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Singularidades en modelos Bianchi con electrodińamica no lineal
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En esta contribución se presenta una breve recopilación de soluciones de las ecuaciones de Einstein acopladas con electrodinámica no lineal.
Estas soluciones corresponden a espacios tipo Petrov D, homogéneas y anisotrópicas, la cual tiene como algunos casos particulares a varios
espacios confermes a Bianchi, entre ellos G3I, G3II, G3III, G3VIII, G 3IX y Kantowski— Sachs. La materia que acoplamos a dicha métrica
es la electrodińamica no lineal de Born-Infeld, [17]. Posteriormente se realiza un análisis de geod́esicas el cual nos indica que G3VIII es
geod́esicamente completo, pero que para G3II y G3IX el análisis no es concluyente. Mientras que para G3I, G3III y Kantowski—Sachs, se
muestra que son geodésicamente incompletos.

Descriptores:Petrov D; Electrodińamica de Born-Infeld; Ańalisis de geod́esicas.

In this contribution we shall to present a brief compilation of the Einstein field equation solutions coupled with with nonlinear electrodyna-
mics. The metric used correspond to homogenous and anisotropic spaces Petrov type D, which has some particular cases to several conformal
to Bianchi spaces, among them G3I, G3II, G3III, G3VIII, G 3IX and Kantowski–Sachs. We coupled Born-Infeld nonlinear electrodynamics
with this metric [17]. Finally, an analysis of geodesic is made which indicates us that G3VIII is geodesically complete, but in the analysis for
GII and GIX is not conclusive. Whereas for G3I, G3III and the Kantowski-Sachs, it shows that are geodesically incomplete.

Keywords:Petrov type D; Born-Infeld electrodynamics; geodesic analysis.

PACS: 98.80.Hw; 11.10.Lm; 04.20.Dw

1. Introducción
La relatividad general (RG) es la mejor teorı́a que tenemos
para la descripción de la dińamica del espacio-tiempo, ma-
teria y gravitacíon. Lo que uno podrı́a esperar, y que tam-
bién le ocurrío a Einstein, es que la evolución y estructura del
espacio-tiempo, de acuerdo a esta teorı́a, est́e libre de singu-
laridades (lugares donde la validez y las predicciones de la
teoŕıa dejan de tener sentido) y, por tanto, la relatividad ge-
neral podŕıa representar la teorı́a ”final” para la descripción
del mundo f́ısico a nivel macrosćopico. Sin embargo, la RG
supone e implica la existencia del espacio-tiempo y, de esta
forma, la cuestíon de ćomo tal estructura de espacio-tiempo
puede ser creada lógicamente, está fuera del reino de dicha
teoŕıa. Podŕıa no ser una cuestión cient́ıfica válida el pregun-
tarnos si la RG tiene un rango infinito de validez o, equi-
valentemente, que sea una teorı́a libre de singularidades del
espacio-tiempo.

Desafortunadamente, los teoremas de singularidad, que
fueron mostrados por primera vez hace más de 30 ãnos por
Stephen Hawking, Robert Geroch y Roger Penrose [1], nos
dieron las malas nuevas de que bajo ciertas condiciones apa-
receŕıan las singularidades del espacio-tiempo ya sea en el
futuro o en el pasado. Si esto es cierto, y la estructura ma-
temática de la RG implica la existencia de singularidades del
espacio-tiempo, entonces esta teorı́a no podŕıa ser la definiti-
va para la descripción consistente del universo. Su rango de
validez en tal caso es finito y deberemos encontrar otra teorı́a
que nos responda la cuestión de ćomo fue creado el espacio-
tiempo en la RG.

Por supuesto, un asunto importante (que aún no es claro)
es el de la naturaleza de las singularidades del espacio-tiempo

en RG. Todos los intentos que se han hecho hasta ahora en
esta direccíon muestran que las singularidades están t́ıpica-
mente relacionadas con estructuras muy complicadas que nos
llevan a teoŕıas de cuerdas, teorı́a cúantica de la gravedad,
entre otras. Podemos, por tanto, concluir que es interesante,
y adeḿas, leǵıtimo trabajar en el estudio de espacio-tiempos
que proporcionan elementos que contribuyan al avance en es-
te sentido.

J.M.M. Senovilla acaba de presentar tanto los logros co-
mo las preguntas abiertas sobre los teoremas de singularidad
en la Relatividad General [2].

