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Towards an inflationary scenario in noncommutative quantum cosmology
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In this work, we apply a previous proposal to study noncommutative cosmology and apply it to inflation, we analyze an FRW cosmological
background with a scalar field, via the WDW equation. In this scenario noconmmutativity is introduced in the gravitational field as well as
in the scalar field through a deformation of minisuperspace and are able to find an exact the noncommutative wave function.
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En este trabajo aplicamos propuestas previas al estudio de la cosmologı́a no conmutativa aplicando esto a inflación, analizamos un modelo
cosmoĺogico FRW con un campo escalar a través de la ecuación WDW. En este escenario la no conmutatividad es introducida entre el campo
gravitacional y el campo escalar por medio de la deformación de las relaciones de conmutación en el mini-superespacio y nos es posible
encontrar soluciones exactas para la función de onda.
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The simplest approach in the study of the early universe is
quantum cosmology (QC), in this simplified scheme the grav-
itational and matter variables have been reduced to finite de-
grees of freedom (these models where extensively studied by
means of Hamiltonian methods in the 1970’s, for reviews
see [1, 2]). For homogenous cosmological models the met-
ric depends only on time, this permits to integrate out the
space dependence and obtain a model with a finite dimen-
sional configuration space,minisuperspace, whose variables
are the 3-metric components. This approach is used, because
a full quantum theory of gravity has not been constructed, al-
though a few candidates exist (String Theory and Loop Quan-
tum Gravity being the more successful), an in this approach
we can canonically quantize the models, yielding a Klein-
Gordon type equation.

On another front, in the last few years there have been
several attempts to study the possible effects of noncommuta-
tivity in the cosmological scenario. In particular in Ref. 3 the
authors in a cunning way avoid the difficult technicalities of
analyzing noncommutative cosmological models, when these
are derived from a noncommutative theory of gravity [4].
Their proposal is to introduce the effects of noncommuta-
tivity in quantum cosmology, by a deformation of minisu-
perspace, and is achieved due to a moyal deformation of the
Wheeler-DeWitt (WDW) equation, similar to the case of the
noncommutative quantum mechanics [5, 6]. Some work has
been done in this direction, for example in Ref. 7 the au-
thors study the implications of noncommutative geometry in
minisuperspace variables for an FRW universe with a con-
formally coupled scalar field, using the bohmian formalism
of quantum trajectories [8], also in Ref. 9 a noncommuta-
tive deformation of a scalar field coupled to scalar-tensor type
gravity was considered.

The aim of this paper is to construct a noncommutative
inflationary scenario in which the effects of noncommutativ-
ity affect the gravitational as well as the matter sector. The
noncommutativity introduced here is along the lines of [3].
Some work has been done in this topic; in Ref. 10 the ef-
fects of noncommutativity during inflation are explored, but
noncommutativity is only incorporated to the scalar field ne-
glecting the gravitational sector.

Let us start by analyzing the quantum inflationary
model, for this we use the line element for a homogeneous
and isotropic universe, the so called Friedmann-Robertson-
Walker (FRW) metric, in the form

ds2 =−N2(t)dt2

+ e2α(t)

[
dr2

1− kr2
+ r2(dϑ2 + sin2ϑdϕ2)

]
, (1)

wherea(t) = eα(t) is the scale factor,N(t) is the lapse
function, andk is the curvature constant that takes the val-
ues0,+1,−1, which correspond to a flat, closed and open
universe, respectively.

