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In these notes some examples of how to apply finite differencing to the solution of partial differential equations are presented and analyzed.
The aim of this manuscript is to offer the reader a first step toward the numerical solution of sufficiently complicated and interesting problems
within general relativity. The topics include the solution of the wave equation in one spatial dimension and the solution of real and complex
self-gravitating scalar fields with spherical symmetry.
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En estas notas se presentan y analizan algunos ejemplos de aplicación del ḿetodo de diferencias finitas a la solución de ecuaciones diferen-
ciales parciales. La motivación de este manuscrito es ofrecer al lector un primer paso en la solución nuḿerica de problemas suficientemente
complicados e interesantes en relatividad general, o sea, dentro delárea llamada relatividad numérica. Los temas incluyen la solución de la
ecuacíon de onda en una dimensión espacial y la solución de campos escalares auto-gravitantes, tanto reales como complejos con simetrı́a
esf́erica.
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1. Introduction

There is no doubt about the relevance of numerical relativ-
ity (NR) in recent years. The most important and urgent ap-
plication of numerical relativity is the simulation of gravita-
tional wave sources, because the interferometers dedicated to
the detection of Gravitational Waves (GWs) are already ex-
ecuting science runs at the threshold of sensitivity. What is
needed when filtering the signals measured is a set of con-
fident templates of waveforms associated to certain types of
GW sources. One of the most powerful sources of gravita-
tional waves is expected to be the collision of two orbiting
black holes; this is the reason why such problem has become
the hard core of NR for many years. Currently, the templates
used as input for matching the signals in the detectors cor-
respond to postnewtonian approximations of the two body
problem for the orbiting stage of the holes, and perturbation
theory for the time when the final black hole has been formed.
During the last year, striking results indicate that it is possi-
ble now to solve numerically the binary black hole problem
using full general relativity, and it is possible to estimate the
waveforms generated by the system not only during the two
stages mentioned above, but also at the merger time [1,2].

It took a considerable time to design strategies and under-
stand problems in the system of partial differential equations
(PDEs) describing the problem of two black holes orbiting
around each other. Among the points that favored the recent
advances in the solution of this problem within numerical rel-
ativity are: the studies on the formulation of the 3+1 decom-
position of Einstein’s equations and the hyperbolicity proper-
ties of its different flavors; the computer power has increased;
the algorithms have also evolved and now one accounts with
very powerful and accurate algorithms that optimize the re-

sources,e.g. the mesh refinement algorithms that optimize
the memory to be used in the regions of space with more
structure. These are a few items related to the development
in the solutions of the PDE system of Einstein’s equations,
but certainly there are many ways of improving the state of
the art within numerical relativity, both, in the branch of nu-
merical algorithms through the introduction of finite element
and finite volume methods and in the mathematical sector,
where the way the equations are written determines whether
or not the system of equations allows a well posed evolution
problem.

Aside the hard core of NR there are many other applica-
tions that are to come: supernovae core collapse without sym-
metries, supernova core collapse with neutrino transport, the
collapse of a compact star with no symmetries into a black
hole, general cases of binary black hole collisions (like un-
equal mass cases), general relativistic systems in cosmology
at high redshift, general relativistic accretion disks and jets.
In the field of alternative theories there is a lot to do in tensor-
scalar theories, low energy limit of string theory, extended
objects like black strings (in fact this is one of the already
active topics [3]), bubble space-times [4], etcetera.

Naturally, before attempting the solution of any of those
problems it is perhaps useful to analyze simpler cases. In this
sense the wave equation in one spatial dimension is the ba-
sic problem that exemplifies the process of solving PDEs. I
imprint a major effort in the simplest example, that is, the so-
lution of the wave equation in 1+1 dimensions, which is the
paradigm of how a system of PDEs has to be solved. With
this solution at hand it is possible to find some results in three
spatial dimensions with spherical symmetry, a problem that
again only involves PDEs with two independent variables.
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The goal of this manuscript is not to provide the student
a full set of tools to exploit numerical relativity. Instead, the
idea is to show a few examples of how to solve the equa-
tions of general relativity for some particular systems, and
motivate the reader to go beyond the scope of the cases to be
mentioned here. In part, the motivation to proceed this way
is that it is sometimes convenient to have a simple computa-
tional code that works, which is able to reproduce the results
in these notes and in classical papers, and afterwards it would
be simple to generalize the ideas to more elaborate problems
involving general relativity.

Along this manuscript I want to get the reader interested
in:

i) topics for which NR is essential,

ii) NR directly through the examples that include a code
that works and is able to reproduce the results pre-
sented here and in other papers mentioned along the
manuscript.

In Sec. 2, the numerical methods related to finite differ-
encing applied to PDE operations are described. In Sec. 3 the
solution of the wave equation in one plus one dimensions and
details about its general properties are presented. In Sec. 4
a real self-gravitating scalar field is solved, which is noth-
ing but the introduction of self-gravity to a massive Klein-
Gordon field. This turns out to be a generalization of the
wave equation. In Sec. 5 a further generalization is shown,
namely, that of a self-gravitating complex scalar field, and
the particular case of boson stars. Finally, in Sec. 6 a few
remarks are made and references are suggested.

2. Numerical Methods

2.1. Finite Differences

The item that has to be kept in mind from the beginning, is
that when using finite differencing, one is assuming that the
domain of the PDEs is discrete. That is, the functions in-
volved in a PDE are evaluated only in a finite number of
points. The implication of such restriction is that it is not
possible to calculate the solutions with infinite high preci-
sion, and there will be always a contribution of a certain error
(called discretization error) that contaminates off the contin-
uum problem. Of course, if one thinks on the variety of prob-
lems that can be solved numerically that are still unsolved
through analytic methods, it seems that the discretization er-
ror is a good price to pay.

There are different approximations to the system of equa-
tions to be solved, for example, spectral methods assume that
the functions involved in the system of differential equations
can be expanded as a series of orthogonal functions on a
given domain; then orthogonality conditions and recurrence
relations are useful to reduce the system to a simpler system
of equations for the coefficients of the expansion.

The approximation using finite differencing works in a
different way. In order to illustrate how discretization works
assume the case of a hypothetical finite domain with a time
coordinatet and a spatial coordinatex. Spatial coordinates
are defined as a discrete set of points given byxj = j∆x
(j integere), and the boundaries correspond to the pointsx0

(on the left) andxN (on the right). Timetn = n∆t (n inte-
gere) is also defined only for certain values of the continuum
time. Thus a function is defined only for the values forx and
t that correspond to points in the mesh in such a way that for
a given continuous functionf there are available values of it
at (tn, xj), denoted here byfn

j . For a uniformly discretized
domain,∆x = xi+1 − xi and∆t = tn+1 − tn indicate the
resolution in the spatial and time coordinates respectively.

The finite differencing approximation assumes that the
functions involved can be expanded in a Taylor series around
every point of the mesh up to a desired order approximation.
Therefore, considering the function is defined at the spatial
pointxi the value of the function in the nearest neighbors can
be calculated as follows:

f(xj−1) = f(xj)−∆xf ′(xj) +
∆x2

2
f ′′(xj)

− ∆x3

6
f ′′′ + O(∆x3)

f(xj) = f(xj)

f(xj+1) = f(xj) + ∆xf ′(xj) +
∆x2

2
f ′′(xj)

+
∆x3

6
f ′′′ + O(∆x4) (1)

where the prime denotes derivative with respect tox. Start-
ing from these approximations it is possible to construct dif-
ference operators for the derivatives offn

i . For instance, by
adding the first and the third formulas above one obtains an
expression for the first derivative at the pointxj with a second
order error

f ′(xj) =
f(xj+1)− f(xj−1)

2∆x
+ O(∆x2);

notice that the value of the function at the left and right near-
est neighbors is needed in order to calculate this derivative,
that is why it is called a centered finite differencing approxi-
mation.

