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In these notes some examples of how to apply finite differencing to the solution of partial differential equations are presented and analyzed.
The aim of this manuscript is to offer the reader a first step toward the numerical solution of sufficiently complicated and interesting problems
within general relativity. The topics include the solution of the wave equation in one spatial dimension and the solution of real and complex
self-gravitating scalar fields with spherical symmetry.
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En estas notas se presentan y analizan algunos ejemplos de aplidelcietodo de diferencias finitas a la solicide ecuaciones diferen-
ciales parciales. La motivam de este manuscrito es ofrecer al lector un primer paso en la@olugirérica de problemas suficientemente
complicados e interesantes en relatividad general, o sea, denaireddlamada relatividad nuérica. Los temas incluyen la soloci de la
ecuacbn de onda en una dimebdsi espacial y la soluéh de campos escalares auto-gravitantes, tanto reales como complejos cda simetr
eskrica.

Descriptores:Métodos nuraricos; relatividad nuerica; sistemas auto-gravitantes.

PACS: 04.25.Dm

1. Introduction sourcesge.g. the mesh refinement algorithms that optimize

There is no doubt about the relevan t numerical rel tivthe memory to be used in the regions of space with more
_Nere IS no doubt about he relevance of humencal relative,  ,re - These are a few items related to the development
ity (NR) in recent years. The most important and urgent ap

N ) o . : . “"in the solutions of the PDE system of Einstein’s equations,
plication of numerical relativity is the simulation of gravita-

tional wave sources, because the interferometers dedicated ot certa_ml_y there are many ways of 'mproving the state of
the detection of Gra;vitational Waves (GWSs) are already ex:[ © grt W|th|n.numer|cal relat|V|ty , both, n the b're}nch of nu-
ecuting science runs at the threshold of sensitivity. What ismerlc_al_ algorithms through the |n_troduct|on of f|n|t_e element

’ and finite volume methods and in the mathematical sector,

needed when filtering the signals measured is a set of con-

fident templates of waveforms associated to certain types ov%/here the way the equations are written determines whether
P YPES Qf ot the system of equations allows a well posed evolution

GW sources. One of the most powerful sources of gravita-
; : - ... problem.

tional waves is expected to be the collision of two orbiting

black holes; this is the reason why such problem has become Aside the hard core of NR there are many other applica-
the hard core of NR for many years. Currently, the templategions that are to come: supernovae core collapse without sym-
used as input for matching the signals in the detectors commetries, supernova core collapse with neutrino transport, the
respond to postnewtonian approximations of the two bodyollapse of a compact star with no symmetries into a black
problem for the orbiting stage of the holes, and perturbatiorhole, general cases of binary black hole collisions (like un-
theory for the time when the final black hole has been formedequal mass cases), general relativistic systems in cosmology
During the last year, striking results indicate that it is possi-at high redshift, general relativistic accretion disks and jets.
ble now to solve numerically the binary black hole problemIn the field of alternative theories there is a lot to do in tensor-
using full general relativity, and it is possible to estimate thescalar theories, low energy limit of string theory, extended
waveforms generated by the system not only during the tw®bjects like black strings (in fact this is one of the already
stages mentioned above, but also at the merger time [1, 2]. active topics [3]), bubble space-times [4], etcetera.

It took a considerable time to design strategies and under- Naturally, before attempting the solution of any of those
stand problems in the system of partial differential equationproblems it is perhaps useful to analyze simpler cases. In this
(PDEs) describing the problem of two black holes orbitingsense the wave equation in one spatial dimension is the ba-
around each other. Among the points that favored the recerstic problem that exemplifies the process of solving PDEs. |
advances in the solution of this problem within numerical rel-imprint a major effort in the simplest example, that is, the so-
ativity are: the studies on the formulation of the 3+1 decom-ution of the wave equation in 1+1 dimensions, which is the
position of Einstein’s equations and the hyperbolicity properparadigm of how a system of PDEs has to be solved. With
ties of its different flavors; the computer power has increasedhis solution at hand it is possible to find some results in three
the algorithms have also evolved and now one accounts withpatial dimensions with spherical symmetry, a problem that
very powerful and accurate algorithms that optimize the re-again only involves PDEs with two independent variables.
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The goal of this manuscript is not to provide the student The approximation using finite differencing works in a
a full set of tools to exploit numerical relativity. Instead, the different way. In order to illustrate how discretization works
idea is to show a few examples of how to solve the equaassume the case of a hypothetical finite domain with a time
tions of general relativity for some particular systems, andcoordinatet and a spatial coordinate Spatial coordinates
motivate the reader to go beyond the scope of the cases to laee defined as a discrete set of points giverzhy= jAx
mentioned here. In part, the motivation to proceed this way(; integere), and the boundaries correspond to the paints
is that it is sometimes convenient to have a simple computafon the left) andry (on the right). Time™ = nAt (n inte-
tional code that works, which is able to reproduce the resultgere) is also defined only for certain values of the continuum
in these notes and in classical papers, and afterwards it woutime. Thus a function is defined only for the values fcand
be simple to generalize the ideas to more elaborate problentghat correspond to points in the mesh in such a way that for

involving general relativity. a given continuous functiofi there are available values of it
Along this manuscript | want to get the reader interestedat (t", x;), denoted here by}*. For a uniformly discretized
in: domain,Ar = z;41 — x; andAt = t"*! — " indicate the
resolution in the spatial and time coordinates respectively.
i) topics for which NR is essential, The finite differencing approximation assumes that the

functions involved can be expanded in a Taylor series around

i) NR directly through the examples that include a codegyery point of the mesh up to a desired order approximation.

that works and is able to reproduce the results preTherefore, considering the function is defined at the spatial

sented here and in other papers mentioned along thgoint -, the value of the function in the nearest neighbors can
manuscript. be calculated as follows:

. .. . 2
I.n Sec. 2 the numerical r_nethods relatgd to finite differ- Flaj_1) = fz;) — Axf'(z;) + A—If”(zj)
encing applied to PDE operations are described. In Sec. 3 the 2
solution of the wave equation in one plus one dimensions and Az, 5
details about its general properties are presented. In Sec. 4 - Tf + O(Az”)
a real self-gravitating scalar field is solved, which is noth-
ing but the introduction of self-gravity to a massive Klein- flag) = fla;)
Gordon field. This turns out to be a generalization of the 72
wave equation. In Sec. 5 a further generalization is shown, f(zj+1) = f(z;) + Axf'(z;) + Tf"(l'j)
namely, that of a self-gravitating complex scalar field, and A
the particular case of boson stars. Finally, in Sec. 6 a few + ifﬁ/ +0(AzY) (1)
remarks are made and references are suggested. 6
where the prime denotes derivative with respect t&Gtart-

. ing from these approximations it is possible to construct dif-
2. Numerical Methods ference operators for the derivativesfgf. For instance, by
adding the first and the third formulas above one obtains an
expression for the first derivative at the paintwith a second

The item that has to be kept in mind from the beginning, isorder error

that when using finite differencing, one is assuming that the Fla;) = f(@jp1) — fxj-1)
domain of the PDEs is discrete. That is, the functions in- J 2Azx

volved in a PDE are evaluated only in a finite number ofjgtice that the value of the function at the left and right near-
points. The implication of such restriction is that it is not gst neighbors is needed in order to calculate this derivative,

possible to calculate the solutions with infinite high preci-nat is why it is called a centered finite differencing approxi-
sion, and there will be always a contribution of a certain errofy5tion.

