
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In this work, we apply a previous proposal to study noncommutative cosmology and apply it to inflation, we analyze an FRW cosmological
background with a scalar field, via the WDW equation. In this scenario noconmmutativity is introduced in the gravitational field as well as
in the scalar field through a deformation of minisuperspace and are able to find an exact the noncommutative wave function.
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En este trabajo aplicamos propuestas previas al estudio de la cosmdogonmutativa aplicando esto a inftatj analizamos un modelo
cosmobgico FRW con un campo escalar a &awe la ecuadh WDW. En este escenario la no conmutatividad es introducida entre el campo
gravitacional y el campo escalar por medio de la deforarade las relaciones de conmutatien el mini-superespacio y nos es posible
encontrar soluciones exactas para la fanale onda.

Descriptores:Cosmoloda clantica; meanica céantica noconmutativa.

PACS: 02.40.Gh; 04.60.Kz; 98.80.Hw

The simplest approach in the study of the early universe is The aim of this paper is to construct a noncommutative
guantum cosmology (QC), in this simplified scheme the gravinflationary scenario in which the effects of noncommutativ-
itational and matter variables have been reduced to finite daty affect the gravitational as well as the matter sector. The
grees of freedom (these models where extensively studied bhyoncommutativity introduced here is along the lines of [3].
means of Hamiltonian methods in the 1970’'s, for reviewsSome work has been done in this topic; in Ref. 10 the ef-
see [1,2]). For homogenous cosmological models the mefects of noncommutativity during inflation are explored, but
ric depends only on time, this permits to integrate out thenoncommutativity is only incorporated to the scalar field ne-
space dependence and obtain a model with a finite dimerglecting the gravitational sector.

sional configuration spacejinisuperspacewhose variables Let us start by analyzing the quantum inflationary
are the 3-metric components. This approach is used, becaus®del, for this we use the line element for a homogeneous
a full guantum theory of gravity has not been constructed, aland isotropic universe, the so called Friedmann-Robertson-
though a few candidates exist (String Theory and Loop QuanwWalker (FRW) metric, in the form

tum Gravity being the more successful), an in this approach ds? — — N2(£)di2

we can canonically quantize the models, yielding a Klein- 5= (t)dt

Gordon type equation. dr?

— st r2(d9* + sin*9de?) |, (1)

— KT

+ eQa(t)

On another front, in the last few years there have beemnherea(t) = e is the scale factorN(t) is the lapse
several attempts to study the possible effects of noncommutdanction, andk is the curvature constant that takes the val-
tivity in the cosmological scenario. In particular in Ref. 3 the ues0, +1, —1, which correspond to a flat, closed and open
authors in a cunning way avoid the difficult technicalities of universe, respectively.
analyzing noncommutative cosmological models, whenthese The effective action we are to work on is [11]
are derived from a noncommutative theory of gravity [4].
Their proposal is to introduce the effects of noncommuta-
tivity in quantum cosmology, by a deformation of minisu- 4 I
perspace, and is achieved due to a moyal deformation of the = /dl' V=g {R + §9M 990y ¢ + V(ﬁb)} (2
Wheeler-DeWitt (WDW) equation, similar to the case of the

noncommutative quantum mechanics [5, 6]. Some work hagvhereqb is a SC%@ field. erldoweq with a scal.ar potential
been done in this direction, for example in Ref. 7 the au-v () = Voe~ W/ V129, this is the simplest inflationary po-

thors study the implications of noncommutative geometry in€ntial and can be solved analytically. _
The Lagrangian for a FRW cosmological model is

minisuperspace variables for an FRW universe with a con-
formally coupled scalar field, using the bohmian formalism )
of quantum trajectories [8], also in Ref. 9 a noncommuta- £ = e
tive deformation of a scalar field coupled to scalar-tensor type

gravity was considered. for simplicity we consider a flat univers& (= 0), yielding

Stot = Sg + S¢
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the canonical momenta L+i, andK4;, are modified Bessel Functions, from which we
or & N can construct the complete wave function.
I, = % = 12e3°‘N, &= Ee‘3‘“Ha, To extract a normalizable wave function we need to con-
«

struct wave packets to form a Gaussian state.
In order to see if the same physical information is encoded in
the new variables, we search for the classical solutions using
the semiclassical analysis (WKB-like method) [11, 13]. For
We are now in position to write the corresponding canonicaknis one considers the ansatz on the wave function
HamiltonianH

1 U(a, ¢) = e—S7 (12)

H o= e [l — 1211 — 24e%V(¢)] . (5)

_ a‘c — _e3a£

= 57(;5 N’ ¢ = —Ne_3aH¢. (4)

g

and the following usual conditions

05\ (02
’ Oy Oy?