In order to obtain the second derivative off it suffices to
write the combination

f(xj+1)− 2f(xj) + f(xj−1)
∆x2

= f ′′(xj) + O(∆x2),

which implies the desired expression for the second deriva-
tive with second order accuracy as well. As in the previ-
ous case, this is also a centered approximation of the second
derivative.

In the case of the spatial boundaries, one of the nearest
neighbors would be missing, and a centered approximation
would require the addition of an extra point (a ghost point)
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to the domain; in most problems one prefers to live with-
out ghost points for the purpose of imposing boundary con-
ditions. Therefore one considers that only points to the right
in the spatial domain are available (the case of the left bound-
ary), thus one proceeds by writing the approximations of the
function considering only points on the right as follows:

f(xj) = f(xj)

f(xj+1) = f(xj) + ∆xf ′ +
∆x2

2
f ′′ + O(∆x3)

f(xj+2) = f(xj) + 2∆xf ′ + 2∆x2f ′′ + O(∆x3). (2)

The combination

f(xj+2)− 4f(xj+1) + 3f(xj) = 2∆xf ′ + O(∆x3)

implies the desired expression for the first spatial derivative
of the function with second order accuracy; when applied to
the left boundary it would read

f ′ =
f(x2)− 4f(x1) + 3f(x0)

2∆x
+ O(∆x2).

A similar expression can be obtained for the right boundary
considering only points on the left.

If one considers now the discretization in time, the oper-
ations above apply in the same way and time derivatives are
found in a similar way. It is of course possible to construct
more accurate approximations to derivatives which would re-
sult in better approximations to the continuous equations (see
e.g.Ref. 5). However more accurate approximations involve
points beyondxj±1 and are unpractical for the purpose of
these notes.

On the other hand, when the points in time are consid-
ered, it is possible to use the expressions constructed for the
calculation of spatial derivatives, for instance, the first time
derivative at timetn is approximated to second order by

∂f

∂t
=

fn+1
j − fn−1

j

∆t
+ O(∆t2).

The second derivative calculated to second order centered at
time tn reads

∂2f

∂t2
→ fn+1

i − 2fn
i + fn−1

i

(∆t)2
+ O(∆t2).

With the operators for the second derivatives it is easy to con-
struct the discretized version of the wave equation

∂2f

∂t2
− ∂2f

∂x2
= 0

centered at the point(tn, xi):

fn+1
i − 2fn

i + fn−1
i

(∆t)2
=

fn
i+1 − 2fn

i + fn
i−1

(∆x)2

+ O(∆x2, ∆t2) (3)

for everyi andn. From this expression it is possible to solve
for fn+1

i , and provided values of the functionf at the time
labelsn andn − 1 it is possible to calculate the values off
at the labeln + 1. This is an example of how, given initial
conditions, the solution for further times can be constructed.
An important note about finite differences is that because the
approximations of the differential operators involved in the
PDEs are obtained through a Taylor series expansion, an er-
ror in the definition of the differential equations is introduced
due to the truncation of the Taylor series up to a given order.
In fact, it is expected that the error term in (3) decreases when
increasing the resolution in time and space.

In what follows the equations one deals with are dis-
cretized in a similar manner in order to construct a global
solution for a given set of PDEs in terms of initial conditions.

2.2. Convergence

As mentioned above, when solving equations using finite dif-
ferencing one is discretizing the equation, and therefore the
equations whose solution is being calculated are not exactly
those assumed to be valid in the continuum, a truncation error
in the Taylor series expansion is being introduced through the
simple fact of discretizing. Moreover, even though the error
involved in the discretized version of an equation decreases
when increasing the resolution, it is necessary to establish
at what rate such error should decrease. The convergence is
the notion that relates the rate at which the error decreases
in terms of the accuracy of the discretization. However there
is a concept in between, that of consistency: it is said that
a discretization is consistent given that for smaller values of
∆x and∆t the error with respect to the solution in the con-
tinuum decreases. Another concept is that of stability, which
is a measure of the increase rate of the values of the function
one is calculating; for instance in (3) if one chooses reso-
lutions such that∆t/∆x > 1 it is clear that the amplitude
of the wave function will increase after every time iteration,
until it gets out of control. This is only one case, but in gen-
eral the stability is related to the time integration algorithm
like those used later on in these notes. If the two conditions,
stability and consistency are satisfied, it is said that the algo-
rithm converges. This is known as the Lax theorem. In order
to illustrate what convergence means and how one can see
whether the calculations provide convergent results I follow
the notes in Ref. 6.

Consider a functionfj that is second order accurate (like
the operators described above) such that

f(x) = f0(x) + E(x)(∆x2) + O(∆x3),

wheref0(x) is the exact solution at the continuum,E de-
notes the unknown error term. Iff0(x) is known, it is enough
to compare the results obtained with two different resolutions
f1 obtained using∆x andf2 obtained using∆x/2. Then the
theory predicts that

f1 − f0

f2 − f0
=

∆x2 + O(∆x3)
1
4∆x2 + O(∆x3)

= 4 + O(∆x3). (4)
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For instance, for the wave equation (3) one knows the an-
alytic solution, and it would be a matter of using two different
resolutions to verify whether the difference between the ex-
act and numerical solutions converges to zero. A different
story happens when the exact solution is unknown; however,
within general relativity, even though the solution might be
unknown, in the 3+1 decomposition the system of PDEs is
overdetermined, that is, there are evolution equations for the
dynamical variables (the number of this variables depends on
the formulation and the gauge one chooses, ADM and BSSN
are the most common ones, seee.g. Ref. 7) and there are
also constraint equations that are to be satisfied. The Hamil-
tonian and momentum constraints (sayH = 0 andMk = 0)
are assumed to be satisfied during the evolution; nevertheless
the truncation error introduced when the equations are dis-
cretized imply that these constraints are not exactly satisfied.
The advantage is that one knows they have to be satisfied
(e.g.H = 0) in the continuum limit; therefore only two reso-
lutions suffice to verify whether the calculations are correct.

In the most general case, when the exact solution is un-
known, one can do a Cauchy-type convergence test, using
the results with three different resolutions. Sayf1 andf2 as
above, and furthermoref4 which has been computed using
∆x/4, then

f1 − f2

f2 − f4
=

∆x2 − 1
4∆x2 + O(∆x3)

1
4∆x2 − 1

16∆x2 + O(∆x3)

=
∆x2 + O(∆x3)
1
4∆x2 + O(∆x3)

= 4 + O(∆x3). (5)

This type of estimates provide indications of a good or
a bad calculation. For instance, if one finds that the conver-
gence factors above (the number 4) happens to be a smaller
number, then one has to accept that the convergence of the
solution is not as good as expected. The possible reasons for
such a situation are: there is an error in the implementation
of the algorithm or the algorithm itself does not converge in
the range of∆x selected.