2. Relatividad general acoplada con electro-
dinámica no lineal de Born-Infeld

Una de las motivaciones para analizar los espacio-tiempos
con campos electromagnéticos no lineales es que enépocas
tempranas o en ciertas regiones del universo, dichos campos
exceden los 1015 gauss, de hecho, se ha demostrado que po-
dŕıan existir campos electromagnéticos del orden de 1042

gauss [3]. A estos valores de los campos electromagnéticos,
la interaccíon de fotones con ellos mismos se hace importan-
te y la electrodińamica cĺasica ya no es v́alida [4]. La teoŕıa
electromagńetica no lineal de Born e Infeld (BI) puede fun-
cionar en ciertos casos como lagrangiano efectivo de la elec-
trodinámica cúantica (EDC) [5].

La electrodińamica no lineal (EDNL) que presentaron
Born e Infeld en 1934 posee una estructura lagrangiana simi-
lar a una accíon efectiva en EDC; es decir, que el lagrangiano
de BI tiene la misma dependencia en los invariantes electro-
magńeticos que en la aproximación de un lazo de la EDC.
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Esteúltimo hecho fue descrito por Heisenberg y Euler [6]
poco despúes de la propuesta de Born e Infeld. Por otro lado,
basado en consideraciones generales, Schwinger obtuvo una
expresíon para la lagrangiana de EDC que coincidı́a, salvo
un factor nuḿerico del orden de la unidad, con la lagrangiana
de BI en la misma aproximación [7]. Por lo tanto, la teorı́a
de BI nos puede dar, al menos cualitativamente, algunas de
las caracterı́sticas de universos tempranos o de regiones en el
universo donde la electrodinámica cĺasica deja de tener vali-
dez.

La aplicacíon de las ecuaciones de la EDNL de BI es inte-
resante en RG ya que se puede implementar un modelo clási-
co en el que ahora es posible tomar en cuenta fenómenos co-
mo la polarizacíon del vaćıo, entre otros y ćomo afectan al
espacio-tiempo donde se encuentran. Las soluciones exactas
a las ecuaciones de Einstein acopladas con esta EDNL de BI
pueden indicar la relevancia fı́sica de efectos no lineales en
intensos campos gravitacionales y electromagnéticos. De la
misma forma, se puede espe-cular que al haber campos elec-
tromagńeticos intensos, el espacio-tiempo descrito por ellos
podŕıan de cierta forma evitar las singularidades que pudieran
aparecer al resolver las ecuaciones de Einstein.

De hecho, es interesante notar que las primeras solucio-
nes exactas regulares que se encontraron en RG con EDNL
fueron agujeros negros [8], donde como fuente se tienen cam-
pos electromagńeticos no lineales que satisface la condición
de enerǵıa d́ebil y los campos de Maxwell son reproducidos
en el ĺımite d́ebil. Tambíen se ha mostrado que la RG acopla-
da con EDNL nos da agujeros negros magnéticos y monopo-
los [9], y estructuras eléctricamente cargadas regulares que
poseen un centro regular de de Sitter [10]. La estabilidad de
estas soluciones regulares ha sido explorada también [11].

Recientemente, un modelo alternativo de agujero negro
fue propuesto, en particular, las soluciones conocidas como
gravastar [12], en donde existe una transición de fase en o
cerca del lugar donde se espera que se forme el horizonte de
eventos y el interior es reemplazado por un condensado de de
Sitter. El modelo de gravastar no tiene singularidades en el
origen y no tiene horizonte de eventos, porque su superficie
rı́gida est́a localizada a un radio mayor que el radio de Sch-
warzschild. En este contexto, se ha encontrado una gravastar
con EDNL, donde el interior de la solución de de Sitter es
sustituida por un campo electromagnético no lineal de BI.
Esta solucíon es llamada gravastar fantasma de BI [13].

