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Singularidades en modelos Bianchi con electrodamica no lineal
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En esta contribuéin se presenta una breve recopibecie soluciones de las ecuaciones de Einstein acopladas con elégtriodimo lineal.
Estas soluciones corresponden a espacios tipo Petrov D, lemeagy anisobpicas, la cual tiene como algunos casos particulares a varios
espacios confermes a Bianchi, entre ellas$, G311, Gslll, GsVIII, G 31X y Kantowski— Sachs. La materia que acoplamos a dick&ica

es la electrodiamica no lineal de Born-Infeld, [17]. Posteriormente se realiza @lisas) de geodsicas el cual nos indica que@ll es
geodesicamente completo, pero que pardl@ GsIX el analisis no es concluyente. Mientras que pard, G;slll y Kantowski—Sachs, se
muestra que son geésicamente incompletos.

DescriptoresPetrov D; Electrodiamica de Born-Infeld; Aalisis de geodsicas.

In this contribution we shall to present a brief compilation of the Einstein field equation solutions coupled with with nonlinear electrodyn
mics. The metric used correspond to homogenous and anisotropic spaces Petrov type D, which has some particular cases to several con
to Bianchi spaces, among themIGGsll, Gslll, GV, G 31X and Kantowski—Sachs. We coupled Born-Infeld nonlinear electrodynamics
with this metric [17]. Finally, an analysis of geodesic is made which indicates us §hMdtl& geodesically complete, but in the analysis for

Gll and GIX is not conclusive. Whereas fog 5 G;lll and the Kantowski-Sachs, it shows that are geodesically incomplete.
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1. Introduccion en RG. Todos los intentos que se han hecho hasta ahora en
esta direcdn muestran que las singularidadesarsipica-
mente relacionadas con estructuras muy complicadas que nos
llevan a teoias de cuerdas, tdarciantica de la gravedad,
entre otras. Podemos, por tanto, concluir que es interesante,
y adenas, ledtimo trabajar en el estudio de espacio-tiempos

espacio-tiempo, de acuerdo a estaiteazse libre de singu- h I ; trib |
laridades (lugares donde la validez y las predicciones de |tgeu:epnrt(i)g§r0|onan elementos que contriblyan al avance en es-

teofia dejan de tener sentido) y, por tanto, la relatividad ge- .
) )Y, P g J.M.M. Senovilla acaba de presentar tanto los logros co-

neral podra representar la teiar "final” para la descripéin . . X
del mundo Tsico a nivel macrosipico. Sin embargo, la RG mo las preguntas abiertas sobre los teoremas de singularidac
’ n la Relatividad General [2].

supone e implica la existencia del espacio-tiempo y, de esfd
forma, la cuestin de ®mo tal estructura de espacio-tiempo
puede ser creadéadicamente, eatfuera del reino de dicha 2. Relatividad general acoplada con electro-
teoria. Podra no ser una cuesin cientfica valida el pregun- dinamica no lineal de Born-Infeld
tarnos si la RG tiene un rango infinito de validez o, equi-
valentemente, que sea una fedibre de singularidades del Una de las motivaciones para analizar los espacio-tiempos
espacio-tiempo. con campos electromagticos no lineales es que épocas
Desafortunadamente, los teoremas de singularidad, guempranas o en ciertas regiones del universo, dichos campos
fueron mostrados por primera vez hacaswle 30 &os por  exceden los 10 gauss, de hecho, se ha demostrado que po-
Stephen Hawking, Robert Geroch y Roger Penrose [1], nodrian existir campos electromaggicos del orden de 19
dieron las malas nuevas de que bajo ciertas condiciones apgauss [3]. A estos valores de los campos electro@timps,
recefan las singularidades del espacio-tiempo ya sea en & interacobn de fotones con ellos mismos se hace importan-
futuro o en el pasado. Si esto es cierto, y la estructura mae y la electrodiamica chsica ya no esalida [4]. La teota
tematica de la RG implica la existencia de singularidades de¢lectromagatica no lineal de Born e Infeld (BI) puede fun-
espacio-tiempo, entonces esta tearo podra ser la definiti-  cionar en ciertos casos como lagrangiano efectivo de la elec-
va para la descripdn consistente del universo. Su rango detrodinamica ciéntica (EDC) [5].
validez en tal caso es finito y deberemos encontrar otréateor  La electrodiamica no lineal (EDNL) que presentaron
que nos responda la cuéstide ®@mo fue creado el espacio- Born e Infeld en 1934 posee una estructura lagrangiana simi-
tiempo en la RG. lar a una acd@n efectiva en EDC; es decir, que el lagrangiano
Por supuesto, un asunto importante (que ao es claro) de Bl tiene la misma dependencia en los invariantes electro-
es el de la naturaleza de las singularidades del espacio-tiempuagréticos que en la aproximagi de un lazo de la EDC.