(called discretization error) that contaminates off the contin- |, order to obtain the second derivative pit suffices to
uum problem. Of course, if one thinks on the variety of prob-yite the combination

lems that can be solved numerically that are still unsolved

through analytic methods, it seems that the discretization er- / (£5+1) = 2f(2j) + f(zj-1) _ F"(z;) + O(Az?)

ror is a good price to pay. Az? ! ’

There are different approximations to the system of equawhich implies the desired expression for the second deriva-
tions to be solved, for example, spectral methods assume thae with second order accuracy as well. As in the previ-
the functions involved in the system of differential equationsous case, this is also a centered approximation of the second
can be expanded as a series of orthogonal functions on @erivative.
given domain; then orthogonality conditions and recurrence In the case of the spatial boundaries, one of the nearest
relations are useful to reduce the system to a simpler systemeighbors would be missing, and a centered approximation
of equations for the coefficients of the expansion. would require the addition of an extra point (a ghost point)

2.1. Finite Differences

+ O(Az?);
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to the domain; in most problems one prefers to live with-for everyi andn. From this expression it is possible to solve
out ghost points for the purpose of imposing boundary confor fi"“, and provided values of the functighat the time
ditions. Therefore one considers that only points to the rightabelsn andn — 1 it is possible to calculate the values pf

in the spatial domain are available (the case of the left boundat the labeln + 1. This is an example of how, given initial
ary), thus one proceeds by writing the approximations of theconditions, the solution for further times can be constructed.

function considering only points on the right as follows: An important note about finite differences is that because the
approximations of the differential operators involved in the
f(x5) = f(x)) PDEs are obtained through a Taylor series expansion, an er-
A2 ) ror in the definition of the differential equations is introduced
f(xjs1) = f(zj) + Azf + Tf” + O(Az?) due to the truncation of the Taylor series up to a given order.

In fact, it is expected that the error term in (3) decreases when
f(@jg2) = fz;) + 20 f + 282° " + O(Az®).  (2)  increasing the resolution in time and space.
In what follows the equations one deals with are dis-
cretized in a similar manner in order to construct a global
solution for a given set of PDEs in terms of initial conditions.

The combination
f(jp2) = Af (@j41) + 3f(2;) = 20z f' + O(Az®)

implies the desired expression for the first spatial derivativ
of the function with second order accuracy; when applied tozg mentioned above, when solving equations using finite dif-

(.3'2' Convergence

the left boundary it would read ferencing one is discretizing the equation, and therefore the
zo) — Af(xy) + 3f(x equations whose solution is being calculated are not exactly
= flz2) j;(Ai) f(zo) + O(Afrz)- those assumed to be valid in the continuum, a truncation error

in the Taylor series expansion is being introduced through the

A similar expression can be obtained for the right boundarysimple fact of discretizing. Moreover, even though the error
considering only points on the left. involved in the discretized version of an equation decreases

If one considers now the discretization in time, the operwhen increasing the resolution, it is necessary to establish
ations above apply in the same way and time derivatives argt what rate such error should decrease. The convergence is
found in a similar way. It is of course possible to constructthe notion that relates the rate at which the error decreases
more accurate approximations to derivatives which would rein terms of the accuracy of the discretization. However there
sultin better approximations to the continuous equations (sei a concept in between, that of consistency: it is said that
e.g.Ref. 5). However more accurate approximations involvea discretization is consistent given that for smaller values of
points beyondrz;., and are unpractical for the purpose of Az andAt the error with respect to the solution in the con-
these notes. tinuum decreases. Another concept is that of stability, which

On the other hand, when the points in time are considis a measure of the increase rate of the values of the function
ered, it is possible to use the expressions constructed for thghe is calculating; for instance in (3) if one chooses reso-
calculation of spatial derivatives, for instance, the first timejutions such that\t/Az > 1 it is clear that the amplitude

derivative at time" is approximated to second order by of the wave function will increase after every time iteration,
ntl  emei until it gets out of control. This is only one case, but in gen-

of _ L= +O(A). eral the stability is related to the time integration algorithm
ot At like those used later on in these notes. If the two conditions,
The second derivative calculated to second order centered 8f@bility and consistency are satisfied, it is said that the algo-
time " reads rithm converges. This is known as the Lax theorem. In order

) o ) to illustrate what convergence means and how one can see
n n— . .
of T2+ 2 whether the calculations provide convergent results | follow
7 5 + O(At?). |
ot (At) the notes in Ref. 6.

. TR Consider a functiorf; that is second order accurate (like
With the op_erators for the _second derivatives it is easy to CONg e operators described above) such that
struct the discretized version of the wave equation
fl@) = folz) + E(z)(Az?) + O(Az?),

f  *f

o2 w2 where fy(z) is the exact solution at the continuurf, de-

. notes the unknown error term. f(z) is known, it is enough
centered at the poirft”, z;): to compare the results obtained with two different resolutions
ntl _ o¢n n—1 n _ofn n f1 obtained using\x and f, obtained using\z /2. Then the
fi 2fP + ST Fa 20+ A theory predicts that
(B0 (Ao fi—fo_ Aa®+0(A2?)
— r° + x .
+O(AZ2, Af?) 3) — = =4+0(Az°). (4

fo—fo iAwQ—l—O(AJ:?’)
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For instance, for the wave equation (3) one knows the anis a good introduction to the equations used in full 3+1 gen-
alytic solution, and it would be a matter of using two different eral relativity. For this, it is necessary to write down the flat
resolutions to verify whether the difference between the exspace-time metric in 1+1 dimensiods? = —dt? + di?,
act and numerical solutions converges to zero. A differentvhich under the general coordinate transformatior= adt
story happens when the exact solution is unknown; howeveanddz = dz — (dt reads
within general relativity, even though the solution might be

unknown, in the 3+1 decomposition the system of PDEs is (—a2+82)

overdetermined, that is, there are evolution equations for the Juv = ( 3 1 ) , (6)
dynamical variables (the number of this variables depends on

the formulation and the gauge one chooses, ADM and BSSN o —1/a? B/a? 7
are the most common ones, seg. Ref. 7) and there are g = Bla? (11— p%/a?) (")

also constraint equations that are to be satisfied. The Hamil- ) . . . .
tonian and momentum constraints (Sdy— 0 and M* — 0) wherea > 0 is the lapse function and is the shift vector, in

are assumed to be satisfied during the evolution; nevertheledyS case with only one component. Notice that = ¢,z.
the truncation error introduced when the equations are digh 9eneral, the D’Alambertian operator for a given space-time
cretized imply that these constraints are not exactly satisfiednetric is defined as
The advantage is that one knows they have to be satisfied 1 w
(e.g. H = 0) in the continuum limit; therefore only two reso- ¢ = ﬁa“[‘/jggl 0v9].
lutions suffice to verify whether the calculations are correct. ) ) )