The effective action we are to work on is [11]

Stot = Sg + Sφ

=
∫

dx4√−g

[
R +

1
2
gµν∂µφ∂νφ + V (φ)

]
, (2)

where φ is a scalar field endowed with a scalar potential
V(φ) = V0e−(λ/

√
12)φ, this is the simplest inflationary po-

tential and can be solved analytically.
The Lagrangian for a FRW cosmological model is

L = e3α

[
6
α̇2

N
− 1

2
φ̇2

N
+ N

(
V(φ)− 6κe−2α

)
]

, (3)

for simplicity we consider a flat universe (k = 0), yielding
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the canonical momenta

Πα =
∂L
∂α̇

= 12e3α α̇

N
, α̇ =

N
12

e−3αΠα,

Πφ =
∂L
∂φ̇

= −e3α φ̇

N
, φ̇ = −Ne−3αΠφ. (4)

We are now in position to write the corresponding canonical
HamiltonianH

H =
1
24

e−3α
[
Π2

α − 12Π2
φ − 24e6αV(φ)

]
. (5)

The WDW equation for this model is achieved by the
usual identification,Πqµ=−i∂qµ in Eq. (5); hereqµ = (α, φ).
In this way the total Hamiltonian can be written under a par-
ticular factor ordering, as

HΨ=
1
24

e−3α

[
−∂2Ψ

∂α2
+

∂2Ψ
∂φ̃

−24e6αV(φ̃)
]

Ψ=0, (6)

with φ̃ = φ/
√

12, whereΨ is called the wave function of
the universe, andV(φ̃) = V0e−λφ̃ is the corresponding es-
calar potential. From Ref. 12, we know that the inflationary
scenario is obtained whenλ <

√
2.

In order to be able to find analytical solutions for the non-
commutative case we do a transformation of the minisuper-
space variables. Making the following change of variables

x = −6α + λφ̃, y = −α +
6
λ

φ̃, (7)

the resulting WDW equation is

∂2Ψ
∂x2

− 1
λ2

∂2Ψ
∂y2

− 24V0

λ2 − 62
e−xΨ = 0, (8)

and by separation variables, usingΨ = X(x)Y(ỹ) with
ỹ = λy, we obtain the set of differential equation for the
functions X and Y

d2X
dx2

+
((η

2

)2

− βe−x

)
X = 0,

d2Y
dỹ2

+
(η

2

)2

Y = 0, (9)

here we have definedβ = 24V0/(λ2 − 62) andη is a separa-
tion constant. The solutions for these equations are given in
term of complex order Bessel functions. For|λ| < 6

X(x) = Jiη

(
±2

√
βe−x/2

)
+ J−iη

(
±2

√
βe−x/2

)
,

Y(y) = A0ei η
2 λy + A1e−i η

2 λy, (10)

and for other values ofλ

X(x) = Iiη
(
±2

√
βe−x/2

)
+ Kiη

(
±2

√
βe−x/2

)
,

Y(y) = A0ei η
2 λy + A1e−i η

2 λy, (11)

I±iη andK±iη are modified Bessel Functions, from which we
can construct the complete wave function.

To extract a normalizable wave function we need to con-
struct wave packets to form a Gaussian state.
In order to see if the same physical information is encoded in
the new variables, we search for the classical solutions using
the semiclassical analysis (WKB-like method) [11, 13]. For
this one considers the ansatz on the wave function

Ψ(α, φ) = e−S, (12)

and the following usual conditions

(
∂S

∂x

)2

À
∣∣∣∣
∂2S

∂x2

∣∣∣∣ ,

(
∂S

∂y

)2

À
∣∣∣∣
∂2S

∂y2

∣∣∣∣ , (13)

in this way, the Einstein-Hamilton-Jacobi equation (EHJ) is
obtained from Eq.(8). In the coordinates(x, y), this equation
is read as

(
∂S

∂x

)2

−
(

∂S

∂y

)2

− βe−x = 0, (14)

where we have usedΠx = ∂S/∂x, Πy = ∂S/∂y. By choos-
ing S = SxSy we obtain the following solutions

Sx = ± 2√
βµ

e−x/2, Sy = µ = cte. (15)

Solving for the momenta of the original variables from the
new variables

Πα = ± 6√
β

e−x/2 = ± 6√
β

e3α−λ
2 φ,

Πφ = ∓ λ√
β

e−x/2 = ± λ√
β

e3α−λ
2 φ, (16)

the classical behavior is found by solving the relationship be-
tween (16) and Eqs. (4), obtaining the scale factor as a func-
tion of the scalar field

a = a0e
1
2λ φ̃, (17)

and also, the corresponding time behavior,

a = a0τ
2

λ2 , φ̃ =
2
λ

ln
(

λ2

4
√

3β
τ + φ̃0

)
, (18)

from which we obtain the known result, that for an inflation-
ary scenario, scale factor has an increasing power law power
behavior whenλ <

√
2.