La relatividad general (RG) es la mejor teogue tenemos
para la descrip6in de la diamica del espacio-tiempo, ma-
teria y gravitaddn. Lo que uno poda esperar, y que tam-
bién le ocurrd a Einstein, es que la evolaci y estructura del
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EsteGltimo hecho fue descrito por Heisenberg y Euler [6] demostrado considerando que el lagrangiano de dicha elec-
poco despés de la propuesta de Born e Infeld. Por otro ladotrodinamica $lo depende de uno de los invariantes del cam-
basado en consideraciones generales, Schwinger obtuvo upaelectromagético, por lo que @an esh abierta la posibilidad
expresbn para la lagrangiana de EDC que coifigjcsalvo  para explorar la incorporam del otro de los invariantes de
un factor nunérico del orden de la unidad, con la lagrangianacampo.
de Bl en la misma aproximamn [7]. Por lo tanto, la teda EnlaRef. 17, se encoidtuna soludn exacta de las ecua-
de BI nos puede dar, al menos cualitativamente, algunas dgones acopladas de Einstein-Born-Infeld para un escenario
las caractésticas de universos tempranos o de regiones en glosmobgico anisotbpico. Se considéruna nétrica tipo Pe-
universo donde la electrodimica chsica deja de tener vali- trov Dy dependiendo de algunos paretros de las funciones
dez. meétricas, se pueden ver algunos espacios tiempo Bianchi, los
La aplicacon de las ecuaciones de la EDNL de Bl es inte-cuales se describiran posteriormente. L&tnioa considerada
resante en RG ya que se puede implementar un modedb cl es
co en el que ahora es posible tomar en cuentarnfamos co-
mo la polarizadn del vao, entre otros y @mo afectan al ds’= 5
espacio-tiempo donde se encuentran. Las soluciones exactas o(t)
a las ecuaciones de Einstein acopladas con esta EDNL de B dz2  dt? 5 9
pueden indicar la relevancizsica de efectos no lineales en X m_%+h(z)dy +s(t) (de+M(z)dy)” |, (1)
intensos campos gravitacionales y electronéigns. De la
misma forma, se puede espe-cular que al haber campos eleiondeM (z) = 2z y h(z) = a + €z2. Y considerando un
tromagréticos intensos, el espacio-tiempo descrito por ellosensor de enefg momento de electrodhmica no lineal de
podiian de cierta forma evitar las singularidades que pudieraBorn-Infeld
aparecer al resolver las ecuaciones de Einstein.
De hecho, es interesante notar que las primeras solucioZus = Hp (—paspi + g P) + (PHp + QHgo — H) Gas,
nes exactas regulares que se encontraron en RG con EDNL
fueron agujeros negros [8], donde como fuente se tienen carfonde® = b? — \/b* — 2b2P + Q2 con P y @, los inva-
pos electromaggticos no lineales que satisface la conatici  riantes de campo electromagito. Las soluciones para las
de energn cebil y los campos de Maxwell son reproducidos funciones nétricas¢ y s son las siguientes:
en el imite debil. Tambén se ha mostrado que la RG acopla-
da con EDNL nos da agujeros negros métigos y monopo- ¢ (t) = Acos (it + Cs),
los [9], y estructuras ékttricamente cargadas regulares que
poseen un centro regular de de Sitter [10]. La estabilidad de 3 2v° (1 —vi- ¢4> —e¢?
estas soluciones regulares ha sido explorada &mjbil]. s(t) = "¢ | C1 + / P42
Recientemente, un modelo alternativo de agujero negro