In the most general case, when the exact solution is unE™M (6)v/—g = a. The wave equation written in such form
known, one can do a Cauchy-type convergence test, usirg?n P€ expanded as follows
the results with three different resolutions. Sayand f> as 0=0¢
above, and furthermorg, which has been computed using

1
Az /4, then _ 0ulV=35" 00 )
Vs
fi—fo  Ax?— A2% + O(AL®) ) )
fo—fa $A2? — £Az? + O(Az?) = aat[agt”é),,gb] + aam[ag””&,¢]

_ AxQ + O(A(E?)) _ 3 _ l tt tx l xt T
= m =4+ O(AII; ) (5) = aat[ag 8t¢ + ag xQﬂ + aaz[ag at¢ + ag z¢]
1 B

. . e 1
This type of estimates provide indications of a good or = aat |:_aat¢ + aaz¢]
a bad calculation. For instance, if one finds that the conver-
gence factors above (the number 4) happens to be a smaller l@ {ﬂ
number, then one has to accept that the convergence of the' o * |«
solution is not as good as expected. The possible reasons fg\r

such a situation are: there is an error in the implementatio s will be seen later on, I IS deswabl_e to write dovyn a PDI.E
of the algorithm or the algorithm itself does not converge inds a system of equations with only first order derivatives in
the range ofAx selected space and time. The reason for this is that it becomes sim-

pler to study the properties of the system of equati@ng. (

whether it is hyperbolic or not).

3. The wave equation in 1+1 The expression above suggests the definition of two new
variablesy := 0,¢ andm := (0;¢ — 30, ¢) /. Notice thatr

The wave equation appears as a work horse example to ils the argument of the first order time derivative in (8). The

lustrate how finite differencing is applied to a concrete prob-dea is to separate such equation into a system of equations

lem. With this example, | will also introduce the notion of a for these new variables. The first equation is evident from (8):

space+time decomposition. In this sense, | call to concepts

defined in the 3+1 decomposition of space-time in general O = O (atp + B). 9)

e vector' Thus one has the chance to learn also a oW one @ssumes s al east continuously twice diferen-

tle bit of how gauge freedom works and how one can takepable’ the equation fop is by) = 9,(9;¢) which means

@¢+a02)@4. (®)

a2

advantage of such gauge freedom. This section is a general- o = Oz (am + BY). (10)
ization inspired in a previous set of notes devoted to the wave
equation [8]. Equations (9)-(10) are the first order version of the wave

Now it is shown how the lapse and shift work together toequation. This reminds us that the original unknown func-
actually control the evolution of initial data according to thetion is ¢, which can be recovered using the definitionmof
wave equation in 1+1 dimensions, which on the other han@ncer andvy have been calculated, thatdsp = an + (.
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3.1. Characteristic analysis simply choose time-symmetric initial data for a gaussian pro-
file:
If one defines a state vector y= (,)7 it is possible to
write the wave equation (9)-(10) as $(0,2) = Ae—(@—x0)?/0%
A = —0,(A 11 T—T
dru+ Adyu = —9,(A)u, (11) 9(0,2) = 5! = 0)¢(0,x)
where 8 o b (0, 2) = 0. (17)
=(a ) 42

It is well known that the solution to the wave equation is

The characteristic directions, that is, the local directions ofy,q superposition of one mode moving to the right and one
propagation of signals in ther-plane can be found by cal- ,qqe moving to the leftd(t,z) = f(z + t) + g(z — t)).

culating the eigenvalues i (notice that the importanA. Then the evolution of the initial data above should show the
in the characteristic analysis is the one on the left hand S'd%ecomposition of the initial data into two gaussians.

where the advection terms reside), thus one solves the equa-
tiondet(A — Ix\) = 0 for A = dx/dt, wherels is the2 x 2 )
identity matrix. The result is as follows 3.3. Evolving data

A =—F*fa. (13) The evolution of data consists in calculating the function
f]?’“ from data in the previous time slice. In order to illus-
Given the two eigenvalues are distinct and real, the systrate this fact, discretize equation (9) with= 0 anda = 1.
tem is strictly hyperbolic (a common reference about the hyIn this particular case, the discretization at the pgifit ;)
perbolicity properties of a system of equations is Ref. 9). Inreads
the case¢d = 0 anda = 1 the usual light-cone = ¢ £ tis

n+1 n n _ 2N
obtained, which determines the local domain of dependence o T Vit izl (18)
and influence of the fields propagating through the pejnt At 208z
The corresponding eigenvectors forAL are At o At (W0 — o)
u; = (1,-1)T anduy = (1,1)7. The matrix that diagonal- i LU oA T T

izesA is therefore o :
where the results of finite differencing above have been used

p_ ( 1 1 ) p-1_ 1 < 1 -1 ) (14) assuming\t andAz are small. A similar expression is found
-1 1 ) 2\ 1 1 for the evolution ofy) from (10). In order to know the value
7(t"*t1, 2;) one must know the values of in the neighbor-
From here, A can be written asA = PAP~! with ing points(¢”, z;11), (t", z;_1) and the value of at(t", z;).
A = diag(A+,A-). Multiplying equation (11) byP~" one  Sych discretization is known as forward in time and centered
finds in space (FTCS); the molecule used to construct data in the
. . . n + 1 slice is shown in Fig. 1. Itis a simple discretization
P 0u+ P Adu= —-9,(P" A)u and easy to implement, however it is unstable. Nevertheless,
Ow + Adyw = —3, (A)w, (15)  the discretization in this example illustrates how a powerful
approach works: the method of lines. Within this approach,
where it is assumed that for eac¢hlthe PDE satisfies an ordinary dif-
ferential equation (ODE) along the vertical lines in Fig. 1.
w=Plu= l(ﬂ — ¢+ )T = (R, L)T (16)  With this in mind, it suffices to have the discretization pro-
2 vided by (18) and integrate in time the resulting differential
are the characteristic variables. In this way, the two equagquation ford;m. The terms other that the time derivative of
tions (9) and (10) decouple, and the dynamics of the scaldhe PDE are considered to belong to the right hand side of
field has been decomposed into a mode moving to théhe ODE intime. Thus only an ODE integrator is required to
right [R = 1/2(r — ¢)] and another moving to the left evolve the data from one time slice to the next one. One only

[L = 1/2(x + +)]. Equation (15) is thus a decoupled pair needs to choose the integrator, which is selected according to

of advection equations for these new variabfieand L. the accuracy, the dissipation and the stability properties that
depend on the restrictions on the Courant factoy Az (To
3.2. Initial data learn about the properties of evolution algorithms | refer the

reader to references [9—-11]). In the present notes the third
In the first order form of the wave equation, what is neededrder Runge-Kutta algorithm is the one used for the evolu-
at the initial time is the value of (0, ) and«(0,z). This  tion of the different systems. A simplified illustration of this
is equivalent to providing data faf and its time derivative. algorithm assumes the unknown functigrto be such that
In order to focus on the evolution of the initial data one mayo; f = S whereS would be, for instance, the right hand side
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(RHS), then the algorithm to calculaf@t! in terms of in- J.n+1
formation on the previous time slice is

[r=f"+ALs”

At

*k 3 n 1 * =v . . .
U E A A j—1,n j,n jtln
1 2 2 4 ‘ S
it = SIS FT A SALST N N

FIGURE 1. lllustration of the molecule used to construct the solu-

tion at then + 1 time slice. Afilled circle indicates the place where

one wants to know the desired variable onto, and with empty circles
e location where the functions involved are known.