3. The wave equation in 1+1

The wave equation appears as a work horse example to il-
lustrate how finite differencing is applied to a concrete prob-
lem. With this example, I will also introduce the notion of a
space+time decomposition. In this sense, I call to concepts
defined in the 3+1 decomposition of space-time in general
relativity, in particular the concepts of “lapse function” and
“shift vector”. Thus one has the chance to learn also a lit-
tle bit of how gauge freedom works and how one can take
advantage of such gauge freedom. This section is a general-
ization inspired in a previous set of notes devoted to the wave
equation [8].

Now it is shown how the lapse and shift work together to
actually control the evolution of initial data according to the
wave equation in 1+1 dimensions, which on the other hand

is a good introduction to the equations used in full 3+1 gen-
eral relativity. For this, it is necessary to write down the flat
space-time metric in 1+1 dimensionsds2 = −dt̃2 + dx̃2,
which under the general coordinate transformationdt = αdt̃
anddx = dx̃− βdt̃ reads

gµν =
(

(−α2 + β2) β
β 1

)
, (6)

gµν =
( −1/α2 β/α2

β/α2 (1− β2/α2)

)
. (7)

whereα > 0 is the lapse function andβ is the shift vector, in
this case with only one component. Notice thatµ, ν = t, x.
In general, the D’Alambertian operator for a given space-time
metric is defined as

¤φ =
1√−g

∂µ[
√−ggµν∂νφ].

From (6)
√−g = α. The wave equation written in such form

can be expanded as follows

0 = ¤φ

=
1√−g

∂µ[
√−ggµν∂νφ]

=
1
α

∂t[αgtν∂νφ] +
1
α

∂x[αgxν∂νφ]

=
1
α

∂t[αgtt∂tφ + αgtx∂xφ] +
1
α

∂x[αgxt∂tφ + αgxx∂xφ]

=
1
α

∂t

[
− 1

α
∂tφ +

β

α
∂xφ

]

+
1
α

∂x

[
β

α
∂tφ + α

(
1− β2

α2

)
∂xφ

]
. (8)

As will be seen later on, it is desirable to write down a PDE
as a system of equations with only first order derivatives in
space and time. The reason for this is that it becomes sim-
pler to study the properties of the system of equations (e.g.
whether it is hyperbolic or not).

The expression above suggests the definition of two new
variablesψ := ∂xφ andπ := (∂tφ−β∂xφ)/α. Notice thatπ
is the argument of the first order time derivative in (8). The
idea is to separate such equation into a system of equations
for these new variables. The first equation is evident from (8):

∂tπ = ∂x(αψ + βπ). (9)

If now one assumesφ is at least continuously twice differen-
tiable, the equation forψ is ∂tψ = ∂x(∂tφ) which means

∂tψ = ∂x(απ + βψ). (10)

Equations (9)-(10) are the first order version of the wave
equation. This reminds us that the original unknown func-
tion is φ, which can be recovered using the definition ofπ
onceπ andψ have been calculated, that is∂tφ = απ + βψ.
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3.1. Characteristic analysis

If one defines a state vector byu = (π, ψ)T it is possible to
write the wave equation (9)-(10) as

∂tu + A∂xu = −∂x(A)u, (11)

where

A = −
(

β α
α β

)
. (12)

The characteristic directions, that is, the local directions of
propagation of signals in thetx-plane can be found by cal-
culating the eigenvalues ofA (notice that the importantA
in the characteristic analysis is the one on the left hand side,
where the advection terms reside), thus one solves the equa-
tion det(A− I2λ) = 0 for λ = dx/dt, whereI2 is the2× 2
identity matrix. The result is as follows

λ± = −β ± α. (13)

Given the two eigenvalues are distinct and real, the sys-
tem is strictly hyperbolic (a common reference about the hy-
perbolicity properties of a system of equations is Ref. 9). In
the caseβ = 0 andα = 1 the usual light-conex = x0 ± t is
obtained, which determines the local domain of dependence
and influence of the fields propagating through the pointx0.

The corresponding eigenvectors forλ± are
u1 = (1,−1)T andu2 = (1, 1)T . The matrix that diagonal-
izesA is therefore

P =
(

1 1
−1 1

)
, P−1 =

1
2

(
1 −1
1 1

)
(14)

From here, A can be written asA = PΛP−1 with
Λ = diag(λ+, λ−). Multiplying equation (11) byP−1 one
finds

P−1∂tu + P−1A∂xu = −∂x(P−1A)u

∂tw + Λ∂xw = −∂x(Λ)w, (15)

where

w = P−1u =
1
2
(π − ψ, π + ψ)T = (R,L)T (16)

are the characteristic variables. In this way, the two equa-
tions (9) and (10) decouple, and the dynamics of the scalar
field has been decomposed into a mode moving to the
right [R = 1/2(π − ψ)] and another moving to the left
[L = 1/2(π + ψ)]. Equation (15) is thus a decoupled pair
of advection equations for these new variablesR andL.

3.2. Initial data

In the first order form of the wave equation, what is needed
at the initial time is the value ofπ(0, x) andψ(0, x). This
is equivalent to providing data forφ and its time derivative.
In order to focus on the evolution of the initial data one may

simply choose time-symmetric initial data for a gaussian pro-
file:

φ(0, x) = Ae−(x−x0)
2/σ2 ⇒

ψ(0, x) = −2
(x− x0)

σ2
φ(0, x)

π(0, x) = 0. (17)

It is well known that the solution to the wave equation is
the superposition of one mode moving to the right and one
mode moving to the left (φ(t, x) = f(x + t) + g(x − t)).
Then, the evolution of the initial data above should show the
decomposition of the initial data into two gaussians.

3.3. Evolving data

The evolution of data consists in calculating the function
fn+1

j from data in the previous time slice. In order to illus-
trate this fact, discretize equation (9) withβ = 0 andα = 1.
In this particular case, the discretization at the point(tn, xi)
reads

πn+1
i − πn

i

∆t
≈ ψn

i+1 − ψn
i−1

2∆x
⇒ (18)

πn+1
i = πn

i +
∆t

2∆x
(ψn

i+1 − ψn
i−1),

where the results of finite differencing above have been used
assuming∆t and∆x are small. A similar expression is found
for the evolution ofψ from (10). In order to know the value
π(tn+1, xi) one must know the values ofψ in the neighbor-
ing points(tn, xi+1), (tn, xi−1) and the value ofπ at(tn, xi).
Such discretization is known as forward in time and centered
in space (FTCS); the molecule used to construct data in the
n + 1 slice is shown in Fig. 1. It is a simple discretization
and easy to implement, however it is unstable. Nevertheless,
the discretization in this example illustrates how a powerful
approach works: the method of lines. Within this approach,
it is assumed that for eachi the PDE satisfies an ordinary dif-
ferential equation (ODE) along the vertical lines in Fig. 1.
With this in mind, it suffices to have the discretization pro-
vided by (18) and integrate in time the resulting differential
equation for∂tπ. The terms other that the time derivative of
the PDE are considered to belong to the right hand side of
the ODE in time. Thus only an ODE integrator is required to
evolve the data from one time slice to the next one. One only
needs to choose the integrator, which is selected according to
the accuracy, the dissipation and the stability properties that
depend on the restrictions on the Courant factor∆t/∆x (To
learn about the properties of evolution algorithms I refer the
reader to references [9–11]). In the present notes the third
order Runge-Kutta algorithm is the one used for the evolu-
tion of the different systems. A simplified illustration of this
algorithm assumes the unknown functionf to be such that
∂tf = S whereS would be, for instance, the right hand side

Rev. Mex. F́ıs. S53 (4) (2007) 78–93



INTRODUCTION TO NUMERICAL RELATIVITY THROUGH EXAMPLES 83

(RHS), then the algorithm to calculatefn+1 in terms of in-
formation on the previous time slice is

f∗ = fn + ∆tSn

f∗∗ =
3
4
fn +

1
4
f∗ +

∆t

4
S∗

fn+1 =
1
3
fn +

2
3
f∗∗ +

2
3
∆tS∗∗.