fue propuesto, en particular, las soluciones conocidas COM@on estas funcionesatricas, la rétrica resulta conforme a
gravastar [12], en donde existe una trarBicde fase en 0  y4rios espacios-tiempo Bianchi,( y e son constantes), [30].
cerca del lugar donde se espera que se forme el horizonte g aor dee depende de la curvatura del espacio-tiempo: si el
eventos y el interior es reemplazado por un condensado de ‘é‘%pacio-tiempo tiene curvatura positiva el valorids si es
Sitter. EI modelo de gravastar no tiene singularidades en ?Jlano su valor e8 y si la curvatura es negativa= — 1. Otros
origen y no tiene horizonte de eventos, porque su superficigiodelos han sido propuestos con campos electroétiegs
rigida esh localizada a un radio mayor que el radio de Schy,4 jineales como fuente: en [18] una sohmiFriedmann-
warzschild. En este contexto, se ha encontrado una gravasi@ppertson-Walker homégea e isofipica no singular fue
con EDNL, donde el interior de la soléci de de Sitter s yptenida considerando una generaligacio lineal de la
sustituida por un campo electromagico no lineal de Bl.  gjactrodiamica de Maxwell como fuente; en la Ref. 19 una

Esta soludn es llamada gravastar fantasma de BI [13]. cosmologa de Yang-Mills con una adain de Born-Infeld no
Otro tipo de soluciones a las ecuaciones de campo gravipeliana fue investigada.

tacional de Einstein son las conocidas como agujeros de gu-

sano, las cuales comenzaron a tener mucha popularidad a par-

tir del famoso trabajo de Morris y Thorne a mediados de 1a3.  Inflacion en espacios Bianchi acoplados con
déecada de los 80 [14]. Las soluciones tipo agujeros de gu- EDNL de Bl

sano (3+1) dimensional égicas esfricamente sit@tricas no

pueden acoplarse con EDNL, como fue dicho por Bronni-Uno de los dpicos de integs dentro del acoplamiento de la
kov [9], [15] y confirmado posteriormente por A. Berrocal NLED y la RG es saber @utanto la primera déstas pudiera

y F. Lobo [16]. Estelltimo trabajo tamkin demosth que  favorecer o no un escenario inflacionario. El escenario de la
la solucbn (2+1) dimensional, asomo las soluciones axial- inflacibn cosmabgica fue propuesto por Guth [20], y ha sido
simétricas estacionarias tanto en (2+1) como (3+1) dimensiomuy favorecido ya que resuelve algunos de los problemas del
nal, tampoco pueden acoplarse con EDNL. Lo anterior fuenodelo esindar de la cosmoldg. Adenas, recientemente

1

dt
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gard el apoyo de la evidencia observacional [21]. Los mode€a coniuin de los espacio-tiempos singulares es la existencia
los convencionales utilizan campos escalares con un potede geoésicas causales incompletas. Generalmente se consi-
cial asociado que da lugar a la inflani Otra propuesta para dera como definiéin de la ausencia de singularidades la com-
producir inflacon es usar tedas con lagrangianos con una pletez geodsica causal (g-completeness), es decir, un obser-
dependencia no convencional de las derivadas de los camador en cala libre no deja el espacio-tiempo en un tiem-
pos [22]. No hay ra@n para pensar que en el comienzo delpo propio finito; equivalentemente, que cada geich puede
periodo inflacionario en el universo fuera tan iépico co-  ser extendida a valores arbitrarios de suapaatro ain. Sin

mo se ve hoy enid. Novelloet al. mostraron que agregar embargo, ni &n la completez ged@sica garantiza la ausen-

un ttrmino adicional a la lagrangiana de Maxwell de campccia de singularidades (ver el contraejemplo dado por Gero-
electromagatico causa la exparisi del universo [23]. ch [31)).