This algorithm is widely used because it requires only
three iterations and is accurate and stable for small values
the Courant factor.

Open boundaries with o=1, =0 Open boundaries with a=1, B=1
3.4. Boundary conditions

As can be seen from Eq. (18) and Fig. 1, the value of the |
variable to be updated can be calculated only in the interior
points, not those located at the boundarieg:x v ; the rea-
son is that here is a spatial derivative on the right hand sidet
of the evolution equation far. This is not an obstacle but an
opportunity to impose boundary conditions over the desire
f_unc_tlons a.t those points. The_ case (.)f the _1+l Wave_ equeBoundary conditions are shown. (Left) The usual wave equation;
tion is the simplest case_, _and itis possible to impose dlﬁere%e initial gaussian splits into two smaller gaussians which travel
types of boundary conditions: towards the boundaries. (Right) The wave equation ith= 1
which implies that our coordinates are surfing on top of one of the
|) periodiC, which assume a Change of topology of thesma” gaussians. That is, the coordinates used travel at the speed of
domain and glue one end of the spatial domain to théhe wave ¢ = 1).
other one;

q:IGURE 2. Two solutions of the wave equation with outgoing wave

3.5. Results

ii) reflecting, which reflects the wave once it reaches th&{Nith all these concepts in mind, that is:

. initial data, an al-
boundary points and

gorithm to evolve functions from one time slice to the next
one, boundary conditions and a code that contains all these
iify Sommerfeld or outgoing wave, which absorbs thejngredients together, one can construct several solutions to
wave. the wave equation. Here, only a few illustrative ones are pre-
sented. The spatial domain used+$ < x < 1 with resolu-
Because most of the systems related to general relativity até&on Az = 0.002 andAt = 0.0005.
assumed to be isolated systems, and because the spatial do- In Fig. 2 two cases with unit lapse are shown. In the
main used to solve the PDEs is usually finite, in the example#rst cased = 0, which corresponds to the usual wave equa-
shown below the later condition is used. tion. In fact, it can be seen that the initial gaussian splits into
In other words, the condition on the left boundary is thethe two expected pulses that reach the boundaries at the same

elimination of the mode that travels to the right (= 0)  time (aroundi ~ 1). However, in the second cage= 1,
which means that one does not allow reflections from the lefthat is, the coordinates are moving toward- 0 at the speed
boundary, and the condition on the right boundary is to elim-0f the propagation of the wave; thus the coordinate system is

inate the mode traveling to the left (= 0). Explicitly, onthe ~ chasing one of the pulses, which appears in the plot as cen-
left boundaryz, one demands tered atr = 0; the other pulse reaches the boundary in half

the coordinate time, which indicates that it is moving twice
as fast in the coordinates used.
An example that illustrates the role of the lapsés the
one shown in Fig. 3. In such case a smooth version of a step
5 (T —Ug) = Ro =0, (19)  function is chosen for the lapse, bringing it from the value 0.5
to 1.0. The effect is that being? the coefficient ofdt? de-
with solution7gy = ¢y = L. Equivalently, the condition on termines how separated the space-like slices are. Therefore,
the right boundary would bey = Ry andyy = —Ry.  the evolution in the region withk = 0.5 (x < 0) is slower
The problem reduces to calculatg, Ry, Ly andRy. than in the region witli = 1 (x > 0). In fact, in the former

1
5(778 +1g) = Lo
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case it takes the pulse twice a lor@ to reach the boundary Open boundaries with a=1, p=x
whereas in the latter case the pulse reaches the boundary i q)

regular time~ 1. This type of behavior is very useful in gen-
eral relativistic scenarios. For instance, when a black hole is 1
formed as a result of the collapse of a star, what is found is
that the geometric invariants start diverging near the center ofo.5
the system, and therefore one possibility to elude this prob-
lem is to choose a slicing condition that squeezes the slices o |
in this region by demanding — 0 in this region, so that the
evolution tends to freeze out. 0
As a final example, in Fig. 4 a solution with = 1 and
0 = x is shown. Notice that the coordinates travel at the
speed of the wave on the boundaries because thete;t-1. t
This implies that the signals will never reach the numerical
boundaries. The effect is that the pulses in these coordinate:
squeeze as they approach the boundaries. On one hand this
an advantage, because one does not need to impose bound
conditions (the signals W'"_ ”e"‘?r reach the bogndary), but ONhe shift equals the speed of propagation of the wave of the bound-
the other hand, the pulse is being resolved with less and l€Sgjes, the signals will never reach the boundaries. The gaussians
points from the domain, which affects the accuracy of the calsgueeze as they approach the boundaries because in those regions

culations. Anyhow, this example illustrates what can be donghe coordinates travel at the speed of propagation of the wave.
with the smart election of a shift condition.

Elrc\J(URE 4. The wave equation witl¥ = = anda = 1. Because

a stress energy tensor associated to it. In these notes | go
o ) one step further, the Klein-Gordon equation which is a gen-
4. Self-gravitating scalar field eralization of the wave equation with a mass term on it. Of
) o _ ~course, this set up has different angles of analysis and a ref-
An interesting ingredient that can be added to the previougrence that analyzes the system starting from the lagrangian
case is gravity. The simplest generalization of the wave equayensity is [12], which also contains several features, some of
tion toward general relativity is to consider that the wave,,hich are to be studied in these notes. Here it suffices to

function is associated to a scalar field, which furthermore hag,ention that the stress energy tensor for such a scalar field
reads:

Open boundaries with a=0(x), B=0

¢ .

T = 6460 — 500 (600 +2V(0)]  (20)

which is connected to the space-time geometry through Ein-
stein's equationgs,,, = ko7, wherexy = 8xG in units
wherec = 1; V(¢) is the scalar field potential, which will be
considered here to be of the forfm?¢?, wherem is inter-
preted in field theory as the mass of a spinless boson repre-
sented by the scalar field. For simplicity, from now spheri-
cal symmetry is assumed. An important restriction about so-
lutions to Einstein’s equations coupled to a non-trivial real
scalar field in spherical symmetry, is that it is not simple
to construct solutions that are assymptotically Schwarzschild
with non-trivial scalar field, and many subtleties have to be
considered for their existence, like the shape and sign of the