This algorithm is widely used because it requires only
three iterations and is accurate and stable for small values of
the Courant factor.

3.4. Boundary conditions

As can be seen from Eq. (18) and Fig. 1, the value of the
variable to be updated can be calculated only in the interior
points, not those located at the boundaries:x0, xN ; the rea-
son is that here is a spatial derivative on the right hand side
of the evolution equation forπ. This is not an obstacle but an
opportunity to impose boundary conditions over the desired
functions at those points. The case of the 1+1 wave equa-
tion is the simplest case, and it is possible to impose different
types of boundary conditions:

i) periodic, which assume a change of topology of the
domain and glue one end of the spatial domain to the
other one;

ii) reflecting, which reflects the wave once it reaches the
boundary points and

iii) Sommerfeld or outgoing wave, which absorbs the
wave.

Because most of the systems related to general relativity are
assumed to be isolated systems, and because the spatial do-
main used to solve the PDEs is usually finite, in the examples
shown below the later condition is used.

In other words, the condition on the left boundary is the
elimination of the mode that travels to the right (R = 0)
which means that one does not allow reflections from the left
boundary, and the condition on the right boundary is to elim-
inate the mode traveling to the left (L = 0). Explicitly, on the
left boundaryx0 one demands

1
2
(πn

0 + ψn
0 ) = L0

1
2
(πn

0 − ψn
0 ) = R0 = 0, (19)

with solutionπn
0 = ψn

0 = L. Equivalently, the condition on
the right boundary would beπn

N = RN andψn
N = −RN .

The problem reduces to calculateL0, R0, LN andRN .

FIGURE 1. Illustration of the molecule used to construct the solu-
tion at then+1 time slice. A filled circle indicates the place where
one wants to know the desired variable onto, and with empty circles
the location where the functions involved are known.

FIGURE 2. Two solutions of the wave equation with outgoing wave
boundary conditions are shown. (Left) The usual wave equation;
the initial gaussian splits into two smaller gaussians which travel
towards the boundaries. (Right) The wave equation withβ = 1
which implies that our coordinates are surfing on top of one of the
small gaussians. That is, the coordinates used travel at the speed of
the wave (c = 1).

3.5. Results

With all these concepts in mind, that is: initial data, an al-
gorithm to evolve functions from one time slice to the next
one, boundary conditions and a code that contains all these
ingredients together, one can construct several solutions to
the wave equation. Here, only a few illustrative ones are pre-
sented. The spatial domain used is−1 ≤ x ≤ 1 with resolu-
tion ∆x = 0.002 and∆t = 0.0005.

In Fig. 2 two cases with unit lapse are shown. In the
first caseβ = 0, which corresponds to the usual wave equa-
tion. In fact, it can be seen that the initial gaussian splits into
the two expected pulses that reach the boundaries at the same
time (aroundt ∼ 1). However, in the second caseβ = 1,
that is, the coordinates are moving towardx > 0 at the speed
of the propagation of the wave; thus the coordinate system is
chasing one of the pulses, which appears in the plot as cen-
tered atx = 0; the other pulse reaches the boundary in half
the coordinate time, which indicates that it is moving twice
as fast in the coordinates used.

An example that illustrates the role of the lapseα is the
one shown in Fig. 3. In such case a smooth version of a step
function is chosen for the lapse, bringing it from the value 0.5
to 1.0. The effect is that beingα2 the coefficient ofdt2 de-
termines how separated the space-like slices are. Therefore,
the evolution in the region withα = 0.5 (x < 0) is slower
than in the region withα = 1 (x > 0). In fact, in the former
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case it takes the pulse twice a long∼ 2 to reach the boundary
whereas in the latter case the pulse reaches the boundary in
regular time∼ 1. This type of behavior is very useful in gen-
eral relativistic scenarios. For instance, when a black hole is
formed as a result of the collapse of a star, what is found is
that the geometric invariants start diverging near the center of
the system, and therefore one possibility to elude this prob-
lem is to choose a slicing condition that squeezes the slices
in this region by demandingα → 0 in this region, so that the
evolution tends to freeze out.

As a final example, in Fig. 4 a solution withα = 1 and
β = x is shown. Notice that the coordinates travel at the
speed of the wave on the boundaries because there,β = ±1.
This implies that the signals will never reach the numerical
boundaries. The effect is that the pulses in these coordinates
squeeze as they approach the boundaries. On one hand this is
an advantage, because one does not need to impose boundary
conditions (the signals will never reach the boundary), but on
the other hand, the pulse is being resolved with less and less
points from the domain, which affects the accuracy of the cal-
culations. Anyhow, this example illustrates what can be done
with the smart election of a shift condition.

4. Self-gravitating scalar field

An interesting ingredient that can be added to the previous
case is gravity. The simplest generalization of the wave equa-
tion toward general relativity is to consider that the wave
function is associated to a scalar field, which furthermore has

FIGURE 3. The wave equation with β=0 and
α=0.25 tanh(10x) + 0.75 which is a smooth version of a step
function jumping from 0.5 to 1.0. It can be observed that in the
region whereα = 0.5 (x < 0), the wave propagates with a slow
speed in these coordinates (it can be seen that the signal reaches
the boundary after the other pulse). This is so because one has used
a foliation with time interval0.5dt where the time slices are closer
together than in the region withx > 0, for which the time interval
is 1.0dt.

FIGURE 4. The wave equation withβ = x andα = 1. Because
the shift equals the speed of propagation of the wave of the bound-
aries, the signals will never reach the boundaries. The gaussians
squeeze as they approach the boundaries because in those regions
the coordinates travel at the speed of propagation of the wave.

a stress energy tensor associated to it. In these notes I go
one step further, the Klein-Gordon equation which is a gen-
eralization of the wave equation with a mass term on it. Of
course, this set up has different angles of analysis and a ref-
erence that analyzes the system starting from the lagrangian
density is [12], which also contains several features, some of
which are to be studied in these notes. Here it suffices to
mention that the stress energy tensor for such a scalar field
reads:

Tµν = φ,µφ,ν − 1
2
gµν [φ,αφ,α + 2V (φ)] (20)

which is connected to the space-time geometry through Ein-
stein’s equationsGµν = κ0Tµν whereκ0 = 8πG in units
wherec = 1; V (φ) is the scalar field potential, which will be
considered here to be of the form12m2φ2, wherem is inter-
preted in field theory as the mass of a spinless boson repre-
sented by the scalar field. For simplicity, from now spheri-
cal symmetry is assumed. An important restriction about so-
lutions to Einstein’s equations coupled to a non-trivial real
scalar field in spherical symmetry, is that it is not simple
to construct solutions that are assymptotically Schwarzschild
with non-trivial scalar field, and many subtleties have to be
considered for their existence, like the shape and sign of the
scalar field potential. A way around is to assume the space-
time to be time-dependent. The price to pay is that the equa-
tions describing the system become a PDE system with one
spatial and one time coordinates. Under such assumption it
is possible to write the line element in Schwarzschild coordi-
nates as

ds2 = −α2(r, t)dt2 + a2(r, t)dr2 + r2dΩ2, (21)

whereα is the lapse function in the 3+1 decomposition and
whereβr = 0 is assumed. Herer and t are the radial and

Rev. Mex. F́ıs. S53 (4) (2007) 78–93



INTRODUCTION TO NUMERICAL RELATIVITY THROUGH EXAMPLES 85

time coordinates respectively, which were chosen this way
because they are the most common in basic texts in general
relativity. In order to remove some constants from Einstein’s
and Klein-Gordon equations, it is possible to use the scaled
variablesφ → √

κ0φ, r → mr andt → mt. The Bianchi
identity for the stress-energy tensor above implies the afore-
mentioned Klein-Gordon equation:

¤φ− φ = 0, (22)

where, as before

¤φ =
1√−g

∂µ[
√−ggµν∂νφ],

and whereφ = φ(r, t). Observe that the rescaling of the vari-
ables remove the presence of the constants in Einstein’s equa-
tions and the scalar field mass. Notice that hereg andgµν this
are the determinant of the metric and the inverse metric calcu-
lated from (21). Notice also that becauseφ is time dependent
in general, the metric might also be time-dependent. In or-
der to take advantage of the tools developed in the previous
section, one defines first order variables. In fact, after devel-
oping the D’Alambertian as done in Eq. (8) one realizes that
a good set of first order variables is given byψ = ∂rφ and
π = a∂tφ/α. Considering these new variables, Einstein’s
equations read

∂ra

a
=

1− a2

2r
+

r

4
[
ψ2 + π2 + 2a2V

]
, (23)

∂rα

α
=

∂ra

a
+

a2 − 1
r

− ra2V, (24)

∂ta =
1
2
rαφπ, (25)

where Eq. (23) is the Hamiltonian constraint, (24) is the(r, r)
component of Einstein’s equations, which is also the condi-
tion that guarantees thatr remains the radial areal coordinate,
and (25) is the momentum constraint. This set of equations
is overdetermined and one has to choose which of the equa-
tions are to be solved. As in Ref. 12, the first two equations
are used and the momentum constraint is used only for mon-
itoring the accuracy and convergence of the calculations.

On the other hand, the Klein-Gordon equation is written
as a set of three equations (see (9) and (10) for comparison):

∂tφ =
α

a
π, (26)

∂tπ =
1
r2

∂r

(
r2αψ

a

)
− aαφ, (27)

∂tψ = ∂r

(απ

a

)
, (28)

which completes the set of PDEs describing a self-gravitating
real scalar field. The question is what to do with Eq. (25).
In fact one assumes that if the rest of the equations are be-
ing solved exactly, this constraint has to be satisfied. How-
ever one cannot be sure of that because -as pointed out in

Sec. 2.2.- it can be satisfied only up to the truncation error.
Therefore, one can only verify whether or not this equation is
satisfied in the continuum limit, that is, verify that the quan-
tity ∂ta− 1

2rαφπ converges to zero in the continuum limit.
One important detail in Eq. (27) is that the first term is

singular forr = 0. Two things apply: i) a usual procedure is
to avoid the origin and stagger the grid, which will be defined
now starting from−dr/2 on, ii) even though, the differential
operator would not converge at the origin. This problem is
addressed by using the expression

3
d

dr3

(
r2αψ

a

)

for the first term in (27), where thed/dr3 indicates derivation
with respect tor3. This is a common practice in spherically
symmetric codes (seee.g. Refs. 12 and 13) and is used to
obtain the results presented in these notes.

4.1. Initial data

In this case, initial data must satisfy certain equation, namely
the set (23-25) and is not as simple as placing a gaussian and
evolve it as for the wave equation. In general, in the 3+1
decomposition one has to solve the Hamiltonian and momen-
tum constraints at initial time for the desired physical sys-
tem (a complete review about the construction of initial data
in General Relativity can be found in [14]). Once the con-
straints are solved, the evolution equations are used to evolve
the so constructed initial data; for instance, in the ADM for-
mulation of General Relativity the dynamical variables to be
evolved are the three metric and the extrinsic curvature of the
space-like hypersurfaces [7], the constraints are used only to
monitor the accuracy of the results.

In the present case the momentum constraint has not been
considered for the evolution and the shift has been fixed
βr = 0, which implies that one has to solve the Hamilto-
nian constraint and (24) at initial time. Fortunately, these are
ODEs that can be solved using standard solvers (see [11] for
a revision on such integrators).

Inspection of Eqs. (23) and (24) indicates that one needs
to provide values forπ and ψ at initial time. This can be
achieved by supplying the initial profile forφ and -as done
for the wave equation- assume time symmetry at initial time,
which impliesπ = 0. As before, one chooses a gaussian
profile, this time centered at the origin of the coordinates,i.e.
φ(0, r) = Ae−r2/σ2

, and its spatial derivative isψ(0, r). It
could be any other profile, but having a zero function near the
boundaries avoids discontinuities at the edge of the numerical
domain.

The construction of the initial data works as follows:

i) inputφ,

ii) calculate its spatial derivativeψ,

iii) assumeπ = 0,
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iv) integrate the Hamiltonian constraint (23) assuming
spatial flatness at the origin (a = 1) up to the outer
edge of the numerical domain,

v) assume the space-time is Schwarzschild-like at
the edge of the numerical domain, thus assume
α(0, rN ) = 1/a(0, rN ) and integrate the slicing con-
dition (24) forα inwards.

The integration of the lapse and of the Hamiltonian constraint
is done with an ODE integrator that uses finite differencing,
like a Runge-Kutta algorithm of second or fourth order that
can be constructed from scratch (seee.g.Ref. 11).

4.2. Evolution

As for the case of the wave equation, centered finite differ-
encing is used and the domain is discretized in the same man-
ner as for the wave equation. The system of equations to be
solved is (23,24) and (26-28). The first two equations are
ODEs inr and the other three are partial evolution equations.
Therefore, the last three equations drive the evolution of the
initial data, and therefore the value of the stress-energy ten-
sor; the other two equations are Einstein’s equations that are
to be solved once there are new values for the scalar field
and its derivatives [π andψ, see (20) and (23)] have been
obtained.

The procedure is as follows:

i) take the initial data constructed in the previous subsec-
tion,

ii) evolve this data using (26-28),

iii) apply boundary conditions to the scalar field and its
derivatives,

iv) solve the Hamiltonian constraint (23) outwards assum-
ing spatial flatness at the origina(r0) = 1,

v) at the outer boundary assume the space-time is
Schwarzschild like and defineα(rN ) = 1/a(rN ), then
integrate the slicing condition inwards up to the origin,

vi) use the new values ofα anda to calculate new val-
ues for the scalar field variables using (26-28), vii) go
to (iii).