De hecho, un péodo de expanén acelerada pudo haber La demostrad@n de la completez geédica no es sim-
sido el responsable de que el universo, originalmente anisgle, en la mayda de los casos debido a la complejidad de
tropico, se isotropizara. En este sentido, los modelos anisdas ecuaciones las cuales son no lineales de segundo orden y
tropicos n@s simples son los Bianchi. La inflaci en dichos  fuertemente acopladas [32]. Sin embargo, éliais de la ex-
modelos ha sido tratado en |la tende Einstein-Cartan y con tensbn geo@sica se puede simplificar cuando existen cons-
una constante cosntaica [24]. La inflacbn con un campo tantes de movimiento asociadas a los vectores de Killing. El
de Brans-Dicke en un modelo Bianchi V ha sido estudiado emétodo que se utiliza en este trabajo para analizar la com-
la Ref. 25; inflacbn asistida fue investigada en un Bianchi | pletez es obtener las ecuaciones de primer orden para las
en la Ref. 26 y en Bianchi VIO en la Ref. 27. En la Ref. 28 sederivadas de las coordenadas con respecto de @&mp#no
consided ala EDNL como el campo damico que promueve afin, usando las constantes de movimiento. Entonces si de al-
la inflacion en varios modelos Bianchi. Recientemente Noveguna forma se logra probar que las primeras derivadas est
llo et al. han confirmado que la EDNL pddrresolver dos acotadas, uno puede concluir que las correspondientes curvas
problemas importantes de la relatividad general: la acelerageodesicas son completas [33].
cibn que actualmente se observa en el universo y las singula- En un trabajo reciente [30], se investigan espacio-tiempos
ridades en la teda [29]. con un grupo de isomé#s de cuatro dimensiones que con-

tiene un subgrupo de tres dimensiones quéattansitiva-
o ) . . mente sobre superficies espaciales, es decir, espacio-tiempo:
4. Andlisis de la singularidad en espacios espacialmente homégeos anisitipicos en una direcsi es-
Bianchi con EDNL de Bl pacial y se realiza el estudio de la completez @sozh para
las soluciones a las ecuaciones de Einstein cuya materia es ur
Los espacios anisd@picos pero espacialmente horéogos campo electromagico no lineal de Born-Infeld. La &tri-
donde el tensor de enéagmomento corresponde a un cam- ca incluye como casos particulares variastmicas confor-
po electromaggtico no lineal libre de fuentes, en particular, mes a varios espacios Bianchi, en particulgk, Gsll, GlIl,
EDNL de Bl fueron encontrados en la Ref. 17. Estos espaciog,ViII, G 51X y Kantowski— Sachs, dependiendo de algu-
tiempos incluyen varios casos particulares de espacios Biafos valores de losggametros que se encuentran en ktrica
chi [28]. En este trabajo, se expliéabrevemente la existen- original.
cia 0 no de singularidades en estos espacios Bianchi. Se distinguen dos familias: Bianchi ;G Gslil y

Existen varios criterios que nos pueden decir si unKantowski—Sachs por un lado, mientras que por el otro lado
espacio-tiempo es singular o no, tales como la divergencia dge tienen Bianchi @1, G3VIIl y G 51X. Los espacios Bian-
los invariantes de curvatura. Sin embargo, esto no funciona dghi G;I, Gl y Kantowski—Sachs &lo admiten una compo-
manera inversa, es decir, si los invariantes de curvatura no diente del campo electomagito, ya sea éktrico o magaéti-
vergen, entonces no se puede asegurar que el espacio-tiemgopero no ambos, los cuales pueden intercambiar su rol por
sea regular, como sucede en los espacios Bianchi estudiadgsa rotaddn de dualidad. Estos espacios muestran divergen-
en la Ref. 29. cia en sus invariantes a un tiempo finitoasndin, el rango