25 =0.5 scalar field potential. A way around is to assume the space-
X time to be time-dependent. The price to pay is that the equa-
FIGURE 3. The wave equation with 3=0 and tions describing the system become a PDE system with one

a=0.25tanh(10x) + 0.75 which is a smooth version of a step spatial and one time coordinates. Under such assumption it
function jumping from 0.5 to 1.0. It can be observed that in the is possible to write the line element in Schwarzschild coordi-
region wherenn = 0.5 (z < 0), the wave propagates with a slow pates as

speed in these coordinates (it can be seen that the signal reaches

the boundary after the other pulse). This is so because one hasused  ds* = —a?(r, t)dt* + a*(r, t)dr? + r2dQ?, (21)

a foliation with time intervaD.5dt where the time slices are closer

together than in the region with > 0, for which the time interval ~ Whereq is the lapse function in the 3+1 decomposition and
is 1.0dt. where” = 0 is assumed. Here andt are the radial and
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time coordinates respectively, which were chosen this waysec. 2.2.- it can be satisfied only up to the truncation error.
because they are the most common in basic texts in gener@herefore, one can only verify whether or not this equation is
relativity. In order to remove some constants from Einstein’ssatisfied in the continuum limit, that is, verify that the quan-
and Klein-Gordon equations, it is possible to use the scaletity 0;a — %7“0@77 converges to zero in the continuum limit.

variablesp — /ko¢, r — mr andt — mt. The Bianchi One important detail in Eq. (27) is that the first term is
identity for the stress-energy tensor above implies the aforesingular forr = 0. Two things apply: i) a usual procedure is
mentioned Klein-Gordon equation: to avoid the origin and stagger the grid, which will be defined
now starting from—dr /2 on, ii) even though, the differential
Ho —¢ =0, (22)  operator would not converge at the origin. This problem is

where, as before addressed by using the expression

1 » 3i <T2a¢)
Lo = ﬁau[\/fgg; 9,¢], dr3 a

and wherep = ¢(r, t). Observe that the rescaling of the vari- for the first term in (27), where th&/dr* indicates derivation
ables remove the presence of the constants in Einstein’s equ&ith respect ta->. This is a common practice in spherically
tions and the scalar field mass. Notice that hemadg”” this ~ symmetric codes (seeg. Refs. 12 and 13) and is used to
are the determinant of the metric and the inverse metric calcupbtain the results presented in these notes.

lated from (21). Notice also that becauses time dependent

in general, the metric might also be time-dependent. In or4.1. Initial data

der to take advantage of the tools developed in the previous

section, one defines first order variables. In fact, after develln this case, initial data must satisfy certain equation, namely
oping the D’Alambertian as done in Eq. (8) one realizes thathe set (23-25) and is not as simple as placing a gaussian and

a good set of first order variables is given by= 9, and  €volve it as for the wave equation. In general, in the 3+1
r = adyp/a. Considering these new variables, Einstein'sdecomposition one has to solve the Hamiltonian and momen-

equations read tum constraints at initial time for the desired physical sys-
) tem (a complete review about the construction of initial data
Ora _ l1—a i r WQ Lty 2a2v] 7 (23) in Qeneral Relativity can be found in [14]). Once the con-
a 2r 4 straints are solved, the evolution equations are used to evolve
oo Opa  a®—1 ) the so constructed initial data; for instance, in the ADM for-
L =, t—— e V, (24)  mulation of General Relativity the dynamical variables to be
1 evolved are the three metric and the extrinsic curvature of the
Oia = —ragm, (25) space-like hypersurfaces [7], the constraints are used only to
2 monitor the accuracy of the results.
where Eq. (23) is the Hamiltonian constraint, (24) is(he') In the present case the momentum constraint has not been

component of Einstein’s equations, which is also the condiconsidered for the evolution and the shift has been fixed
tion that guarantees thatemains the radial areal coordinate, 5” = 0, which implies that one has to solve the Hamilto-
and (25) is the momentum constraint. This set of equationsian constraint and (24) at initial time. Fortunately, these are
is overdetermined and one has to choose which of the equ®DEs that can be solved using standard solvers (see [11] for
tions are to be solved. As in Ref. 12, the first two equationsa revision on such integrators).
are used and the momentum constraint is used only for mon- Inspection of Egs. (23) and (24) indicates that one needs
itoring the accuracy and convergence of the calculations. to provide values forr and« at initial time. This can be

On the other hand, the Klein-Gordon equation is writtenachieved by supplying the initial profile fef and -as done
as a set of three equations (see (9) and (10) for comparisonjor the wave equation- assume time symmetry at initial time,

which impliesm = 0. As before, one chooses a gaussian

[0
O = PR (26)  profile, this time2 ce;ntered at the origin of the coordinaites,
) #(0,r) = Ae~""/°", and its spatial derivative i (0,7). It
oy = lar (7" aw) — aa, (27)  could be any other profile, but having a zero function near the
r? boundaries avoids discontinuities at the edge of the numerical
am domain.
Orp = 0y (7) ’ (28) The construction of the initial data works as follows:

which completes the set of PDEs describing a self-gravitating i) input
real scalar field. The question is what to do with Eq. (25). '

In fact one assumes that if the rest of the equations are be- jj) calculate its spatial derivative,
ing solved exactly, this constraint has to be satisfied. How-

ever one cannot be sure of that because -as pointed out iniii) assumer = 0,
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iv) integrate the Hamiltonian constraint (23) assumingholds, which is a relation that involves the information of the
spatial flatness at the origim (= 1) up to the outer metric functions toof = ad;¢/«). However, not all the
edge of the numerical domain, information needed is available: according to Eq. (26) the

. ) o scalar field can be integrated up to the boundary because the

v) assume the space-time is Schwarzschild-like atignt hand side does not contain spatial derivatives and there
the edge of the numerical domain, thus assumgsng need to apply a condition @i given thatr is the time
a(0,ry) =1/a(0,7y) and integrate the slicing con- gerivative of the field one can assume it satisfies the equation
dition (24) foro inwards. of a spherical wave too, that is, it is a solution of the equation:

The integration of the lapse and of the Hamiltonian constraint

is done with an ODE integrator that uses finite differencing, O + Oy + 7)1 = 0, (30)
like a Runge-Kutta algorithm of second or fourth order that

can be constructed from scratch (seg. Ref. 11).

) In order to find a solution to this equation, the one sided op-
4.2. Evolution erators defined in Sec. 2.1. are useful to calculate the spa-
As for the case of the wave equation, centered finite dif'fer-tlal derivative needed in Eg. (30), because in order to calcu-

encing is used and the domain is discretized in the same maH’!te 0y only points within the domain are used, including

ner as for the wave equation. The system of equations to bE(v); also the time derivative containgryy) at the current
time; the rest is solving for this value in the discretized ver-

solved is (23,24) and (26-28). The first two equations are . .
ODEs inr and the other three are partial evolution equations.s’Ion of (30). Oncer(r) is known, one uses (29) to calculate
Therefore, the last three equations drive the evolution of théb(rN) and the boundary problem is solved.
initial data, and therefore the value of the stress-energy ten-
sor; the other two equations are Einstein’s equations that are
to be solved once there are new values for the scalar field
and its derivativess{ and ), see (20) and (23)] have been
obtained.