Otro tipo de soluciones a las ecuaciones de campo gravi-
tacional de Einstein son las conocidas como agujeros de gu-
sano, las cuales comenzaron a tener mucha popularidad a par-
tir del famoso trabajo de Morris y Thorne a mediados de la
década de los 80 [14]. Las soluciones tipo agujeros de gu-
sano (3+1) dimensional estáticas esf́ericamente siḿetricas no
pueden acoplarse con EDNL, como fue dicho por Bronni-
kov [9], [15] y confirmado posteriormente por A. Berrocal
y F. Lobo [16]. Esteúltimo trabajo tambíen demostŕo que
la solucíon (2+1) dimensional, ası́ como las soluciones axial-
simétricas estacionarias tanto en (2+1) como (3+1) dimensio-
nal, tampoco pueden acoplarse con EDNL. Lo anterior fue

demostrado considerando que el lagrangiano de dicha elec-
trodinámica śolo depende de uno de los invariantes del cam-
po electromagńetico, por lo que áun est́a abierta la posibilidad
para explorar la incorporación del otro de los invariantes de
campo.

En la Ref. 17, se encontró una solucíon exacta de las ecua-
ciones acopladas de Einstein-Born-Infeld para un escenario
cosmoĺogico anisotŕopico. Se consideró una ḿetrica tipo Pe-
trov D y dependiendo de algunos parámetros de las funciones
métricas, se pueden ver algunos espacios tiempo Bianchi, los
cuales se describiran posteriormente. La métrica considerada
es

ds2=
1

φ(t)2

×
[

dz2

h(z)
− dt2

s(t)
+h(z)dy2+s(t) (dx+M(z)dy)2

]
, (1)

dondeM (z) = 2lz y h (z) = α + εz2. Y considerando un
tensor de energı́a momento de electrodinámica no lineal de
Born-Infeld

Tab = HP (−pasp
s
b + gabP ) + (PHP + QHQ −H) gab,

dondeH = b2 −
√

b4 − 2b2P + Q2 con P y Q, los inva-
riantes de campo electromagnético. Las soluciones para las
funciones ḿetricasφ y s son las siguientes:

φ (t) = A cos (lt + C2) ,

s(t) = φ3φ̇


C1 +

∫ 
2b2

(
1−

√
1− φ4

)
− εφ2

φ4φ̇2


 dt


 .

Con estas funciones ḿetricas, la ḿetrica resulta conforme a
varios espacios-tiempo Bianchi (α, l y ε son constantes), [30].
El valor deε depende de la curvatura del espacio-tiempo: si el
espacio-tiempo tiene curvatura positiva el valor es+1, si es
plano su valor es0 y si la curvatura es negativaε = −1. Otros
modelos han sido propuestos con campos electromagnéticos
no lineales como fuente: en [18] una solución Friedmann-
Robertson-Walker homogénea e isotŕopica no singular fue
obtenida considerando una generalización no lineal de la
electrodińamica de Maxwell como fuente; en la Ref. 19 una
cosmoloǵıa de Yang-Mills con una acción de Born-Infeld no
abeliana fue investigada.

3. Inflación en espacios Bianchi acoplados con
EDNL de BI

Uno de los t́opicos de inteŕes dentro del acoplamiento de la
NLED y la RG es saber qué tanto la primera déestas pudiera
favorecer o no un escenario inflacionario. El escenario de la
inflación cosmoĺogica fue propuesto por Guth [20], y ha sido
muy favorecido ya que resuelve algunos de los problemas del
modelo est́andar de la cosmologı́a. Adeḿas, recientemente
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gańo el apoyo de la evidencia observacional [21]. Los mode-
los convencionales utilizan campos escalares con un poten-
cial asociado que da lugar a la inflación. Otra propuesta para
producir inflacíon es usar teorı́as con lagrangianos con una
dependencia no convencional de las derivadas de los cam-
pos [22]. No hay raźon para pensar que en el comienzo del
periodo inflacionario en el universo fuera tan isotrópico co-
mo se ve hoy en dı́a. Novelloet al. mostraron que agregar
un t́ermino adicional a la lagrangiana de Maxwell de campo
electromagńetico causa la expansión del universo [23].

De hecho, un perı́odo de expansión acelerada pudo haber
sido el responsable de que el universo, originalmente aniso-
trópico, se isotropizara. En este sentido, los modelos aniso-
trópicos ḿas simples son los Bianchi. La inflación en dichos
modelos ha sido tratado en la teorı́a de Einstein-Cartan y con
una constante cosmológica [24]. La inflacíon con un campo
de Brans-Dicke en un modelo Bianchi V ha sido estudiado en
la Ref. 25; inflacíon asistida fue investigada en un Bianchi I
en la Ref. 26 y en Bianchi VI0 en la Ref. 27. En la Ref. 28 se
consideŕo a la EDNL como el campo dinámico que promueve
la inflación en varios modelos Bianchi. Recientemente Nove-
llo et al. han confirmado que la EDNL podrı́a resolver dos
problemas importantes de la relatividad general: la acelera-
ción que actualmente se observa en el universo y las singula-
ridades en la teorı́a [29].