The WDW equation for this model is achieved by the )
usual identificationII . =—idqu in Eq. (5); herey” = (o, ¢). (35)
In this way the total Hamiltonian can be written under a par- Ox
ticular factor ordering, as

s
0x2

, (13)

in this way, the Einstein-Hamilton-Jacobi equation (EHJ) is

1, [ 020 92w . obtained from Eq.(8). In the coordinatés y), this equation
H\Il:ﬂe 3 *W*F 6@?) —24e° V(g)| ¥=0, (6) is read as
- as\> [9s\?
with ¢ = ¢/v/12, whereV is called the wave function of <8> - (6) —Be” " =0, (14)
- " y

the universe, an&(¢) = Voe—w is the corresponding es-
calar potential. From Ref. 12, we know that the inflationaryyhere we have used, = 95/0xz, 11, = 85/dy. By choos-

scenario is obtained when< /2. _ ing S = S,.S, we obtain the following solutions
In order to be able to find analytical solutions for the non-
. . - : 9
commutative case we do a transformation of the minisuper S, =+ ¢S, = p = cte. (15)

space variables. Making the following change of variables

VB

B ~ B 6 - Solving for the momenta of the original variables from the
x==6a+ip y=-a+3é (") new variables
the resulting WDW equation is m, — i%e_x/Q _ i%ega_%¢7
o?r 1 9%V 24Vy T—0 ®) /\ﬁ f
_ —_ e = 5 <
ox2 A2 0y A2 -—62 m, = :Fﬁefx/2 — :I:ﬁem*%d’, (16)

and by separation variables, usiig = X(x)Y(y) with
¥ = Ay, we obtain the set of differential equation for the
functions X and Y

the classical behavior is found by solving the relationship be-
tween (16) and Eqs. (4), obtaining the scale factor as a func-
tion of the scalar field

d2Xx 2
et <(Z) ~pe ) X=0 a = age®?, (17)
d?y n (ﬂ)Q v -0 9) and also, the corresponding time behavior,
~2 b
dy 2 L 2 ]
here we have definedl = 24V, /(\? — 62) and is a separa- a=ag7TA, ¢=+ln (WT + ¢0) ’ (18)
tion constant. The solutions for these equations are given in
term of complex order Bessel functions. Faf < 6 from which we obtain the known result, that for an inflation-
ary scenario, scale factor has an increasing power law power
X(x) = Ji (iQ\/Be_X/2) +J 4 (ig\/ge—xﬂ) 7 behavior when\ < /2.
Y(y) = Agel TN 4+ Aje 12N (10) Now that we have constructed our quantum inflationary
model we can introduce a noncommutative deformation. We
and for other values of start with the commutative WDW equation, Eqg. (8), which is
defined in the minisuperspace variableg. We will, as in
X(x) =Ly (i2\/56_x/2) + Ky (i2\/ﬁe_x/2) ; Ref. 3 do a noncommutative deformation of the minisuper-
DY —i2A space
Y(y) = Age2™ + Aje 2, (11) [z,y] = i0), (19)
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this is equivalent to a deformation in the original variables wherey = \y andg = 24V, /(A\? — 36). By using the anzats
and¢ U(z,7) = x(x)¥(7), the equation is separable, this gives the
o differential equation
=if with 0= —+—"— 20

o, ¢] = i Gy (@0 (o)
we can see, that the highly noncommutative case is reached dz?
in the limit A ~ |6], this is an interesting fact, because even
if the parametep is small, the effects of noncommutativity
can be large if the parameters in the potential are fined tunedX =1 ( /ﬁ e~ 542 +K, ﬁﬂ e—5+42? 27)
this could be related to the UV/IR mixing that appears in non- (@) 4 ) ( i ) ’
commutative field theory.
This noncommutativity can be formulated in terms of non-
commutative minisuperspace functions with the moyal prod- U
uct of functions

Av

+ <V2—5e 2 06793) x(z), (26)

which has solutions fok < 6

finally get the noncommutative wave function

ac7y) _ eiuAy

x [Ii ( |ﬂ|e’%+y39)+Kw (me*%“ie)], (28)

this of course in the minisuperspace variabtesndy. This
is the noncommutative wave function, because we have taken
A\ < 6 and in the commutative case far< /2 is the infla-
1 ox=x2y 24Vy tionary limit, we believe that this wave function can describe
TG 622 % <_Hx + 1y — N _g2° > *VU(x,y). (22)  a noncommutative universe in an inflationary epoch. But in
order to prove this statement the classical noncommutative
We know from noncommutative quantum mechanics [5], thabehavior has to be constructed In this paper the first steps
the symplectic structure is modified. Now it is possible toof a new noncommutative formulation for inflation is pro-
return to the original commutative variables and usual composed. The noncommutative deformations affects the gravi-
mutation relations if we introduce the following change of tational sector as well as the matter sector, previous studies in
variables this direction had neglected the effects of noncommutativity
0 0 in the graviational degrees of freedom. The noncommutativ-
T — T+ 5Hy and y—y-— 5Hm. (23) ity is constructed as in Ref. 3, so the deformations are done
at the minisuperspace, from this construction the NCWDW
The efects of the moyal star product are reflected in the WDWequation is solved, giving the noncommutative wave func-
equation, only on the potential tions. The cosmological implications of this model are under
research and will be reported elsewhere.

i

f(x,y) *g(x,y) = f(z,y)e

[MEY

) ). a1
Then the noncommutative Wheeler-DeWitt (NCWDW)
equation can be written as

V(x’y) *\I’(.’I},y) = V(l‘ + gny,y - gnw)\lj(x>y)’ (24)

after taking this in to account and using the usual substituACknowledgments
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