The procedure is as follows:

i) take the initial data constructed in the previous subsec- "= °
tion, s

ii) evolve this data using (26-28),

iii) apply boundary conditions to the scalar field and its
derivatives,

0.5

iv) solve the Hamiltonian constraint (23) outwards assum-
ing spatial flatness at the origirtry) = 1, o

v) at the outer boundary assume the space-time is
Schwarzschild like and defing(r ) = 1/a(ry), then
integrate the slicing condition inwards up to the origin, Ricci Scalar —

vi) use the new values af anda to calculate new val-

ues for the scalar field variables using (26-28), vii) go
to (iii).

a4

At each time step, the metric functionsanda are re-
lated to each other at the outer boundary imposing the condi-
tion a(ry) = 1/a(rn), but nothing has been said about the
scalar field near the boundaries (point (iii) above). What is
assumed here (and could be improved on) is that at the oute r
edge of the numerical domain the space-time is so flat that
the scalar field behaves as a spherical wave function, that ig; 5 e 5. (Top) Snapshots of the metric functiond and a”.
the relation (Bottom) Snapshots of the Ricci ScalBrrare shown; perhaps this

might be one of the simplest solution which has a time-dependent
Y=—m—o/r (29)  geometry.
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2.5e-06

One cannot be sure that the solution calculated corre-
sponds to a solutions of Einstein’s equations until verifying
26-06 |- Ar=0.01 (Low) — the momentum constraint (25). Although at the continuum
Ar=0.005 (Base) limit this equation must be satisfied provided the code is sta-
ble, one has to verify that the discretization error converges
to zero. This equation has not been used to evolve the system
and one is not aware of its validity. In Fig. 6 the value of
1e-06 the quantityd;a — (1/2)raém is presented for the long lived
configuration illustrated here; in theory -and in the continuum
limit- such quantity should be zero. However what is shown
here is that in the continuum limit it actually converges to
zero.

Another illustrative situation occurs with = 0.4 and
o = 5.35. In such case the object is compact enough to
collapse into a black hole. In Fig. 7 snapshots of the lapse
are shown; after a few oscillations the configuration finally
collapses. The coordinates used here are not the most ade-
guate to continue the evolution of the black hole accurately,
for which penetrating coordinates are required (see [30] for
an example on how to use such coordinates and a non-zero
shift for a quite similar physical system).

1.5e-06

5e-07

norm(momentum constraint)

45

Convergence factor
N

gk | 4.3. Epilogue of real scalar fields: oscillatons

Other applications of the algorithms described above, include
. . . . . . . . . . the study of the critical phenomena as done in the classical
0 10 20 30 40 50 60 70 80 90 100 paper by ChothIk [15]

Furthermore, | would like to highlight the interesting case
of long lived solutions called oscillatons. These oscillatons

- ; are the solutions to the initial value problem by assuming that
norm and the qualitative behavior would be the same) of the M%the scalar field and the metric functions can be expressed as
mentum constraint for two simulations using different resolutions is P

shown. (Bottom) The convergence factor as defined in (4) is showr? Fourier series. The result is that like other type of stars
for the resolutions used. The fact that the value of the constrain{N€Utron stars or boson stars below) the equilibrium con-
using the base resolution is four times smaller than that obtainedigurations constructed under the Fourier series assumption,

with the coarse resolution indicates second order convergence t6how stable and unstable branches; that is, stable configura-
the value zero, which indicates that in the continuum limit (25) is tions are long lived and unstable configurations collapse into
satisfied and that thA¢ and Ar used for these simulations are in  black holes. The first reference to oscillatons is Ref. 16; a
the convergence regime (see Sec. 2.2.). The convergence factgecent and detailed analysis of oscillatons can be found in

departs from the value 4 at certain moments, which indicates thaRef, 12: an astrophysical application of oscillatons related to
there is a phase shift of the quantity we calculate (the momentunyark matter appears in Ref. 13.

constraint in this case) between one resolution and the other.

FIGURE 6. (Top) The root mean square norm (it could be any other

In order to illustrate that these algorithms work, it suf-5. Self-gravitating complex scalar field: the
fices to follow the recipe above with = 0.3 ando = 5.35. boson star case
Any other parameters could have been chosen, and this ones
were used because they result in a long lived non-trivial 0s5.1. The system of equations
cillating solution. The boundary was chosen at the location
ry = 30 so that the matter was pretty well localized nearA generalization of the former case is the complex scalar field
the origin. In Fig. 5 the dynamical behavior of the metric system, in which a complex scalar field= ¢; + i¢, pro-
functions is shown; in fact the solution appears to be a longides the matter source in Einstein’s equations. The stress-
lived solution. The Ricci scalar is also shown which indicatesenergy tensor in this case is:
the dynamical behavior of the geometry of this space-time.
A Fourier transform of the central value of this quantity re- T = 1[3ﬂ¢* &
veals a quasinormal low frequency mode and high frequency 2
modes that correspond to overtones of the oscillation of the

* 1 *,Q _ 2
scalar field [12]. +0,00,6"] = 5919700 = V(0] (1)
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FIGURE 7. Snapshots of the lapse for a configuration that collapses
into a black hole. After a few oscillation the lapse finally collapses, Einstein’s equations coupled to a complex scalar field, for
which indicates -in the coordinates used- the formation of an ap-the line element (21) and the variables defined above are very
parent horizon. similar to those of the real scalar field case:
whereV (|¢|?) is the potential of self-interaction and the star )
i “i ora 1l—a KoT
stands for complex conjugate; in these notes only the case rd n L[wf I Jp
a 2r 4
+¢2+a’V] (35)

7]‘ 2 2 A 4
v = sl + 516)

O a?>—1 ad  kora®

= +— - 5 Vv (36)
is considered, where again is usually understood as the @ . gr “
mass of a boson anllis the coefficient of a two body self- O = 2 [0r@10t01 + Orp20; 2] (37)
interaction mean field approximation. The Klein-Gordon
equation is again These equations correspond to the Hamiltonian constraint,
the slicing condition and to the component of the Einstein’s
v equations (the momentum constraint) respectively. Clearly,
(D - W) b= (32)  this set of equations is overdetermined again, and it is nec-

essary to choose two of these three equations to be solved,;
as before, the momentum constraint (37) is not solved during
the evolution, but used only for monitoring the accuracy of
the numerical calculations.

where as before

1

O
°=7=

Oulv=99"" 0, ¢].

5.2. Initial data for Boson Stars and the test

NOt.'Ce that th's. equatl(_)n is a generalization of (?2) for aNBoson stars (BSs) are solutions to the above set of equations
arbitrary potential. Agairg andg*” are the geometric quan-