Hawking y Ellis discutieron espacios Bianchi | y dieron del paametro aiin es finito y, las gedekicas son incomple-
un teorema acerca de las singularidades que ocurren en todas. Para el caso en dontle- 0 se muestra que aparece una
los modelos espacialmente no horangos no vdos en los  geodksica incompleta en el espacio Bianchi G
cuales las condion fuerte de enefg (CFE), o tambien cono- En la segunda familia, es decir en los BianchjliG
cida como condi@n de convergencia tempora {,uqu, >0, G3VIll y GslX, la funcion que determina todo el compor-
dondeu, es un vector temporal), se satisface. Sin embargaamiento ditamico de la ratrica, resulta ser périlica y aco-
la condicbn de convergencia temporal o CFE no se cumpléada, por lo que existen valorestgara los cuales la étrica
en el caso de los espacios Bianchi que se estudidn®qu  se vuelve singular. En general, las gesidas de esta fami-
lo tanto, la posibilidad de ausencia de singularidades persigia son completas, excepto en el caso dgl Gero cuando
te [1]. el momento lineal tiene un valor igual a cero, entonces la

Asi que la prueba que queda por realizar es la dglisis =~ geodesica puede ser completa, aunquedgisamente en este
de las geoésicas en dichos espacios Bianchi. La cargtfer caso, se puede considerar gesidamente incompleto. En to-
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dos los casos, existen puntos donde aparece una singularidad Con respecto a los espacios Bianchi estudiados en la
y, por lo tanto, se procede a hacer una extanaila variedad. Ref. 29, se muestra que pueden violan la CFE y este hecho
Los resultados que se obtienen es que el caso BiandHIIG  podia explicar por gé existen soluciones libres de singu-
es geoésicamente completo. Para los casgl@ G;lX el laridad cuando materia de Bl se incluye en un universo. Se
analisis no es concluyente. El alisis mas completo puede muestra que en el caso de Bl el enfocamiento de @&ods
verse en la Ref. 29. no ocurre debido al campo electroméagoo, mientras que
en el caso de campos electromatijcos de Maxwell la con-
vergencia de trayectorias ocurre y es favorecida por el campo
electromagatico.

En el caso de los Bianchi &y Gsll, con =0 las
El primer resultado concerniente a la preditie singulari- geodesicas se enfocan en= /2y, por tanto, tiene una sin-
dades bajo ciertas condicionési¢as se debe a Raychaudhu- gularidad. Para los casos restantes, dengde), la constante
ri, el cual vino a aparecer exactamente el misiio @an que b de Bl puede ser ajustada para egtar la convergencia de
Einstein fallecd. En 1955, Raychaudhuri publica lo que se geodesicas.
considera como el primer teorema de singularidad y la cual En el caso del campo electrom&gico lineal de Max-
es la base de los desarrollos posteriores de todos los teongell, se puede decir que tarde o temprano las gsiods se
mas de singularidad [34]. La ecuanide Raychaudhuri pue- enfocaén, es decir que no se pueden evitar las singularida-
de ser &cilmente derivada dado gésta tiene una interpre- des.
tacion geonétrica simple. Dicha deriva@n se presenta en un
muy reciente artulo de Dadhich [35].

La ecuaddbn de Raychaudhuri nos dice que la expansi
de un haz de ge@dicas temporales con vorticidad cero de-Se agradece a Nora Béet por sus apreciables y friferas
creced morbtomamente a lo largo de las gésitas si, para conversaciones, Bsomo sus aportaciones para la escritura
cualquier vector tempordl ®, R,,V*V® > 0; es decir que de este trabajo. De la misma forma a Claudia Moreno ypAar
se cumple la CFE. Lo anterior significa que el enfocamientd/. B. Arellano por la revihn de este manuscrito. Finalmente
de geodsicas cercanas es inevitable si CFE se satisface. a Lorena Raiitez, por su constante apoyo y ¢ari

5. Ecuacbn de Raychaudhuri
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