Now that we have constructed our quantum inflationary
model we can introduce a noncommutative deformation. We
start with the commutative WDW equation, Eq. (8), which is
defined in the minisuperspace variablesx, y. We will, as in
Ref. 3 do a noncommutative deformation of the minisuper-
space

[x, y] = iθ, (19)
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this is equivalent to a deformation in the original variablesα
andφ

[α, φ] = iθ with θ =
θλ

62 − λ2
, (20)

we can see, that the highly noncommutative case is reached
in the limit λ ∼ |6|, this is an interesting fact, because even
if the parameterθ is small, the effects of noncommutativity
can be large if the parameters in the potential are fined tuned,
this could be related to the UV/IR mixing that appears in non-
commutative field theory.
This noncommutativity can be formulated in terms of non-
commutative minisuperspace functions with the moyal prod-
uct of functions

f(x, y) ? g(x, y) = f(x, y)ei θ
2

(←−
∂x
−→
∂y−←−∂y

−→
∂x

)
g(x, y). (21)

Then the noncommutative Wheeler-DeWitt (NCWDW)
equation can be written as

1
24

e
6x−λ2y
6−λ2 ?

(
−Πx + Πy − 24V0

λ2 − 62
e−x

)
? Ψ(x, y). (22)

We know from noncommutative quantum mechanics [5], that
the symplectic structure is modified. Now it is possible to
return to the original commutative variables and usual com-
mutation relations if we introduce the following change of
variables

x → x +
θ

2
Πy and y → y − θ

2
Πx. (23)

The efects of the moyal star product are reflected in the WDW
equation, only on the potential

V (x, y) ? Ψ(x, y) = V (x +
θ

2
Πy, y − θ

2
Πx)Ψ(x, y), (24)

after taking this in to account and using the usual substitu-
tionsΠqµ=−i∂qµ we arrive to

(
∂2

∂x2
− ∂2

∂y2 − βe−(x+ i
2 θ ∂

∂y )
)

Ψ = 0, (25)

wherey = λy andβ = 24V0/(λ2 − 36). By using the anzats
Ψ(x, y) = χ(x)ψ(y), the equation is separable, this gives the
differential equation

d2χ(x)
dx2

+
(
ν2−βe

λν
2 θe−x

)
χ(x), (26)

which has solutions forλ < 6

χ(x)=Iiν

(√
|β|e− x

2 + νλθ
4

)
+Kiν

(√
|β|e− x

2 + νλθ
4

)
, (27)

finally get the noncommutative wave function

Ψ(x, y) = eiνλy

×
[
Iiν

(√
|β|e− x

2 + νλθ
4

)
+ Kiν

(√
|β|e− x

2 + νλθ
4

)]
, (28)

this of course in the minisuperspace variablesx andy. This
is the noncommutative wave function, because we have taken
λ < 6 and in the commutative case forλ <

√
2 is the infla-

tionary limit, we believe that this wave function can describe
a noncommutative universe in an inflationary epoch. But in
order to prove this statement the classical noncommutative
behavior has to be constructed In this paper the first steps
of a new noncommutative formulation for inflation is pro-
posed. The noncommutative deformations affects the gravi-
tational sector as well as the matter sector, previous studies in
this direction had neglected the effects of noncommutativity
in the graviational degrees of freedom. The noncommutativ-
ity is constructed as in Ref. 3, so the deformations are done
at the minisuperspace, from this construction the NCWDW
equation is solved, giving the noncommutative wave func-
tions. The cosmological implications of this model are under
research and will be reported elsewhere.
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