" . T : . under a particular condition: the scalar field is harmonic in
tities of the space-time. Considering the real and imaginary. - it . L
parts of the field, the KG equation can be written as two equa—Ime o(r,t) = do(r)e I Th_|s 90nd.lt|0n implies that_ the_
tions: ' stress energy t(_ansor in (31) is time-independent, wh|ph im-
: plies through Einstein’s equations that the geometry is also
time-independent. That is, there is a time-dependent scalar
(D _ dV) 61 =0, (D _ dV) ¢, =0. (33) field oscillating upon a time-independent geometry whose
d|o|? d|o|? source is the scalar field itself. It is possible to construct bo-
son stars solutions assuming that the metric can be written in
The equations for the metric functionsanda are needed to  Schwarzschild coordinates as
complete the set of equations that describes the system; the
line element assumed is again (21). As in the previous case, ds® = —a(r)?dt® + a(r)?dr® + r2dQ>.
it is convenient to define first order variables, which this time
arem; = (a/a)di¢; andy; = 9,.¢;, for eachi = 1,2. With Under these conditions the Einstein-Klein-Gordon system of
these new variables the KG system is translated into the setequations reads:
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25 ' ; ; ; yhrp— the origina(0) = 1, ¢ (0) finite andd,¢o(0) = 0 in order
2) N - to guarantee regularity and spatial flatness at the origin, and
2t /N —e $0(00) = ¢o/(c0) = 0 in order to ensure asymptotic flatness
“ ) Critical poirt @ at infinity as described in Refs. 17 to 21, these conditions re-

duce the system (38) to an eigenvalue problem.fofhe so-
lution is calculated numerically using finite differencing with
an ordinary integrator (fourth order Runge-Kutta algorithm)
and a shooting routine that bisects the value of

In order to recover the evolution equations without the
physical parametens, A andw (rememberm and\ are pa-
rameters of the scalar field potential), it suffices to perform
the following rescaling of the equations:

¢0 - V /":0/2¢07 r—mr,
2\
Ii()m2 '

M (M,,*/m)

t—>wt,a—>@a and A=
w

The result is that the physical parameters vanish from the
equations and that the radial coordinate has units:@fnd
the time has units of. In these new units the initial data
for boson stars are used to start the evolution of the system
through the equations (34)-(37).

Before showing the evolution of boson stars let

02

2 Ngo/Rgg

015 | o

A=10 -

L A=20
o gy J— us gain some intuition about the boson star solutions
0.05 - S constructed. The solutions of (38) define sequences of equi-
. . . . . . . librium configurations like those shown in Fig. 8a. In the
0 005 01 015 025 03 035 04 curves two important points for each value/ofre marked:

0.2
$0(0)
FIGURE 8. (a) Sequences of equilibrium configurations for differ-
ent values ofA are shown as a function of the central value of the

i) the critical point -marked with a filled circle- indicating
the threshold between the stable and unstable branches

scalar fieldpo (0); each point in the curves corresponds to a solution of each sequence, that is, configurations to the left of
of the eigenvalue problem and represents a boson star configura-  this point are stable and those to the right are unstable
tion. The filled circles indicate the critical solution that divides the as found through the analysis of perturbations [20, 21],
stable from the unstable solutions. The inverted triangles indicate catastrophe theory [23] and full non-linear evolution of
the point at which the binding energy is zero. Those configurations the equilibrium solutions [18, 19, 22] and

between the circles and the triangles (along each sequence) col- _ _ o
lapse into black holes even for infinitesimal perturbations (see [22] i) the point at which the binding energy

for the tracking of the formation of an event horizon out of an unsta- Eg =M — Nm =0 marked with an inverted filled
ble boson star). Configurations to the right of the triangles disperse triangle, where
away. (b) The compactness of each solution is shown. The critical )
i i . ? v * *
point is also marked. N — /]0d3a; _ /iﬁgu (60,6 — 3, ]d?’az
is the number of particles antl = (1 — 1/a?)r/2
Oa _1-a® n 1. evaluated at the outermost point of the numerical do-
a 2r 40 main is the Schwarzschild mass; the configurations be-
5 o a P B tween the instability threshold and the zero binding en-
X [w ¢o? + (0rd0)” + a”(m”¢p + 5)@ bo)| » ergy point collapse into black holes whereas those to

the right disperse away as shown in Ref. 22. The units

Qo a*>—=1 da 1 55 o 1 for M and N are given inM2 /m, whereM,, is the
r — T _ = 7)\ 2 ) pl l pl
o s Po(m”+ 2 %), Planck mass angh is the mass of the boson.
2  O.a  Ora 9 a? . . -
Orr@o + Orgo | — + - + who— Because the mass of the configurations in Fig. 8(a) scales
rooa a with m, the original use of the self-interactidnwas to allow
—a?(m? + \g3) o = 0. (38)  bigger masses even if the mass parametevas fixed [24]

and thus BS configurations seemed to be similar to compact
The system (38) is a set of coupled ordinary differential equaebjects like neutron stars [24]. In Fig. 8b the compactness of
tions to be solved under the conditions of spatial flathess atquilibrium configurations is shown. Provided BSs have no
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defined surface one considers that the radius containing 99%ponding configuration is located near the critical point on
(Rgg) of the total particle number (following [18, 19] where the sable branch of th& = 0 curve in Fig. 8(a). In Fig. 9
95% was considered instead) is a reasonable place where tftte maximum of the metric functioa in time is shown for
measure the gravitational field of the star; thus the compacthis case. What can be seen is that the result is not as strict
ness plotted in Fig. 8b is defined 2849/ Rgg, WhereNgg is as the assumptions made about the time-independence of the
the number of particles integrated upRgy. For big values metric. Instead, this metric function oscillates in time (it is

of A itis possible to construct compact stars that can play thaot time-independent). However, what is also shown in that

role of astrophysical compact objects (see Ref. 24). plot is that the numerical calculations converge to the time-
_ independent result with second order, according to the results
5.3. The evolution of boson stars presented in Sec. 2.2 using two resolutions and assuming that

i ) L i the calculation of the maximum affrom the solution of the
The |Ilustrat|v_e siltuat|on in this case is the test oft_he hypOtheéigenvalue problem is the exact solution.
ses (harmonic time dependence of the scalar field and time . _ . . -
independence of the metric functions). Let us see whether Aside Of showmg that in the continuum I_|m|t the_met_—
this is true when using the system of equations (34)-(36) tdic (e.g. a) is time independent, the test of fire consists in

evolve boson star initial data. What is needed is to set up thghoyvmg that the scalar field IS truly oscillating .meanwh|le.
In Fig. 10 the central value af; is shown. A Fourier Trans-

initial data calculated from (38) and use them as initial dat S
jorm reveals that the fundamental frequency of oscillation of

for the evolution system (34)-(36). The procedure to carry . . ;
out the evolution of the system is the same as the one used EIBIS field corresponds to the eigenvalue calculated when solv-

evolve the real scalar field in the previous section. In fact, in"9 the initial value prpblem (in the units used here, where
the present case the boundary conditions on the metric fund-— Wb the frequency iy = 1/2n).

tions are exactly the same as in the previous section, and the Next, there is an issue with the momentum constraint that
boundary conditions for the scalar field are as follows: thevas not solved. Not shown here, but convergence to zero
condition overr; is the same as (30) and the condition over©f the expressiordia — (ar/2)[0,¢10:h1 + O d20:2] is

¥, is (29) for eachi = 1,2. That s, the real and imaginary achieved with second order, the same case as that sown in
parts of the scalar field are considered to behave as outgoirfgd- 6 for the real scalar field case.

spherical waves separately, which is reasonable because the Finally, in order to show the difference between this so-

equations fokp; and¢, are decoupled [see Eq. (33)]. lution and that of the real scalar field, in Fig. 11 snapshots of
the metric functions are shown. The time-dependence of the
5.4. Stable Boson star solution is as small as shown in Fig. 9. The metric is truly

nearly time-independent for all the valuesrofin a way, the
real and imaginary parts @f conspire to drive the system in
such a way that the geometry does fextlthe dynamics of
the scalar field.