At each time step, the metric functionsα anda are re-
lated to each other at the outer boundary imposing the condi-
tion α(rN ) = 1/a(rN ), but nothing has been said about the
scalar field near the boundaries (point (iii) above). What is
assumed here (and could be improved on) is that at the outer
edge of the numerical domain the space-time is so flat that
the scalar field behaves as a spherical wave function, that is,
the relation

ψ = −π − φ/r (29)

holds, which is a relation that involves the information of the
metric functions too (π = a∂tφ/α). However, not all the
information needed is available: according to Eq. (26) the
scalar field can be integrated up to the boundary because the
right hand side does not contain spatial derivatives and there
is no need to apply a condition onφ; given thatπ is the time
derivative of the field one can assume it satisfies the equation
of a spherical wave too, that is, it is a solution of the equation:

∂rπ + ∂tπ + π/r = 0. (30)

In order to find a solution to this equation, the one sided op-
erators defined in Sec. 2.1. are useful to calculate the spa-
tial derivative needed in Eq. (30), because in order to calcu-
late ∂rπ only points within the domain are used, including
π(rN ); also the time derivative containsπ(rN ) at the current
time; the rest is solving for this value in the discretized ver-
sion of (30). Onceπ(rN ) is known, one uses (29) to calculate
ψ(rN ) and the boundary problem is solved.

FIGURE 5. (Top) Snapshots of the metric functionsa2 and α2.
(Bottom) Snapshots of the Ricci ScalarR are shown; perhaps this
might be one of the simplest solution which has a time-dependent
geometry.
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FIGURE 6. (Top) The root mean square norm (it could be any other
norm and the qualitative behavior would be the same) of the mo-
mentum constraint for two simulations using different resolutions is
shown. (Bottom) The convergence factor as defined in (4) is shown
for the resolutions used. The fact that the value of the constraint
using the base resolution is four times smaller than that obtained
with the coarse resolution indicates second order convergence to
the value zero, which indicates that in the continuum limit (25) is
satisfied and that the∆t and∆r used for these simulations are in
the convergence regime (see Sec. 2.2.). The convergence factor
departs from the value 4 at certain moments, which indicates that
there is a phase shift of the quantity we calculate (the momentum
constraint in this case) between one resolution and the other.

In order to illustrate that these algorithms work, it suf-
fices to follow the recipe above withA = 0.3 andσ = 5.35.
Any other parameters could have been chosen, and this ones
were used because they result in a long lived non-trivial os-
cillating solution. The boundary was chosen at the location
rN = 30 so that the matter was pretty well localized near
the origin. In Fig. 5 the dynamical behavior of the metric
functions is shown; in fact the solution appears to be a long
lived solution. The Ricci scalar is also shown which indicates
the dynamical behavior of the geometry of this space-time.
A Fourier transform of the central value of this quantity re-
veals a quasinormal low frequency mode and high frequency
modes that correspond to overtones of the oscillation of the
scalar field [12].

One cannot be sure that the solution calculated corre-
sponds to a solutions of Einstein’s equations until verifying
the momentum constraint (25). Although at the continuum
limit this equation must be satisfied provided the code is sta-
ble, one has to verify that the discretization error converges
to zero. This equation has not been used to evolve the system
and one is not aware of its validity. In Fig. 6 the value of
the quantity∂ta− (1/2)rαφπ is presented for the long lived
configuration illustrated here; in theory -and in the continuum
limit- such quantity should be zero. However what is shown
here is that in the continuum limit it actually converges to
zero.

Another illustrative situation occurs withA = 0.4 and
σ = 5.35. In such case the object is compact enough to
collapse into a black hole. In Fig. 7 snapshots of the lapse
are shown; after a few oscillations the configuration finally
collapses. The coordinates used here are not the most ade-
quate to continue the evolution of the black hole accurately,
for which penetrating coordinates are required (see [30] for
an example on how to use such coordinates and a non-zero
shift for a quite similar physical system).

4.3. Epilogue of real scalar fields: oscillatons

Other applications of the algorithms described above, include
the study of the critical phenomena as done in the classical
paper by Choptuik [15].

Furthermore, I would like to highlight the interesting case
of long lived solutions called oscillatons. These oscillatons
are the solutions to the initial value problem by assuming that
the scalar field and the metric functions can be expressed as
a Fourier series. The result is that like other type of stars
(neutron stars or boson stars below) the equilibrium con-
figurations constructed under the Fourier series assumption,
show stable and unstable branches; that is, stable configura-
tions are long lived and unstable configurations collapse into
black holes. The first reference to oscillatons is Ref. 16; a
recent and detailed analysis of oscillatons can be found in
Ref. 12; an astrophysical application of oscillatons related to
dark matter appears in Ref. 13.

5. Self-gravitating complex scalar field: the
boson star case

5.1. The system of equations

A generalization of the former case is the complex scalar field
system, in which a complex scalar fieldφ = φ1 + iφ2 pro-
vides the matter source in Einstein’s equations. The stress-
energy tensor in this case is:

Tµν =
1
2
[∂µφ∗∂νφ

+ ∂µφ∂νφ∗]− 1
2
gµν [φ∗,αφ,α − V (|φ|2)], (31)
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FIGURE 7. Snapshots of the lapse for a configuration that collapses
into a black hole. After a few oscillation the lapse finally collapses,
which indicates -in the coordinates used- the formation of an ap-
parent horizon.

whereV (|φ|2) is the potential of self-interaction and the star
stands for complex conjugate; in these notes only the case

V =
1
2
m2|φ|2 +

λ

4
|φ|4

is considered, where againm is usually understood as the
mass of a boson andλ is the coefficient of a two body self-
interaction mean field approximation. The Klein-Gordon
equation is again

(
¤− dV

d|φ|2
)

φ = 0 (32)

where as before

¤φ =
1√−g

∂µ[
√−ggµν∂νφ].

Notice that this equation is a generalization of (22) for an
arbitrary potential. Againg andgµν are the geometric quan-
tities of the space-time. Considering the real and imaginary
parts of the field, the KG equation can be written as two equa-
tions:

(
¤− dV

d|φ|2
)

φ1 = 0,

(
¤− dV

d|φ|2
)

φ2 = 0. (33)

The equations for the metric functionsa andα are needed to
complete the set of equations that describes the system; the
line element assumed is again (21). As in the previous case,
it is convenient to define first order variables, which this time
areπi = (a/α)∂tφi andψi = ∂rφi, for eachi = 1, 2. With
these new variables the KG system is translated into the set

∂tφ1 =
α

a
π1,

∂tφ2 =
α

a
π2,

∂tψ1 = ∂r

(α

a
π1

)
,

∂tψ2 = ∂r

(α

a
π2

)
, (34)

∂tπ1 =
1
r2

∂r

(
r2 α

a
ψ1

)
− 1

2
aα

dV

d|φ|2 φ1,

∂tπ2 =
1
r2

∂r

(
r2 α

a
ψ2

)
− 1

2
aα

dV

d|φ|2 φ2.

Einstein’s equations coupled to a complex scalar field, for
the line element (21) and the variables defined above are very
similar to those of the real scalar field case:

∂ra

a
=

1− a2

2r
+

κ0r

4
[π2

1 + π2
2 + φ2

1

+ φ2
2 + a2V ] (35)

∂rα

α
=

a2 − 1
r

+
a′

a
− κ0ra

2

2
V (36)

∂ta =
κ0ar

2
[∂rφ1∂tφ1 + ∂rφ2∂tφ2] (37)

These equations correspond to the Hamiltonian constraint,
the slicing condition and to thert component of the Einstein’s
equations (the momentum constraint) respectively. Clearly,
this set of equations is overdetermined again, and it is nec-
essary to choose two of these three equations to be solved;
as before, the momentum constraint (37) is not solved during
the evolution, but used only for monitoring the accuracy of
the numerical calculations.