4. Análisis de la singularidad en espacios
Bianchi con EDNL de BI

Los espacios anisotrópicos pero espacialmente homogéneos
donde el tensor de energı́a momento corresponde a un cam-
po electromagńetico no lineal libre de fuentes, en particular,
EDNL de BI fueron encontrados en la Ref. 17. Estos espacio-
tiempos incluyen varios casos particulares de espacios Bian-
chi [28]. En este trabajo, se explicará brevemente la existen-
cia o no de singularidades en estos espacios Bianchi.

Existen varios criterios que nos pueden decir si un
espacio-tiempo es singular o no, tales como la divergencia de
los invariantes de curvatura. Sin embargo, esto no funciona de
manera inversa, es decir, si los invariantes de curvatura no di-
vergen, entonces no se puede asegurar que el espacio-tiempo
sea regular, como sucede en los espacios Bianchi estudiados
en la Ref. 29.

Hawking y Ellis discutieron espacios Bianchi I y dieron
un teorema acerca de las singularidades que ocurren en todos
los modelos espacialmente no homogéneos no vaćıos en los
cuales las condición fuerte de energı́a (CFE), o tambien cono-
cida como condicíon de convergencia temporal (Rabuaub≥0,
dondeua es un vector temporal), se satisface. Sin embargo,
la condicíon de convergencia temporal o CFE no se cumple
en el caso de los espacios Bianchi que se estudian aquı́. Por
lo tanto, la posibilidad de ausencia de singularidades persis-
te [1].

Aśı que la prueba que queda por realizar es la del análisis
de las geod́esicas en dichos espacios Bianchi. La caracterı́sti-

ca coḿun de los espacio-tiempos singulares es la existencia
de geod́esicas causales incompletas. Generalmente se consi-
dera como definición de la ausencia de singularidades la com-
pletez geod́esica causal (g-completeness), es decir, un obser-
vador en cáıda libre no deja el espacio-tiempo en un tiem-
po propio finito; equivalentemente, que cada geodésica puede
ser extendida a valores arbitrarios de su parámetro af́ın. Sin
embargo, ni áun la completez geodésica garantiza la ausen-
cia de singularidades (ver el contraejemplo dado por Gero-
ch [31]).

La demostracíon de la completez geodésica no es sim-
ple, en la mayoŕıa de los casos debido a la complejidad de
las ecuaciones las cuales son no lineales de segundo orden y
fuertemente acopladas [32]. Sin embargo, el análisis de la ex-
tensíon geod́esica se puede simplificar cuando existen cons-
tantes de movimiento asociadas a los vectores de Killing. El
método que se utiliza en este trabajo para analizar la com-
pletez es obtener las ecuaciones de primer orden para las
derivadas de las coordenadas con respecto de un parámetro
af́ın, usando las constantes de movimiento. Entonces si de al-
guna forma se logra probar que las primeras derivadas están
acotadas, uno puede concluir que las correspondientes curvas
geod́esicas son completas [33].

En un trabajo reciente [30], se investigan espacio-tiempos
con un grupo de isometrı́as de cuatro dimensiones que con-
tiene un subgrupo de tres dimensiones que actúa transitiva-
mente sobre superficies espaciales, es decir, espacio-tiempos
espacialmente homogéneos anisitŕopicos en una dirección es-
pacial y se realiza el estudio de la completez geodésica para
las soluciones a las ecuaciones de Einstein cuya materia es un
campo electromagnético no lineal de Born-Infeld. La ḿetri-
ca incluye como casos particulares varias métricas confor-
mes a varios espacios Bianchi, en particular G3I, G3II, G3III,
G3VIII, G 3IX y Kantowski— Sachs, dependiendo de algu-
nos valores de los páŕametros que se encuentran en la métrica
original.