As an example, the configuration with valugg(0) = 0.2,
A =0, with M = 0.6208(M,,;/m) is analyzed. The corre-

1.11225

Base resolution ——
Double resolution -~
o Value from VP - 1 5.5. Unstable Boson Star

11121

1.1122

In order to show how a black hole forms, an initial configu-
ration that belongs to the unstable branch is chosen. The dis-
cretization error suffices to act as a perturbation that triggers
the collapse of the configuration. For this purpose consider
the configuration withp(0) = 0.25 and A = 10 (which
can be seen to be unstable from Fig. 8a). The results of
the evolution are summarized in Fig. 12, where snapshots of
, ‘ , , , the lapse are shown; in fact the lapse collapses to zero in a
0 100 200 300 400 500 600 region expected to be covered by a horizon. In the coordi-

t nates used, an apparent horizon has been formed when the
FIGURE 9. The maximum value of: in time for a BS with  |gpse is sufficiently near zero. However, it is simple to use
¢o(0) = 0.2andA = 0. According to the assumptions made jtferent coordinates allowing one to calculate the location,
during the c_onst_ructlon of equilibrium confl_guratlo_ns thls function mass and possible oscillations of an apparent horizon. The
should be time-independent. However, this function is shown for, ., 10 rocess where even the event horizon was calculated
two different resolutiong\r = 0.05,0.025. The value ofnax(a) : .

during the collapse of an unstable BS can be found in Ref. 22.

calculated from the initial value problemax(a;vp) = 1.11178 is . . - . .
also shown. The fact that the plot with the coarse resolution is four FOWeVer, at this point the results in this section correspond

times bigger with respect to the constant line 1.11178 indicates thatO the typical results found for spherically symmetric BSs in
it converges to such value with second order (see Sec. 2.2). the canonical papers [18, 19].

1.11205

1112

max(a)

1.11195 -
1.1119
1.11185 -

11118 |7

1.11175
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FIGURE 10. (Left) The central value o, versus time for a BS witkb,(0) = 0.2 andA = 0. (Right) The Fourier Transform of the central
value of the field. The peak shows up.at= 1/27.

118 5.6. Epilogue of Boson Stars

1.1 |
Boson stars are self-gravitating systems that help illustrating
how more complicated systems -like neutron stars- evolve.
y | A main property of scalar fields is that the evolution equa-
tions are linear in the degenerated part, and no shocks are
5 0%y o 1 formed during the evolution. In fact, as seen in the examples

09 b | presented here, the evolution equation of a scalar field is the
wave equation with a more general D’Alambertian.

Boson stars have been studied not only as toy models but
08 - | have also been considered as potentially existing astrophys-

. ical objects. In this sense, BSs can be assumed to poten-
075 5 10 15 e % - tially exist because they can be considered to represent the

r final stage of zero temperature self-gravitating Bose Conden-
i . _ sates [25], which have regular geometry and smooth matter

FIGURE 11. Snapshots at several times of the metric functions are ;g tion, with no horizons or singularities. Because these
Sho".vn' The .nearly t'me"ndependen.ce 1S man'feSt. over the WhOIeobjects do not emit in the electromagnetic spectrum they are
spatial domain, not only near the region of the maximur.of dark (or black, in the sense of black holes). In fact, the New-
tonian version of BSs have been considered as models of
1 , , , , galactic halos explaining the galaxy formation process under
the scalar field dark matter hypothesis [25].

There are relevant results that can be obtained with the
knowledge found in these notes. For instance, it is possible

1.05 | a

0.85

09

0.8

err ] to infer differences between a Boson Star and a Black Hole
06 1 (BH) when matter is accreting [26—28]. It is also possible to
S 05 ] push forward the ideas in here, so that BSs can be considered

to be sources of gravitational waves, which could potentially
determine the existence of these objects [29].

04 E
0.3

02

01k ] 6. Final remarks

0 5 10 15 20 25 Throughout these notes it has been shown how to solve PDEs
f related to general relativity using finite difference approxima-
FIGURE 12. Snapshots of the lapse function for a BS with tions. The idea ha_s been to gttract the interest qf sFudents and
$0(0) = 0.25 andA = 10. After a period of doubt, the lapse '€Searchers working on topics related to gravitation, to get
finally collapses to zero, which indicates that a horizon has beerinvolved in problems with less symmetries than the cases at
formed. A plot of the energy-density reveals a divergence at thehand of analytic techniques (recall that the cases seen here are
origin; the geometric invariants also show a divergence. spherically symmetric but time-dependent). Among others,
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an attractive advantage of using numerical calculations is redse of non-uniform discretizations, that is, the spatial grid
lated to nonlinear perturbations of gravitating systems: wheipoints are spatially closer to each other in a desired region
using numerical relativity there are two steps to carry out, onavhereas they could be more separated in other regions; this
is to probe that linear perturbation theory is correct by anatechnique can be applied to the examples above by imple-
lyzing the resulting quasinormal modes for a given systemmenting a logarithmic radial coordinate (for instance), which
The other is that the solution is fully non-linear and thereforeprovides closer nearby points around= 0 and separate
other instability modes can be studied during the evolution. points in the far region; the cheap price to pay is that all the
The examples related to the self-gravitating scalar field§unctions have to be transformed (some of them as tensors) to
can be improved easily. The idea is to write down the equathe new coordinate system, but the gain is that the boundaries
tions as done for the wave equation. An example of suctare very far away, which, for highly non-linear problems is
free evolution for similar cases of self-gravitating scalar fieldsan important issue.
with spherical symmetry can be found in [30], where even Finally, it is worth mentioning that the algorithms can be
the gauge is allowed to evolve. This is an example close témproved, can be more efficient and able to allow simula-
the production codes in full three dimensions with no sym-tions to be carried out on smaller computers. It is also im-
metries for hard core problems, where self-correcting gauggortant to remark that there is plenty of problems that are
conditions are used. Needless to say that scalar fields are esill unsolved within gravitational physics and relativistic as-
erywhere in higher dimensional theories and models, wherophysics, which open a wide collection of topics to work
possibly the assumptions and simple gauge conditions stu@n by using the numerical techniques. In order to go deeper
ied here suffice to find interesting results. into the field of numerical relativity and the problems of the
An important point related to the algorithms is the fact State of the art, the reader is invited to consult the following

that in the examples developed here, the resolution in affeviews: [31] about the numerical hydrodynamics in general
cases has been uniform. This is enough for the cases stytglativity, [32] about the construction of initial data in nu-
ied in these notes, however it does not suffice in other case§erical relativity, [33] about the numerical hydrodynamics
for example, systems in full three dimensions without sym-In Special relativity, [34] for a review on physical and rela-
metries, where all the variables depend on three coordinatetlYistic numerical cosmology, [35] for a review on numerical
in such case, every single function needs allocated real r.ellativity and [36] to learn about the status of numerical rela-
numbers, whereas in the cases here dhlgre needed; there- tVIty:

fore memory is an important issue and it has to be optimized.
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