5.2. Initial data for Boson Stars and the test

Boson stars (BSs) are solutions to the above set of equations
under a particular condition: the scalar field is harmonic in
time φ(r, t) = φ0(r)e−iωt. This condition implies that the
stress energy tensor in (31) is time-independent, which im-
plies through Einstein’s equations that the geometry is also
time-independent. That is, there is a time-dependent scalar
field oscillating upon a time-independent geometry whose
source is the scalar field itself. It is possible to construct bo-
son stars solutions assuming that the metric can be written in
Schwarzschild coordinates as

ds2 = −α(r)2dt2 + a(r)2dr2 + r2dΩ2.

Under these conditions the Einstein-Klein-Gordon system of
equations reads:
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FIGURE 8. (a) Sequences of equilibrium configurations for differ-
ent values ofΛ are shown as a function of the central value of the
scalar fieldφ0(0); each point in the curves corresponds to a solution
of the eigenvalue problem and represents a boson star configura-
tion. The filled circles indicate the critical solution that divides the
stable from the unstable solutions. The inverted triangles indicate
the point at which the binding energy is zero. Those configurations
between the circles and the triangles (along each sequence) col-
lapse into black holes even for infinitesimal perturbations (see [22]
for the tracking of the formation of an event horizon out of an unsta-
ble boson star). Configurations to the right of the triangles disperse
away. (b) The compactness of each solution is shown. The critical
point is also marked.

∂ra

a
=

1− a2

2r
+

1
4
κ0r

×
[
ω2φ2

0

a2

α2
+ (∂rφ0)2 + a2(m2φ2

0 +
1
2
λa2φ4

0)
]

,

∂rα

α
=

a2 − 1
r

+
∂ra

a
− 1

2
κ0ra

2φ2
0(m

2 +
1
2
λφ2

0),

∂rrφ0 + ∂rφ0

(
2
r

+
∂rα

α
− ∂ra

a

)
+ ω2φ0

a2

α2

− a2(m2 + λφ2
0)φ0 = 0. (38)

The system (38) is a set of coupled ordinary differential equa-
tions to be solved under the conditions of spatial flatness at

the origina(0) = 1, φ0(0) finite and∂rφ0(0) = 0 in order
to guarantee regularity and spatial flatness at the origin, and
φ0(∞) = φ0′(∞) = 0 in order to ensure asymptotic flatness
at infinity as described in Refs. 17 to 21; these conditions re-
duce the system (38) to an eigenvalue problem forω. The so-
lution is calculated numerically using finite differencing with
an ordinary integrator (fourth order Runge-Kutta algorithm)
and a shooting routine that bisects the value ofω.

In order to recover the evolution equations without the
physical parametersm, λ andω (remember,m andλ are pa-
rameters of the scalar field potential), it suffices to perform
the following rescaling of the equations:

φ0 →
√

κ0/2φ0, r → mr,

t → ωt, α → m

ω
α and Λ =

2λ

κ0m2
.

The result is that the physical parameters vanish from the
equations and that the radial coordinate has units ofm and
the time has units ofω. In these new units the initial data
for boson stars are used to start the evolution of the system
through the equations (34)-(37).

Before showing the evolution of boson stars let
us gain some intuition about the boson star solutions
constructed. The solutions of (38) define sequences of equi-
librium configurations like those shown in Fig. 8a. In the
curves two important points for each value ofΛ are marked:

i) the critical point -marked with a filled circle- indicating
the threshold between the stable and unstable branches
of each sequence, that is, configurations to the left of
this point are stable and those to the right are unstable
as found through the analysis of perturbations [20,21],
catastrophe theory [23] and full non-linear evolution of
the equilibrium solutions [18,19,22] and

ii) the point at which the binding energy
EB = M −Nm = 0 marked with an inverted filled
triangle, where

N =
∫

j0d3x =
∫

i

2
√−ggµν [φ∗∂νφ− φ∂νφ∗]d3x

is the number of particles andM = (1 − 1/a2)r/2
evaluated at the outermost point of the numerical do-
main is the Schwarzschild mass; the configurations be-
tween the instability threshold and the zero binding en-
ergy point collapse into black holes whereas those to
the right disperse away as shown in Ref. 22. The units
for M andN are given inM2

pl/m, whereMpl is the
Planck mass andm is the mass of the boson.

Because the mass of the configurations in Fig. 8(a) scales
with m, the original use of the self-interactionΛ was to allow
bigger masses even if the mass parameterm was fixed [24]
and thus BS configurations seemed to be similar to compact
objects like neutron stars [24]. In Fig. 8b the compactness of
equilibrium configurations is shown. Provided BSs have no
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defined surface one considers that the radius containing 99%
(R99) of the total particle number (following [18, 19] where
95% was considered instead) is a reasonable place where to
measure the gravitational field of the star; thus the compact-
ness plotted in Fig. 8b is defined as2N99/R99, whereN99 is
the number of particles integrated up toR99. For big values
of Λ it is possible to construct compact stars that can play the
role of astrophysical compact objects (see Ref. 24).

5.3. The evolution of boson stars

The illustrative situation in this case is the test of the hypothe-
ses (harmonic time dependence of the scalar field and time
independence of the metric functions). Let us see whether
this is true when using the system of equations (34)-(36) to
evolve boson star initial data. What is needed is to set up the
initial data calculated from (38) and use them as initial data
for the evolution system (34)-(36). The procedure to carry
out the evolution of the system is the same as the one used to
evolve the real scalar field in the previous section. In fact, in
the present case the boundary conditions on the metric func-
tions are exactly the same as in the previous section, and the
boundary conditions for the scalar field are as follows: the
condition overπi is the same as (30) and the condition over
ψi is (29) for eachi = 1, 2. That is, the real and imaginary
parts of the scalar field are considered to behave as outgoing
spherical waves separately, which is reasonable because the
equations forφ1 andφ2 are decoupled [see Eq. (33)].

5.4. Stable Boson star

As an example, the configuration with valuesφ0(0) = 0.2,
Λ = 0, with M = 0.6208(Mpl/m) is analyzed. The corre-

FIGURE 9. The maximum value ofa in time for a BS with
φ0(0) = 0.2 and Λ = 0. According to the assumptions made
during the construction of equilibrium configurations this function
should be time-independent. However, this function is shown for
two different resolutions∆r = 0.05, 0.025. The value ofmax(a)
calculated from the initial value problemmax(aivp) = 1.11178 is
also shown. The fact that the plot with the coarse resolution is four
times bigger with respect to the constant line 1.11178 indicates that
it converges to such value with second order (see Sec. 2.2).

sponding configuration is located near the critical point on
the sable branch of theΛ = 0 curve in Fig. 8(a). In Fig. 9
the maximum of the metric functiona in time is shown for
this case. What can be seen is that the result is not as strict
as the assumptions made about the time-independence of the
metric. Instead, this metric function oscillates in time (it is
not time-independent). However, what is also shown in that
plot is that the numerical calculations converge to the time-
independent result with second order, according to the results
presented in Sec. 2.2 using two resolutions and assuming that
the calculation of the maximum ofa from the solution of the
eigenvalue problem is the exact solution.