Se distinguen dos familias: Bianchi G3I, G3III y
Kantowski—Sachs por un lado, mientras que por el otro lado
se tienen Bianchi G3II, G3VIII y G 3IX. Los espacios Bian-
chi G3I, G3III y Kantowski—Sachs śolo admiten una compo-
nente del campo electomagnético, ya sea eléctrico o magńeti-
co pero no ambos, los cuales pueden intercambiar su rol por
una rotacíon de dualidad. Estos espacios muestran divergen-
cia en sus invariantes a un tiempo finito, más áun, el rango
del paŕametro af́ın es finito y, las geod́esicas son incomple-
tas. Para el caso en dondet = 0 se muestra que aparece una
geod́esica incompleta en el espacio Bianchi G3I.

En la segunda familia, es decir en los Bianchi G3II,
G3VIII y G 3IX, la función que determina todo el compor-
tamiento dińamico de la ḿetrica, resulta ser periódica y aco-
tada, por lo que existen valores det para los cuales la ḿetrica
se vuelve singular. En general, las geodésicas de esta fami-
lia son completas, excepto en el caso de G3II, pero cuando
el momento lineal tiene un valor igual a cero, entonces la
geod́esica puede ser completa, aunque genéricamente en este
caso, se puede considerar geodésicamente incompleto. En to-
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dos los casos, existen puntos donde aparece una singularidad
y, por lo tanto, se procede a hacer una extensión a la variedad.
Los resultados que se obtienen es que el caso Bianchi G3VIII
es geod́esicamente completo. Para los caso G3II y G3IX el
ańalisis no es concluyente. El análisis ḿas completo puede
verse en la Ref. 29.

5. Ecuacíon de Raychaudhuri

El primer resultado concerniente a la predición de singulari-
dades bajo ciertas condiciones fı́sicas se debe a Raychaudhu-
ri, el cual vino a aparecer exactamente el mismo año en que
Einstein fallecío. En 1955, Raychaudhuri publica lo que se
considera como el primer teorema de singularidad y la cual
es la base de los desarrollos posteriores de todos los teore-
mas de singularidad [34]. La ecuación de Raychaudhuri pue-
de ser f́acilmente derivada dado queésta tiene una interpre-
tación geoḿetrica simple. Dicha derivación se presenta en un
muy reciente artı́culo de Dadhich [35].

La ecuacíon de Raychaudhuri nos dice que la expansión
de un haz de geodésicas temporales con vorticidad cero de-
creceŕa mońotomamente a lo largo de las geodésicas si, para
cualquier vector temporalV a, RabV

aV b ≥ 0; es decir que
se cumple la CFE. Lo anterior significa que el enfocamiento
de geod́esicas cercanas es inevitable si CFE se satisface.

Con respecto a los espacios Bianchi estudiados en la
Ref. 29, se muestra que pueden violan la CFE y este hecho
podŕıa explicar por qúe existen soluciones libres de singu-
laridad cuando materia de BI se incluye en un universo. Se
muestra que en el caso de BI el enfocamiento de geodésicas
no ocurre debido al campo electromagnético, mientras que
en el caso de campos electromagnéticos de Maxwell la con-
vergencia de trayectorias ocurre y es favorecida por el campo
electromagńetico.

En el caso de los Bianchi G3I y G3II, con ε=0 las
geod́esicas se enfocan ent = π/2 y, por tanto, tiene una sin-
gularidad. Para los casos restantes, dondeε 6= 0, la constante
b de BI puede ser ajustada para ası́ evitar la convergencia de
geod́esicas.

En el caso del campo electromagnético lineal de Max-
well, se puede decir que tarde o temprano las geodésicas se
enfocaŕan, es decir que no se pueden evitar las singularida-
des.
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V. B. Arellano por la revisíon de este manuscrito. Finalmente
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30. R. Garćıa-Salcedo and N. Bretón, Class. Quantum Grav.22
(2005) 4783.

31. R. Geroch,Ann. Phys.48 (1968) 526.

32. J.M.M. SenovillaGen. Rel. Grav.30 (1988) 5701.

33. V.I. Arnold, Ordinary Differential Equations(Cambridge, MA:
MIT Press, 1990)

34. A.K. Raychaudhuri,Phys. Rev.98(1955) 1123.

35. N. Dadhich (2005) [arXiv:gr-qc/0511123]

Rev. Mex. F́ıs. S53 (4) (2007) 61–65