Aside of showing that in the continuum limit the met-
ric (e.g. a) is time independent, the test of fire consists in
showing that the scalar field is truly oscillating meanwhile.
In Fig. 10 the central value ofφ1 is shown. A Fourier Trans-
form reveals that the fundamental frequency of oscillation of
this field corresponds to the eigenvalue calculated when solv-
ing the initial value problem (in the units used here, where
t → ωt, the frequency isω = 1/2π).

Next, there is an issue with the momentum constraint that
was not solved. Not shown here, but convergence to zero
of the expression∂ta − (ar/2)[∂rφ1∂tφ1 + ∂rφ2∂tφ2] is
achieved with second order, the same case as that sown in
Fig. 6 for the real scalar field case.

Finally, in order to show the difference between this so-
lution and that of the real scalar field, in Fig. 11 snapshots of
the metric functions are shown. The time-dependence of the
solution is as small as shown in Fig. 9. The metric is truly
nearly time-independent for all the values ofr. In a way, the
real and imaginary parts ofφ conspire to drive the system in
such a way that the geometry does notfeel the dynamics of
the scalar field.

5.5. Unstable Boson Star

In order to show how a black hole forms, an initial configu-
ration that belongs to the unstable branch is chosen. The dis-
cretization error suffices to act as a perturbation that triggers
the collapse of the configuration. For this purpose consider
the configuration withφ0(0) = 0.25 and Λ = 10 (which
can be seen to be unstable from Fig. 8a). The results of
the evolution are summarized in Fig. 12, where snapshots of
the lapse are shown; in fact the lapse collapses to zero in a
region expected to be covered by a horizon. In the coordi-
nates used, an apparent horizon has been formed when the
lapse is sufficiently near zero. However, it is simple to use
different coordinates allowing one to calculate the location,
mass and possible oscillations of an apparent horizon. The
whole process where even the event horizon was calculated
during the collapse of an unstable BS can be found in Ref. 22.
However, at this point the results in this section correspond
to the typical results found for spherically symmetric BSs in
the canonical papers [18,19].
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FIGURE 10. (Left) The central value ofφ1 versus time for a BS withφ0(0) = 0.2 andΛ = 0. (Right) The Fourier Transform of the central
value of the field. The peak shows up atω = 1/2π.

FIGURE 11. Snapshots at several times of the metric functions are
shown. The nearly time-independence is manifest over the whole
spatial domain, not only near the region of the maximum ofa.

FIGURE 12. Snapshots of the lapse function for a BS with
φ0(0) = 0.25 andΛ = 10. After a period of doubt, the lapse
finally collapses to zero, which indicates that a horizon has been
formed. A plot of the energy-density reveals a divergence at the
origin; the geometric invariants also show a divergence.

5.6. Epilogue of Boson Stars

Boson stars are self-gravitating systems that help illustrating
how more complicated systems -like neutron stars- evolve.
A main property of scalar fields is that the evolution equa-
tions are linear in the degenerated part, and no shocks are
formed during the evolution. In fact, as seen in the examples
presented here, the evolution equation of a scalar field is the
wave equation with a more general D’Alambertian.

Boson stars have been studied not only as toy models but
have also been considered as potentially existing astrophys-
ical objects. In this sense, BSs can be assumed to poten-
tially exist because they can be considered to represent the
final stage of zero temperature self-gravitating Bose Conden-
sates [25], which have regular geometry and smooth matter
distribution, with no horizons or singularities. Because these
objects do not emit in the electromagnetic spectrum they are
dark (or black, in the sense of black holes). In fact, the New-
tonian version of BSs have been considered as models of
galactic halos explaining the galaxy formation process under
the scalar field dark matter hypothesis [25].

There are relevant results that can be obtained with the
knowledge found in these notes. For instance, it is possible
to infer differences between a Boson Star and a Black Hole
(BH) when matter is accreting [26–28]. It is also possible to
push forward the ideas in here, so that BSs can be considered
to be sources of gravitational waves, which could potentially
determine the existence of these objects [29].

6. Final remarks

Throughout these notes it has been shown how to solve PDEs
related to general relativity using finite difference approxima-
tions. The idea has been to attract the interest of students and
researchers working on topics related to gravitation, to get
involved in problems with less symmetries than the cases at
hand of analytic techniques (recall that the cases seen here are
spherically symmetric but time-dependent). Among others,
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an attractive advantage of using numerical calculations is re-
lated to nonlinear perturbations of gravitating systems: when
using numerical relativity there are two steps to carry out, one
is to probe that linear perturbation theory is correct by ana-
lyzing the resulting quasinormal modes for a given system.
The other is that the solution is fully non-linear and therefore
other instability modes can be studied during the evolution.

The examples related to the self-gravitating scalar fields
can be improved easily. The idea is to write down the equa-
tions as done for the wave equation. An example of such
free evolution for similar cases of self-gravitating scalar fields
with spherical symmetry can be found in [30], where even
the gauge is allowed to evolve. This is an example close to
the production codes in full three dimensions with no sym-
metries for hard core problems, where self-correcting gauge
conditions are used. Needless to say that scalar fields are ev-
erywhere in higher dimensional theories and models, where
possibly the assumptions and simple gauge conditions stud-
ied here suffice to find interesting results.

An important point related to the algorithms is the fact
that in the examples developed here, the resolution in all
cases has been uniform. This is enough for the cases stud-
ied in these notes, however it does not suffice in other cases,
for example, systems in full three dimensions without sym-
metries, where all the variables depend on three coordinates;
in such case, every single function needsN3 allocated real
numbers, whereas in the cases here onlyN are needed; there-
fore memory is an important issue and it has to be optimized.
In order to do so, two ideas are currently in action, one is the
mesh refinement technique, which sets up different resolu-
tions in different regions of the spatial domain, using higher
resolution where the geometry is more deformed and a coarse
one where the functions are nearly constant; the other is the

use of non-uniform discretizations, that is, the spatial grid
points are spatially closer to each other in a desired region
whereas they could be more separated in other regions; this
technique can be applied to the examples above by imple-
menting a logarithmic radial coordinate (for instance), which
provides closer nearby points aroundr = 0 and separate
points in the far region; the cheap price to pay is that all the
functions have to be transformed (some of them as tensors) to
the new coordinate system, but the gain is that the boundaries
are very far away, which, for highly non-linear problems is
an important issue.

Finally, it is worth mentioning that the algorithms can be
improved, can be more efficient and able to allow simula-
tions to be carried out on smaller computers. It is also im-
portant to remark that there is plenty of problems that are
still unsolved within gravitational physics and relativistic as-
trophysics, which open a wide collection of topics to work
on by using the numerical techniques. In order to go deeper
into the field of numerical relativity and the problems of the
state of the art, the reader is invited to consult the following
reviews: [31] about the numerical hydrodynamics in general
relativity, [32] about the construction of initial data in nu-
merical relativity, [33] about the numerical hydrodynamics
in special relativity, [34] for a review on physical and rela-
tivistic numerical cosmology, [35] for a review on numerical
relativity and [36] to learn about the status of numerical rela-
tivity.
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